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Ideals of implication groupoids are considered. Given a subset of a distributive implication
groupoid, the smallest ideal containing it is constructed. A characterization of ideals in distributive
implication groupoid using upper sets is given.

1. Introduction

In 50-ties L-Henkin and T-Skolem introduced the notion of Hilbert algebra as an algebraic
counterpart of intuitionistic logic. A Hilbert algebra [1] is an algebra H = (H, ∗, 1) of type
(2, 0) satisfying the axioms:

(H1) x ∗ (y ∗ x) = 1,

(H2) (x ∗ (y ∗ z)) ∗ ((x ∗ y) ∗ (x ∗ z)) = 1,

(H3) x ∗ y = 1 and y ∗ x = 1 imply x = y.

One can easily show that (H2) can be replaced by two rather simpler axioms:

(LD) x ∗ (y ∗ z) = (x ∗ y) ∗ (x ∗ z) (left distributivity),
(E) x ∗ (y ∗ z) = y ∗ (x ∗ z) (exchange).

Chajda and Halaš [2] introduced the concept of distributive implication groupoid and
studied deductive systems, ideals, and congruence relations in distributive implication
groupoid. In this paper we consider ideals in distributive implication groupoid. Given a
subset of a distributive implication groupoid, we make the smallest ideal containing it. We
provide an equivalent condition of the ideals using the notion of upper sets.
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2. Preliminaries

Definition 2.1 (see [2]). An algebra (A, ∗, 1) of type (2, 0) is called an implication groupoid if
it satisfies the identities:

(1) x ∗ x = 1,

(2) 1 ∗ x = x for all x, y ∈ A.

Example 2.2. Let A = {1, a, b} in which ∗ is defined by

∗ 1 a b

1 1 a b

a a 1 b

b a b 1

(2.1)

Then (A, ∗, 1) is an implication groupoid.

Example 2.3. Let A = {1, a, b, c} in which ∗ is defined by

∗ 1 a b c

1 1 a b c

a 1 1 b b

b 1 a 1 a

c 1 a b 1

(2.2)

Then (A, ∗, 1) is an implication groupoid.

Definition 2.4 (see [2]). An implication groupoid (A, ∗, 1) of type (2, 0) is called a distributive
implication groupoid if it satisfies the following identity:

(LD) x ∗ (y ∗ z) =
(
x ∗ y) ∗ (x ∗ z) (

left distributivity
)

(2.3)

for all x, y, z ∈ A.

Example 2.5. Let A = {1, a, b, c, d} in which ∗ is defined by

∗ 1 a b c d

1 1 a b c d

a 1 1 b b 1
b 1 a 1 1 d

c 1 a 1 1 d

d 1 1 c c 1

(2.4)

Then (A, ∗, 1) is a distributive implication groupoid.
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In every implication groupoid, one can introduce the so-called induced relation ≤ by
the setting

x ≤ y iff x ∗ y = 1. (2.5)

Lemma 2.6 (see [2]). Let (A, ∗, 1) be a distributive implication groupoid. Then A satisfies the
identities

x ∗ 1 = 1, x ∗ (y ∗ x) = 1. (2.6)

Moreover, the induced relation ≤ is a quasiorder on A, and the following relationships are satisfied:

(i) x ≤ 1,

(ii) x ≤ y ∗ x,
(iii) x ∗ ((x ∗ y) ∗ y) = 1,

(iv) 1 ≤ x implies x = 1,

(v) y ∗ z ≤ (x ∗ y) ∗ (x ∗ z),
(vi) x ≤ y implies y ∗ z ≤ x ∗ z,
(vii) x ∗ (y ∗ z) ≤ y ∗ (x ∗ z),
(viii) x ∗ y ≤ (y ∗ z) ∗ (x ∗ z).

3. On Ideals of Implication Groupoids

In this section, we study some properties of ideals in a distributive implication groupoid
and give the smallest ideal containing a subset of a distributive implication groupoid. We
characterize ideals in terms of upper sets.

Definition 3.1 (see [2]). Let A = (A, ∗, 1) be an implication groupoid. A subset I ⊆ A is called
an ideal of A if

(I1) 1 ∈ I,

(I2) x ∈ A, y ∈ I imply x ∗ y ∈ I,

(I3) x ∈ A, y1, y2 ∈ I imply (y2 ∗ (y1 ∗ x)) ∗ x ∈ I.

Remark 3.2. If I is an ideal of an implication groupoid A = (A, ∗, 1) and a ∈ I, x ∈ A, then
(a ∗ x) ∗ x ∈ I.

Definition 3.3 (see [2]). LetA = (A, ∗, 1) be an implication groupoid. A subsetD ⊆ A is called
a deductive system ofA if

(D1) 1 ∈ D,

(D2) x ∈ D and x ∗ y ∈ D imply y ∈ D.
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Lemma 3.4 (see [2]). LetA be an implication groupoid. Then every ideal ofA is a deductive system
of A.

Converse of the above lemma does not hold in general.

Example 3.5. From Example 2.2, we can see that {1, a} is its deductive system which is not an
ideal since b ∗ a = b /∈ {1, a}.

Theorem 3.6 (see [2]). A nonempty subset I of a distributive implication groupoid A is an ideal if
and only if it is a deductive system of A.

For any x1, x2, . . . , xn, a ∈ A, we define

n∏

i=1

x1 ∗ a = xn ∗ (· · · ∗ (x1 ∗ a) · · · ). (3.1)

Lemma 3.7. Let A be a distributive implication groupoid and x, y, z ∈ A such that x ≤ y. Then
z ∗ x ≤ z ∗ y.

Proof. Let x, y, z ∈ A and x ≤ y. Then x∗y = 1 and hence (z∗x)∗(z∗y) = z∗(x∗y) = z∗1 = 1.
Therefore z ∗ x ≤ z ∗ y.

Lemma 3.8. Let A be a distributive implication groupoid and x, y ∈ A such that x ∗ y = 1. Then for
all a1, a2, . . . , an ∈ A,

∏n
i=1ai ∗ x = 1 implies

∏n
i=1ai ∗ y = 1.

Proof. We have x ∗ y = 1; that is, x ≤ y, and from Lemma 3.7, we can see that

1 =
n∏

i=1

ai ∗ x ≤
n∏

i=1

ai ∗ y. (3.2)

Therefore, from Lemma 2.6(iv),
∏n

i=1ai ∗ y = 1.

We denote the set of all ideals of A by I(A). It is obvious that {1}, A ∈ I(A).

Example 3.9. From Example 2.2, we can see that I(A) = {{1}, A}.

Example 3.10. From Example 2.5, we can see that I(A) = {{1}, {1, a, d}, {1, b, c}, A}.

Example 3.11. Let A = {1, a, b, c, d} in which ∗ is defined by

∗ 1 a b c d

1 1 a b c d

a a 1 c d d

b a a 1 c c

c a a a 1 c

d a a a a 1

(3.3)

Then (A, ∗, 1) is an implication groupoid. We can see that I(A) = {{1}, {1, a}, {1, a, c, d}, A}.
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The following theorem is straightforward.

Theorem 3.12. If Ii (i ∈ Δ) are ideals of an implication groupoid A, then
⋂

i∈Δ Ii is an ideal of A.

Note 1. In an implication groupoid, union of two ideals need not be an ideal. From
Example 2.3, we can see that I = {1, a} and J = {1, b} are ideals of A but I ∪ J = {1, a, b}
is not an ideal of A.

The following is a characterization of ideals

Theorem 3.13. Let I be a subset of a distributive implication groupoid A containing 1. Then I ∈
I(A) if and only if for any a, b ∈ I and x ∈ A, a ∗ (b ∗ x) = 1 implies x ∈ I.

Proof. Let I ∈ I(A). Assume a, b ∈ I and x ∈ A such that a ∗ (b ∗ x) = 1. Since I is an ideal
of A, we have a ∗ (b ∗ x) ∈ I. Since every ideal of A is deductive system, by applying (D2)
twice, we conclude that x ∈ I. Conversely, assume that the condition holds. Since ideals and
deductive systems coincide in distributive implication groupoid, it is enough to show that I
satisfies (D1) and (D2). Since 1 ∈ I, the condition (D1) holds. Suppose x ∈ I and x ∗ a ∈ I.
Then x ∗ ((x ∗a) ∗a) = (x ∗ (x ∗a)) ∗ (x ∗a) = ((x ∗x) ∗ (x ∗a)) ∗ (x ∗a) = (1 ∗ (x ∗a)) ∗ (x ∗a) =
(x ∗ a) ∗ (x ∗ a) = 1. Therefore x ∗ ((x ∗ a) ∗ a) ∈ I and hence a ∈ I. Thus I ∈ I(A).

Corollary 3.14. Let I be a subset of a distributive implication groupoid A containing 1. Then I ∈
I(A) if and only if for any a1, a2, . . . , an ∈ I and x ∈ A,

∏n
i=1ai ∗ x = 1 implies x ∈ I.

Definition 3.15. For every subset X ⊆ A, the smallest ideal of A which contains X, that is, the
intersection of all ideals I ⊇ X, is said to be the ideal generated by X, and will be denoted by
(X]. Obviously, (∅] = {1}.

Lemma 3.16. Let A be a distributive implication groupoid and x, y, z ∈ A. Then x ∗ (y ∗ z) = 1 if
and only if y ∗ (x ∗ z) = 1.

Proof. Let x ∗ (y ∗ z) = 1. Then y ∗ (x ∗ (y ∗ z)) = y ∗ 1 = 1 and hence (y ∗ x) ∗ (y ∗ (y ∗ z)) = 1.
Therefore (y ∗ x) ∗ (y ∗ z) = 1. Thus y ∗ (x ∗ z) = 1. Similarly, we can prove the converse.

Theorem 3.17. Let A be a distributive implication groupoid and X(/= ∅) ⊆ A. Then

(X] =

{

x ∈ A : x = 1 or
n∏

i=1

ai ∗ x = 1 for some a1, a2, . . . , an ∈ X

}

. (3.4)

Proof. Let I = {x ∈ A : x = 1 or
∏n

i=1ai ∗ x = 1 for some a1, a2, . . . an ∈ X}. Since a ∗ a = 1
for all a ∈ X, we obtain X ⊆ I. Obviously 1 ∈ I. Let x ∗ y ∈ I and x ∈ I. To prove y ∈ I,
we will consider three cases. Case 1: x = 1. Then y = 1 ∗ y ∈ I. Case 2: x ∗ y = 1 and
x /= 1. Since x ∈ I and x /= 1, we conclude that

∏n
i=1ai ∗ x = 1 for some a1, a2, . . . , an ∈ X.

From Lemma 3.8,
∏n

i=1ai ∗ y = 1. Therefore y ∈ I. Case 3: x ∗ y /= 1 and x /= 1. Then there are
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a1, a2, . . . , an, b1, b2, . . . , bm ∈ X such that
∏n

i=1ai ∗ (x ∗ y) = 1 and
∏m

j=1bj ∗ x = 1. Applying
Lemma 3.16, we deduce that x ≤ ∏n

i=1ai ∗ y and by Lemma 3.7, we see that

1 =
m∏

j=1

bj ∗ x ≤
m∏

j=1

bj ∗
(

n∏

i=1

ai ∗ y
)

. (3.5)

By Lemma 2.6(iv),
∏m

j=1bj ∗ (
∏n

i=1ai ∗ y) = 1. Hence I is an ideal of A.
Suppose that U is any ideal of A containing X. Let x ∈ I. If x = 1, then obviously

x ∈ U. Assume that x /= 1. Then there are a1, a2, . . . , an ∈ X such that
∏n

i=1ai ∗ x = 1. Since
X ⊆ U, it follows that a1, a2, . . . , an ∈ U. Therefore x ∈ U by Corollary 3.14. Thus I ⊆ U and
hence I = (X].

Let I1, I2 ∈ I(A); we define the meet of I1 and I2 (denoted by I1 ∧ I2) by I1 ∧ I2 = I1 ∩ I2
and the join of I1 and I2 (denoted by I1 ∨ I2) by I1 ∨ I2 = (I1 ∪ I2]. We note that (I(A),∧,∨) is
a lattice.

Theorem 3.18. (I(A), ∧, ∨) is a complete lattice.

Let A be a distributive implication groupoid. For any x, y ∈ A, consider a set

A(x) = {z ∈ A | x ∗ z = 1}, A
(
x, y

)
=
{
z ∈ A | x ∗ (y ∗ z) = 1

}
. (3.6)

The set A(x) (resp., A(x, y)) is called an upper set of x (resp., of x and y). Obviously, 1, x ∈
A(x) and 1, x, y ∈ A(x, y). We know that A(1) = {1} is always an ideal of A. But the sets
A(x) and A(x, y) need not be ideals of A in an implication groupoid, since A(a) = {a} and
A(a, 1) = {a} are not ideals of A in Example 2.2. The following lemma can be proved easily.

Lemma 3.19. If A is an implication groupoid, then A(u) = A(u, 1).

Theorem 3.20. If A is a distributive implication groupoid, then, for any x, y ∈ A, the set A(x, y) is
an ideal of A.

Proof. Let A be a distributive implication groupoid. Clearly 1 ∈ A(x, y). Let r ∈ A(x, y) and
r ∗ s ∈ A(x, y). Then x ∗ (y ∗ r) = 1 and x ∗ (y ∗ (r ∗ s)) = 1. Now x ∗ (y ∗ (r ∗ s)) = 1 implies
that (x ∗ (y ∗ r)) ∗ (x ∗ (y ∗ s)) = 1 which gives x ∗ (y ∗ s) = 1. Therefore s ∈ A(x, y). Hence
A(x, y) is an ideal of A.

Corollary 3.21. Let A be a distributive implication groupoid. Then for any x ∈ A, the set A(x) is an
ideal of A.

Lemma 3.22. If A is a distributive implication groupoid, then A(x) ⊆ A(x, y) for any x, y ∈ A.

Theorem 3.23. Let A be a distributive implication groupoid and a ∈ A. Then the following are
equivalent:

(i) a ≤ x for any x ∈ A,

(ii) A = A(a),

(iii) A = A(a, x) = A(x, a) for any x ∈ A.
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Proof. (i) ⇔ (ii): straightforward.
(ii) ⇒ (iii): by Lemma 3.22, A = A(a) ⊆ A(a, x) ⊆ A.
(iii) ⇒ (ii):A = A(a, 1) = A(a).

Theorem 3.24. LetA be a distributive implication groupoid and a ∈ A. ThenA(a) =
⋂

b∈A A(a, b).

Proof. By Lemma 3.22, A(a) ⊆ A(a, b) for any a, b ∈ A. Therefore A(a) ⊆ ⋂
b∈A A(a, b). If

c ∈ ⋂
b∈A A(a, b), then c ∈ A(a, b) for all b ∈ A and so c ∈ A(a, 1). Hence 1 = a ∗ (1 ∗ c) = a ∗ c,

which proves c ∈ A(a). This means that
⋂

b∈A A(a, b) ⊆ A(a).

Corollary 3.25. LetA be a distributive implication groupoid. Then for any a ∈ A, A(a) = A(a, 1) =⋂
b∈A A(a, b).

Theorem 3.26. Let A be a distributive implication groupoid. Then A(a, b) = A(b, a) for any a, b ∈
A.

Proof. It follows from Lemma 3.16.

The following is a characterization of ideals.

Theorem 3.27. Let I be a nonempty subset of a distributive implication groupoid A. Then I is an
ideal of A if and only if A(a, b) ⊆ I for all a, b ∈ I.

Proof. Let I be an ideal of A and a, b ∈ I. If c ∈ A(a, b), then a ∗ (b ∗ c) ∈ I and so z ∈ I. Hence
A(a, b) ⊆ I. Conversely, assume that A(a, b) ⊆ I for all a, b ∈ I. Note that 1 ∈ A(a, b) ⊆ I. Let
x ∈ I and x ∗ y ∈ I. Since (x ∗ y) ∗ (x ∗ y) = 1, we have y ∈ A(x ∗ y, x) ⊆ I. We conclude that I
is an ideal of A.

Corollary 3.28. Let A be a distributive implication groupoid. If I is an ideal of A, then A(a) ⊆ I for
any a ∈ I.

The converse of the above corollary need not be true in general. Consider the following
example.

Example 3.29. Let A = {1, a, b, c, d, e, f, g} in which ∗ is defined by

∗ a b c d e f g 1

a 1 1 1 1 1 1 1 1

b c 1 c g 1 1 g 1

c f f 1 f 1 f 1 1

d c e c 1 e 1 1 1

e a f f d 1 f g 1

f c e c g e 1 g 1

g a b c f e f 1 1

1 a b c d e f g 1

(3.7)
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Then (A, ∗, 1) is a distributive implication groupoid. Here I = {1, b, e, f, g} contains
A(1), A(b), A(e), A(f), A(g) but I is not an ideal of A.

Theorem 3.30. Let A be a distributive implication groupoid and x, y ∈ A. Then y ∈ A(x) if and
only if A(x) = A(x, y).

Proof. Assume that y ∈ A(x). Then x ∗ y = 1. We know that A(x) ⊆ A(x, y). For any z ∈
A(x, y), we have 1 = x∗(y∗z) = (x∗y)∗(x∗z) = x∗z and so z ∈ A(x). HenceA(x) = A(x, y).
Conversely, if A(x) = A(x, y), then y ∈ A(x, y) = A(x).

Theorem 3.31. Let A be a distributive implication groupoid and x, y ∈ A. Then x ≤ y if and only if
A(y) ⊆ A(x).

Proof. Let x ≤ y. Then x ∗ y = 1. For any z ∈ A(y), we have y ∗ z = 1. Also x ∗ z = 1 ∗ (x ∗ z) =
(x ∗ y) ∗ (x ∗ z) = x ∗ (y ∗ z) = x ∗ 1 = 1 and so z ∈ A(x). Hence A(y) ⊆ A(x). Conversely, if
A(y) ⊆ A(x), then y ∈ A(x) and hence x ≤ y.

Corollary 3.32. Let A be a distributive implication groupoid and x, y ∈ A. Then x ≤ y and y ≤ x if
and only if A(x) = A(y).

Example 3.33. Let A = {1, a, b, c} be a set with the following table:

∗ 1 a b c

1 1 a b c

a 1 1 b 1

b 1 c 1 c

c 1 1 b 1

(3.8)

Then (A, ∗, 1) is a distributive implication groupoid. We can see that a ≤ c, c ≤ a and A(a) =
A(c) = {1, a, c}.

Theorem 3.34. Let I be an ideal of A. Then I =
⋃

x,y∈I A(x, y).

Proof. We know that A(x, y) ⊆ I for all x, y ∈ I. Therefore
⋃

x,y∈I A(x, y) ⊆ I. Let z ∈ I. Then
z ∈ A(z) = A(z, 1) ⊆ ⋃

x,y∈I A(x, y). Then I ⊆ ⋃
x,y∈I A(x, y).

Corollary 3.35. If I is an ideal of A, I =
⋃

x∈I A(x, 1).

Finally we conclude this paper with the following theorem.

Theorem 3.36. Let I be an ideal of A. Then I =
⋃

x∈I A(x).

Proof. Since A(x, 1) = A(x), we have, by Corollary 3.35, I =
⋃

x∈I A(x).
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