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CHARN model is a famous and important model in the finance, which includes many financial
time series models and can be assumed as the return processes of assets. One of the most
fundamental estimators for financial time series models is the conditional least squares (CL)
estimator. However, recently, it was shown that the optimal estimating function estimator (G
estimator) is better than CL estimator for some time series models in the sense of efficiency. In
this paper, we examine efficiencies of CL and G estimators for CHARN model and derive the
condition that G estimator is asymptotically optimal.

1. Introduction

The conditional least squares (CL) estimator is one of the most fundamental estimators for
financial time series models. It has the two advantages which can be calculated with ease
and does not need the knowledge about the innovation process (i.e., error term). Hence this
convenient estimator has been widely used for many financial time series models. However,
Amano and Taniguchi [1] proved it is not good in the sense of the efficiency for ARCHmodel,
which is the most famous financial time series model.

The estimating function estimator was introduced by Godambe ([2, 3]) and Hansen
[4]. Recently, Chandra and Taniguchi [5] constructed the optimal estimating function
estimator (G estimator) for the parameters of the random coefficient autoregressive (RCA)
model, which was introduced to describe occasional sharp spikes exhibited in many fields
and ARCH model based on Godambe’s asymptotically optimal estimating function. In
Chandra and Taniguchi [5], it was shown that G estimator is better than CL estimator by
simulation. Furthermore, Amano [6] applied CL and G estimators to some important time
series models (RCA, GARCH, and nonlinear AR models) and proved that G estimator is



2 Advances in Decision Sciences

Table 1: MSE of ̂θCL and ̂θG for the parameter a in (4).

a 0.1 0.2 0.3
̂θCL(n = 100) 0.01103311 0.01135393 0.01035005
̂θG(n = 100) 0.01096804 0.01113519 0.01006857
̂θCL(n = 200) 0.00596135 0.00586717 0.00549567
̂θG (n = 200) 0.00565094 0.00555699 0.00533862
̂θCL(n = 300) 0.00371269 0.00376673 0.00351314
̂θG(n = 300) 0.00356603 0.00359798 0.00348829

better than CL estimator in the sense of the efficiency theoretically. Amano [6] also derived
the conditions that G estimator becomes asymptotically optimal, which are not strict and
natural.

However, in Amano [6], G estimator was not applied to a conditional heteroscedastic
autoregressive nonlinear model (denoted by CHARNmodel). CHARNmodel was proposed
by Härdle and Tsybakov [7] and Härdle et al. [8], which includes many financial time
series models and is used widely in the finance. Kanai et al. [9] applied G estimator to
CHARN model and proved its asymptotic normality. However, Kanai et al. [9] did not
compare efficiencies of CL and G estimators and discuss the asymptotic optimality of G
estimator theoretically. Since CHARNmodel is the important and rich model, which includes
many financial time series models and can be assumed as return processes of assets, more
investigation of CL and G estimators for this model are needed. Hence, in this paper, we
compare efficiencies of CL and G estimators and investigate the asymptotic optimality of G
estimator for this model.

This paper is organized as follows. Section 2 describes definitions of CL and G
estimators. In Section 3, CL and G estimators are applied to CHARN model, and efficiencies
of these estimators are compared. Furthermore, we derive the condition of asymptotic
optimality of G estimator. We also compare the mean squared errors of ̂θCL and ̂θG by
simulation in Section 4. Proofs of Theorems are relegated to Section 5. Throughout this paper,
we use the following notation: |A|: Sum of the absolute values of all entries of A.

2. Definitions of CL and G Estimators

One of the most fundamental estimators for parameters of the financial time series models
is the conditional least squares (CL) estimator ̂θCL introduced by Tjφstheim [10], and it has
been widely used in the finance. ̂θCL for a time series model {Xt} is obtained by minimizing
the penalty function

Qn(θ) ≡
n
∑

t=m+1

(Xt − E[Xt | Ft(m)])2, (2.1)

where Ft(m) is the σ-algebra generated by {Xs : t − m ≤ s ≤ t − 1}, and m is an appropriate
positive integer (e.g., if {Xt} follows kth-order nonlinear autoregressive model, we can take
m = k). CL estimator generally has a simple expression. However, it is not asymptotically
optimal in general (see Amano and Taniguchi [1]).
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Hence, Chandra and Taniguchi [5] constructed G estimator ̂θG based on Godambe’s
asymptotically optimal estimating function for RCA and ARCH models. For the definition
of ̂θG, we prepare the following estimating function G(θ). Let {Xt} be a stochastic process
which is depending on the k-dimensional parameter θ0, then G(θ) is given by

G(θ) =
n
∑

t=1

at−1ht, (2.2)

where at−1 is a k-dimensional vector depending on X1, . . . , Xt−1 and θ, ht = Xt − E[Xt | Ft−1],
and Ft−1 is the σ-field generated by {Xs, s ≤ t − 1}. The estimating function estimator ̂θE for
the parameter θ0 is defined as

G
(

̂θE

)

= 0. (2.3)

Chandra and Taniguchi [5] derived the asymptotic variance of
√
n(̂θE − θ0) as

(

1
n
E

[

∂

∂θ′G(θ0)
])−1E[G(θ0)G′(θ0)]

n

(

1
n
E

[

∂

∂θ′G(θ0)
]′)−1

(2.4)

and gave the following lemma by extending the result of Godambe [3].

Lemma 2.1. The asymptotic variance (2.4) is minimized if G(θ) = G∗(θ) where

G∗(θ) =
n
∑

t=1

a∗t−1ht,

a∗θ,t−1 = E

[

∂ht

∂θ
| Ft−1

]

E
[

h2
t | Ft−1

]−1
.

(2.5)

Based on the estimating function G∗(θ) in Lemma 2.1, Chandra and Taniguchi [5]
constructed G estimator ̂θG for the parameters of RCA and ARCH models and showed that
̂θG is better than ̂θCL by simulation. Furthermore, Amano [6] applied ̂θG to some important
financial time series models (RCA, GARCH, and nonlinear AR models) and showed that
̂θG is better than ̂θCL in the sense of the efficiency theoretically. Amano [6] also derived
conditions that ̂θG becomes asymptotically optimal. However, in Amano [6], ̂θCL and ̂θG

were not applied to CHARN model, which includes many important financial time series
models. Hence, in the next section, we apply ̂θCL and ̂θG to this model and prove ̂θG is better
than ̂θCL in the sense of the efficiency for this model. Furthermore, conditions of asymptotical
optimality of ̂θG are also derived.

3. CL and G Estimators for CHARN Model

In this section, we discuss the asymptotics of ̂θCL and ̂θG for CHARN model.
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CHARN model of order m is defined as

Xt = Fθ(Xt−1, . . . , Xt−m) +Hθ(Xt−1, . . . , Xt−m)ut, (3.1)

where Fθ,Hθ : Rm → R are measurable functions, and {ut} is a sequence of i.i.d. random
variables with Eut = 0, E[u2

t ] = 1 and independent of {Xs; s < t}. Here, the parameter vector
θ = (θ1, . . . , θk)

′ is assumed to be lying in an open set Θ ⊂ Rk. Its true value is denoted by θ0.
First we estimate the true parameter θ0 of (3.1) by use of ̂θCL, which is obtained by

minimizing the penalty function

Qn(θ) =
n
∑

t=m+1

(Xt − E[Xt | Ft(m)])2

=
n
∑

t=m+1

(Xt − Fθ)2.

(3.2)

For the asymptotics of ̂θCL, we impose the following assumptions.

Assumption 3.1. (1)ut has the probability density function f(u) > 0 a.e. u ∈ R.
(2) There exist constants ai ≥ 0, bi ≥ 0, 1 ≤ i ≤ m, such that for x ∈ Rm with |x| → ∞,

|Fθ(x)| ≤
m
∑

i=1

ai|xi| + o(|x|),

|Hθ(x)| ≤
m
∑

i=1

bi|xi| + o(|x|).
(3.3)

(3) Hθ(x) is continuous and symmetric on Rm, and there exists a positive constant λ
such that

Hθ(x) ≥ λ for ∀x ∈ Rm. (3.4)

(4) Consider the following

{

m
∑

i=1

ai + E|u1|
m
∑

i=1

bi

}

< 1. (3.5)

Assumption 3.1 makes {Xt} strict stationary and ergodic (see [11]). We further impose
the following.

Assumption 3.2. Consider the following

Eθ|Fθ(Xt−1, . . . , Xt−m)|2 < ∞,

Eθ|Hθ(Xt−1, . . . , Xt−m)|2 < ∞,
(3.6)

for all θ ∈ Θ.
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Assumption 3.3. (1)Fθ and Hθ are almost surely twice continuously differentiable in Θ, and
their derivatives ∂Fθ/∂θj and ∂Hθ/∂θj , j = 1, . . . , k, satisfy the condition that there exist
square-integrable functions Aj and Bj such that

∣

∣

∣

∣

∣

∂Fθ
∂θj

∣

∣

∣

∣

∣

≤ Aj

∣

∣

∣

∣

∣

∂Hθ

∂θj

∣

∣

∣

∣

∣

≤ Bj,

(3.7)

for all θ ∈ Θ.
(2)f(u) satisfies

lim
|u|→∞

|u|f(u) = 0,

∫

u2f(u)du = 1.
(3.8)

(3) The continuous derivative f ′(u) ≡ ∂f(u)/∂u exists on R and satisfies

∫ (

f ′

f

)4

f(u)du < ∞,

∫

u2
(

f ′

f

)2

f(u)du < ∞.

(3.9)

From Tjφstheim [10], the following lemma holds.

Lemma 3.4. Under Assumptions 3.1, 3.2, and 3.3, ̂θCL has the following asymptotic normality:

√
n
(

̂θCL − θ0

)

d−→ U−1WU−1, (3.10)

where

W = E

[

H2
θ0

∂

∂θ
Fθ0

∂

∂θ′Fθ0

]

,

U = E

[

∂

∂θ
Fθ0

∂

∂θ′Fθ0

]

.

(3.11)

Next, we apply ̂θG to CHARN model. From Lemma 2.1, ̂θG is obtained by solving the
equation

n
∑

t=m+1

1
H2
θ

∂

∂θ
Fθ(Xt − Fθ) = 0. (3.12)
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For the asymptotic of ̂θG, we impose the following Assumptions.

Assumption 3.5. (1) Consider the following

Eθ
∥

∥

∥a∗θ,t−1
∥

∥

∥

2
< ∞ (3.13)

for all θ ∈ Θ.
(2)a∗θ,t−1 is almost surely twice continuously differentiable inΘ, and for the derivatives

∂a∗θ,t−1/∂θj , j = 1, . . . , k, there exist square-integrable functions Cj such that

∣

∣

∣

∣

∣

∂a∗θ,t−1
∂θj

∣

∣

∣

∣

∣

≤ Cj, (3.14)

for all θ ∈ Θ.
(3) V = E[(1/H2

θ0
)(∂/∂θ)Fθ0(∂/∂θ

′)Fθ0] is k × k-positive definite matrix and satisfies

|V| < ∞. (3.15)

(4) For θ ∈ B (a neighborhood of θ0 in Θ), there exist integrable functions Pijl

θ (X(t−1)),

Q
ijl

θ (X(t−1)), and R
ijl

θ (X(t−1)) such that

∣

∣

∣

∣

∣

∂2

∂θj∂θl

(

a∗θ,t−1
)

i
ht

∣

∣

∣

∣

∣

≤ P
ijl

θ

(

X(t−1)
)

,

∣

∣

∣

∣

∣

∂

∂θj

(

a∗θ,t−1
)

i

∂

∂θl
ht

∣

∣

∣

∣

∣

≤ Q
ijl

θ

(

X(t−1)
)

,

∣

∣

∣

∣

∣

(

a∗θ,t−1
)

i

∂2

∂θj∂θl
ht

∣

∣

∣

∣

∣

≤ R
ijl

θ

(

X(t−1)
)

,

(3.16)

for i, j, l = 1, . . . , k, where X(t−1) = (X1, . . . , Xt−1).
From Kanai et al. [9], the following lemma holds.

Lemma 3.6. Under Assumptions 3.1, 3.2, 3.3, and 3.5, the following statement holds:

√
n
(

̂θG − θ0

)

d−→ N
(

0,V−1
)

. (3.17)

Finally we compare efficiencies of ̂θCL and ̂θG. We give the following theorem.

Theorem 3.7. Under Assumptions 3.1, 3.2, 3.3, and 3.5, the following inequality holds:

U−1WU−1 ≥ V−1, (3.18)
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and equality holds if and only ifHθ0 is constant or ∂Fθ0/∂θ = 0 (for matrices A and B, A ≥ B means
A − B is positive definite).

This theorem is proved by use of Kholevo inequality (see Kholevo [12]). From this
theorem, we can see that the magnitude of the asymptotic variance of ̂θG is smaller than
that of ̂θCL, and the condition that these asymptotic variances coincide is strict. Therefore,
̂θG is better than ̂θCL in the sense of the efficiency. Hence, we evaluate the condition that ̂θG

is asymptotically optimal based on local asymptotic normality (LAN). LAN is the concept
of local asymptotic normality for the likelihood ratio of general statistical models, which was
established by Le Cam [13]. Once LAN is established, the asymptotic optimality of estimators
and tests can be described in terms of the LAN property. Hence, its Fisher information matrix
Γ is described in terms of LAN, and the asymptotic variance of an estimator has the lower
bound Γ−1. Now, we prepare the following Lemma, which is due to Kato et al. [14].

Lemma 3.8. Under Assumptions 3.1, 3.2, and 3.3, CHARN model has LAN, and its Fisher
information matrix Γ is

E

⎡

⎢

⎢

⎣

1
H2
θ0

(

−∂Hθ0

∂θ
,
∂Fθ0
∂θ

)(

a c
c b

)

⎛

⎜

⎜

⎝

−∂Hθ0

∂θ′

∂Fθ0
∂θ′

⎞

⎟

⎟

⎠

⎤

⎥

⎥

⎦

, (3.19)

where

at = ut

(

f ′(ut)/f(ut)
)

+ 1, bt = −(f ′(ut)/f(ut)
)

,

a = E
[

a2
t

]

, b = E
[

b2t

]

, c = E[atbt].
(3.20)

From this Lemma, the asymptotic variance of ̂θGV−1 has the lower bound Γ−1, that is,

V−1 ≥ Γ−1. (3.21)

The next theorem gives the condition that V−1 equals Γ−1, that is ̂θG becomes
asymptotically optimal.

Theorem 3.9. Under Assumptions 3.1, 3.2, 3.3, and 3.5, if ∂Hθ0/∂θ = 0 and ut is Gaussian, then
̂θG is asymptotically optimal, that is,

V−1 = Γ−1. (3.22)

Finally, we give the following example which satisfies the assumptions in Theorems
3.7 and 3.9.

Example 3.10. CHARN model includes the following nonlinear AR model:

Xt = Fθ(Xt−1, . . . , Xt−m) + ut, (3.23)
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where Fθ: Rm → R is a measurable function, and {ut} is a sequence of i.i.d. random variables
with Eut = 0, E[u2

t ] = 1 and independent of {Xs; s < t}, and we assume Assumptions 3.1,

3.2, 3.3, and 3.5 (for example, we define Fθ =
√

a0 + a1X
2
t−1 + · · · + amX

2
t−m, where a0 > 0,

aj ≥ 0, j = 1, . . . , m,
∑m

j=1 aj < 1 ). In Amano [6], it was shown that the asymptotic variance of
̂θCL attains that of ̂θG. Amano [6] also showed under the condition that ut is Gaussian, ̂θG is
asymptotically optimal.

4. Numerical Studies

In this section, we evaluate accuracies of ̂θCL and ̂θG for the parameter of CHARN model by
simulation. Throughout this section, we assume the following model:

Xt = aXt−1 +
√

0.2 + 0.1X2
t−1ut, (4.1)

where {ut} ∼i.i.d.N(0, 1). Mean squared errors (MSEs) of ̂θCL and ̂θG for the parameter a are
reported in the following Table 1. The simulations are based on 1000 realizations, and we set
the parameter value a and the length of observations n as a = 0.1, 0.2, 0.3 and n = 100, 200,
300.

From Table 1, we can see that MSE of ̂θG is smaller than that of ̂θCL. Furthermore it is
seen that MSE of ̂θCL and ̂θG decreases as the length of observations n increases.

5. Proofs

This section provides the proofs of the theorems. First, we prepare the following lemma to
compare the asymptotic variances of CL and G estimators (see Kholevo [12]).

Lemma 5.1. We define ψ(ω) and φ(ω) as r × s and t × s random matrices, respectively, and h(ω)
as a random variable that is positive everywhere. If the matrix E[φφ′/h]−1 exists, then the following
inequality holds:

E
[

ψψ ′h
] ≥ E

[

ψφ′]E

[

φφ′

h

]−1
E
[

ψφ′]′. (5.1)

The equality holds if and only if there exists a constant r × t matrix C such that

hψ + Cφ = o a.e. (5.2)

Now we proceed to prove Theorem 3.7.
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Proof of Theorem 3.7. Let ψ = (∂/∂θ)Fθ0 , φ = (∂/∂θ)Fθ0 , and h = H2
θ0
, then from the

definitions of matrices U, W and V, it can be represented as

U = E
[

ψφ′] ,

W = E
[

ψψ ′h
]

,

V = E

[

φφ′

h

]

.

(5.3)

Hence from Lemma 5.1, we can see that

W ≥ UV−1U. (5.4)

From this inequality, we can see that

U−1WU−1 ≥ V−1. (5.5)

Proof of Theorem 3.9. Fisher information matrix of CHARN model based on LAN Γ can be
represented as

Γ = E

⎡

⎢

⎢

⎣

1
H2
θ0

(

−∂Hθ0

∂θ
,
∂Fθ0
∂θ

)(

a c
c b

)

⎛

⎜

⎜

⎝

−∂Hθ0

∂θ′

∂Fθ0
∂θ′

⎞

⎟

⎟

⎠

⎤

⎥

⎥

⎦

= E

[

1
H2
θ0

(

a
∂Hθ0

∂θ

∂Hθ0

∂θ′ − c
∂Fθ0
∂θ

∂Hθ0

∂θ′ − c
∂Hθ0

∂θ

∂Fθ0
∂θ′ + b

∂Fθ0
∂θ

∂Fθ0
∂θ′

)

]

= E

[

1
H2
θ0

(

a
∂Hθ0

∂θ

∂Hθ0

∂θ′ − c
∂Fθ0
∂θ

∂Hθ0

∂θ′ − c
∂Hθ0

∂θ

∂Fθ0
∂θ′

)

]

+ E

[

(

f ′(ut)
f(ut)

)2]

E

[

1
H2
θ0

∂Fθ0
∂θ

∂Fθ0
∂θ′

]

.

(5.6)

From (5.6), if ∂Hθ0/∂θ = 0, Γ becomes

Γ = E

[

(

f ′(ut)
f(ut)

)2]

E

[

1
H2
θ0

∂Fθ0
∂θ

∂Fθ0
∂θ′

]

. (5.7)
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Next, we show under the Gaussianity of ut that E[(f ′(ut)/f(ut))
2] = 1. From the

Schwarz inequality, it can be obtained that

E

[

(

f ′(ut)
f(ut)

)2]

= E
[

u2
t

]

E

[

(

f ′(ut)
f(ut)

)2]

≥
(

E

[

ut
f ′(ut)
f(ut)

])2

=
(∫∞

−∞
xf ′(x)dx

)2

=
(∫∞

−∞
xf(x)dx −

∫∞

−∞
f(x)dx

)2

= 1.

(5.8)

The equality holds if and only if there exists some constant c such that

cx =
f ′(x)
f(x)

. (5.9)

Equation (5.9) becomes, for some constant k,

cx =
(

log f(x)
)′

,

c

2
x2 + k = log f(x),

f(x) = e(c/2)x
2+k = eke(c/2)x

2
.

(5.10)

Hence, c is −1, and f(x) becomes the density function of the normal distribution.
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