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We study the estimation of optimal portfolios for a Reserve Fund with an end-of-period target and
when the returns of the assets that constitute the Reserve Fund portfolio follow two specifications.
In the first one, assets are split into short memory (bonds) and long memory (equity), and
the optimality of the portfolio is based on maximizing the Sharpe ratio. In the second, returns
follow a conditional heteroskedasticity autoregressive nonlinear model, and we study when the
distribution of the innovation vector is heavy-tailed stable. For this specification, we consider
appropriate estimation methods, which include bootstrap and empirical likelihood.

1. Introduction

The Government Pension Investment Fund (GPIF) of Japan was established in April 1st 2006
as an independent administrative institution with the mission of managing and investing the
Reserve Fund of the employees’ pension insurance and the national pension (http://www.
gpif.go.jp/for more information) [1]. It is the world’s largest pension fund ($1.4 trillions
in assets under management as of December 2009), and it has a mission of managing and
investing the Reserve Funds in safe and efficient investment with a long-term perspective. Business
management targets to be achieved by GPIF are set by the Minister of Health, Labour, and
Welfare based on the law on the general rules of independent administrative agencies. In the
actuarial science, “required Reserve Fund” for pension insurance has been investigated for a
long time. The traditional approach focuses on the expected value of future obligations and
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interest rate. Then, the investment strategy is determined for exceeding the expected value of
interest rate. Recently, solvency for the insurer is defined in terms of random values of future
obligations (e.g., Olivieri and Pitacco [2]). In this paper, we assume that the Reserve Fund is
defined in terms of the random interest rate and the expected future obligations. Then, we
propose optimal portfolios by optimizing the randomized Reserve Fund.

The GPIF invests in a portfolio of domestic and international stocks and bonds. In this
paper, we consider the optimal portfolio problem of the Reserve Fund under two econometric
specifications for the asset’s returns.

First, we select the optimal portfolio weights based on the maximization of the Sharpe
ratio under three different functional forms for the portfolio mean and variance, two of them
depending on the Reserve Fund at the end-of-period target (about 100 years). Following
the asset structure of the GPIF, we split the assets into cash and domestic and foreign
bonds on one hand and domestic and foreign equity on the other. The first type of assets
are assumed to be short memory, while the second type are long memory. To obtain the
optimal portfolio weights, we rely on bootstrap. For the short memory returns, we use
wild bootstrap (WB). Early work focuses on providing first- and second-order theoretical
justification for the wild bootstrap in the classical linear regression model (see, e.g., [3]).
Gonçalves and Kilian [4] show that WB is applicable for the linear regression model with
conditional heteroscedastic such as stationary ARCH, GARCH, and stochastic volatility
effects. For the long memory returns, we apply sieve bootstrap (SB). Bühlmann [5] establishes
consistency of the autoregressive sieve bootstrap. Assuming that the long memory process
can be written as AR(∞) and MA(∞) processes, we estimate the long memory parameter
by means of the Whittle’s approximate likelihood [6]. Given this estimator, the residuals
are computed and resampled for the construction of the bootstrap samples, from which
the optimal portfolio estimated weights are obtained. We study the usefulness of these
procedures with an application to the GPIF assets.

Second, we consider the case when the returns are time dependent and follow a heavy-
tailed. It is known that one of the stylized facts of financial returns are heavy tails. It is,
therefore, reasonable to use the stable distribution, instead of the Gaussian, since it allows
for skewness and fat tails. We couple this distribution with the conditional heteroskedasticity
autoregressive nonlinear (CHARN) model that nests many well-known time series models,
such as ARMA and ARCH. We estimate the parameters and the optimal portfolio by means
of empirical likelihood.

The paper is organized as follows. Section 2 sets the Reserve Fund portfolio problem.
Section 3 focuses on the first part, that is, estimation in terms of the Sharpe ratio and discusses
the bootstrap procedure. Section 4 covers the CHARN model under stable innovations and
the estimation by means of empirical likelihood. Section 5 concludes.

2. Reserve Funds Portfolio with End-of-Period Target

Let Si,t be the price of the ith asset at time t (i = 1, . . . , k), and let Xi,t be its log-return. Time
runs from 0 to T . The paper, we consider that today is T0 and T is the end-of-period target.
Hence the past and present observations run for t = 0, . . . , T0, and the future until the end-of-
period target for t = T0 + 1, . . . , T . The price Si,t can be written as

Si,t = Si,t−1 exp{Xi,t} = Si,0 exp

(
t∑

s=1

Xi,s

)
, (2.1)
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where Si,0 is the initial price. Let Fi,t denote the Reserve Fund on asset i at time t and be
defined by

Fi,t = Fi,t−1 exp{Xi,t} − ci,t, (2.2)

where ci,t denotes the maintenance cost at time t. By recursion, Fi,t can be written as

Fi,t = Fi,t−1 exp{Xi,t} − ci,t

= Fi,t−2 exp

(
t∑

s=t−1

Xi,s

)
−

t∑
s=t−1

ci,s exp

(
t∑

s′=s+1

Xi,s′

)

= Fi,0 exp

(
t∑

s=1

Xi,s

)
−

t∑
s=1

ci,s exp

(
t∑

s′=s+1

Xi,s′

)
,

(2.3)

where Fi,0 = Si,0.
We gather the Reserve Funds in the vector Ft = (F1,t, . . . , Fk,t). Let Ft(α) = α′Ft

be a portfolio form by the k Reserve Funds, which depend on the vector of weights α =
(α1, . . . , αk). The portfolio Reserve Fund can be expressed as a function of all past returns

Ft(α) ≡
k∑
i=1

αiFi,t

=
k∑
i=1

αi

(
Fi,0 exp

(
t∑

s=1

Xi,s

)
−

t∑
s=1

ci,s exp

(
t∑

s′=s+1

Xi,s′

))
.

(2.4)

We are interested in maximizing Ft(α) at the end-of-period target FT (α)

FT (α) =
k∑
i=1

αi

(
Fi,T0 exp

(
T∑

s=T0+1

Xi,s

)
−

T∑
s=T0+1

ci,s exp

(
T∑

s′=s+1

Xi,s′

))
. (2.5)

It depends on the future returns, the maintenance cost, and the portfolio weights.
While the first two are assumed to be constant from T0 to T (the constant return can be seen
as the average return over the T − T0 periods), we focus on the optimality of the weights that
we denote by αopt.

3. Sharpe-Ratio-Based Optimal Portfolios

In the first specification, the estimation of the optimal portfolio weights is based on the max-
imization of the Sharpe ratio:

αopt = arg max
α

μ(α)
σ(α)

, (3.1)
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under different functional forms of the expectation μ(α) and the risk σ(α) of the portfolio. We
propose three functional forms, two of them depending on the Reserve Fund. The first one is
the traditional based on the returns:

μ(α) = α′E(XT ), σ(α) =
√
α′V (XT )α, (3.2)

where E(XT ) and V (XT ) are the expectation and the covariance matrix of the returns at the
end-of-period target. The second form for the portfolio expectation and risk is based on the
vector of Reserve Funds:

μ(α) = α′E(FT ), σ(α) =
√
α′V (FT )α, (3.3)

where E(FT ) and V (FT ) indicate the mean and covariance of the Reserve Funds at time T .
Last, we consider the case where the portfolio risk depends on the lower partial moments of
the Reserve Funds at the end-of-period target:

μ(α) = α′E(FT ), σ(α) = E
{(
F̃ − FT (α)

)
I

(
FT (α) < F̃

)}
, (3.4)

where F̃ is a given value.
Standard portfolio management rules are based on a mean-variance approach, for

which risk is measured by the standard deviation of the future portfolio value. However,
the variance often does not provide a correct assessment of risk under dependency and non-
Gaussianity. To overcome this problem, various optimization models have been proposed
such as mean-semivariance model, mean-absolute deviation model, mean-variance-skewness
model, mean-(C)VaR model, and mean-lower partial moment model. The mean-lower partial
moment model is an appropriate model for reducing the influence of heavy tails.

The k returns are split into p- and q-dimensional vectors {XSt ; t ∈ Z} and {XLt ; t ∈ Z},
where S and L stand for short and long memory, respectively. The short memory returns
correspond to cash and domestic and foreign bonds, which we generically denote by bonds.
The long memory returns correspond to domestic and foreign equity, which we denote as
equity.

Cash and bonds follow the nonlinear model

XSt = μS +H
(
XSt−1, . . . ,X

S
t−m

)
εSt , (3.5)

where μS is a vector of constants, H : R
mp → R

p × R
p is a positive definite matrix-valued

measurable function, and εSt = (εS1,t, . . . , ε
S
p,t) are i.i.d. random vectors with mean 0 and

covariance matrix ΣS. By contrast, equity returns follow a long memory nonlinear model

XLt =
∞∑
ν=0

φνε
L
t−ν, εLt =

∞∑
ν=0

ψνXLt−ν, (3.6)
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where

φν =
Γ(ν + d)

Γ(ν + 1)Γ(d)
, ψν =

Γ(ν − d)
Γ(ν + 1)Γ(−d) (3.7)

with −1/2 < d < 1/2, and εLt = (εL1,t, . . . , ε
L
p,t) are i.i.d. random vectors with mean 0 and

covariance matrix ΣL.
We estimate the optimal portfolio weights by means of bootstrap. Let the superindexes

(S, b) and (L, b) denote the bootstrapped samples for the bonds and equity, respectively, and
B the total number of bootstrapped samples. In the sequel, we show the bootstrap procedure
for both types of assets.

Bootstrap Procedure for X(S,b)
t

Step 1. Generate the i.i.d. sequences {ε(S,b)t } for t = T0 + 1, . . . , T and b = 1, . . . , B from N(0, Ip).

Step 2. Let YSt = XSt − μ̂S, where μ̂S = (1/T0)
∑T0

s=1X
S
s . Generate the i.i.d. sequences {Y(S,b)

t } for
t = T0 + 1, . . . , T and b = 1, . . . , B from the empirical distribution of {YSt }.

Step 3. Compute {X(S,b)
t } for t = T0 + 1, . . . , T and b = 1, . . . , B as

X(S,b)
t = μ̂S + Y(S,b)

t � ε(S,b)t , (3.8)

where � denotes the cellwise product.

Bootstrap Procedure for X(L,b)
t

Step 1. Estimate d̂ from the observed returns by means of Whittle’s approximate likelihood:

d̂ = arg min
d∈(0,1/2)

L(d,Σ), (3.9)

where

L(d,Σ) =
2
T0

(T0−1)/2∑
j=1

{
log det f

(
λj,T0 , d,Σ

)
+ tr

(
f
(
λj,T0 , d,Σ

)−1
I
(
λj,T0

))}
,

f(λ, d,Σ) =

∣∣1 − exp(iλ)
∣∣−2d

2π
Σ,

I(λ) =
1√

2πT0

∣∣∣∣∣
T0∑
t=1

XLt e
itλ

∣∣∣∣∣
2

,

λj,T0 =
2πj
T0

.

(3.10)
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Step 2. Compute {ε̂Lt } for t = 1, . . . , T0,

ε̂Lt =
t−1∑
k=0

πkXLt−k, where πk =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Γ
(
k − d̂

)
Γ(k + 1)Γ

(
−d̂

) , k ≤ 100,

k−d̂−1

Γ
(
−d̂

) , k > 100.

(3.11)

Step 3. Generate {ε(L,b)t } for t = T0 + 1, . . . , T and b = 1, . . . , B from the empirical distribution
of {ε̂Lt }.

Step 4. Generate {X(L,b)
t } for t = T0 + 1, . . . , T and b = 1, . . . , B as

X(L,b)
t =

t−T0−1∑
k=0

τkε
(L,b)
t−k +

t−1∑
k=t−T0

τkε̂t−k. (3.12)

We gather X(S,b)
t and X∗(L,b)

t into X(b)
t = (X(S,b)

t ,X(L,b)
t ) = (X∗(b)

1,t , . . . , X
∗(b)
p+q,t) for t = T0 +

1, . . . , T and b = 1, . . . , B. The bootstrapped Reserve Funds F(b)T = (F(b)
1,T , . . . , F

(b)
p+q,T)

F
(b)
i,T = FT0 exp

(
T∑

s=T0+1

X
(b)
i,s

)
−

T∑
s=T0+1

ci,s exp

(
T∑

s′=s+1

X
(b)
i,s′

)
. (3.13)

And the bootstrapped Reserve Fund portfolio is

F
(b)
T (α) = α′F(b)T =

p+q∑
i=1

αiF
(b)
i,T . (3.14)

Finally, the estimated portfolio weights that give the optimal portfolio are

α̂opt = arg max
α

μ(b)(α)
σ(b)(α)

, (3.15)

where μ(b)(α) and σ(b)(α) may take any of the three forms introduced earlier but be evaluated
in the bootstrapped returns or Reserve Funds.

3.1. An Illustration

We consider monthly log-returns from January 31 1971 to October 31 2009 (466 observations)
of the five types of assets considered earlier: domestic bond (DB), domestic equity (DE),
foreign bond (FB), foreign equity (FE), and cash (cash). Cash and bonds are gathered in the
short-memory panel XSt = (X(DB)

t , X
(FB)
t , X

(cash)
t ) and follow (3.5). Equities are gathered into
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Table 1: Estimated optimal portfolio weights (Section 3).

DB DE FB FE Cash
Returns 0.95 0.00 0.00 0.00 0.05
Reserve fund 0.75 0.00 0.20 0.00 0.05
Lowe partial 0.85 0.10 0.00 0.00 0.05

the long-memory panel XLt = (X(DE)
t , X

(FE)
t ) and follow (3.6). Figure 1 shows the five assets.

Cash is virtually constant, and equities are significantly more volatile than bonds and with
averages that are slightly higher than those of bonds.

We estimate the optimal portfolio weights, α̂opt1, α̂opt2, and α̂opt3, corresponding to the
three forms for the expectation and risk of the Sharpe ratio, and we compute the trajectory of
the optimal Reserve Fund for t = T0 + 1, . . . , T . Because of liquidity reasons, the portfolio
weight for cash is kept constant to 5%. The target period is fixed to 100 years, and the
maintenance cost is based on the 2004 Pension Reform.

Table 1 shows the estimated optimal portfolio weights for the three different choices
of the portfolio expectation and risk. The weight of domestic bonds is very high and clearly
dominates over the other assets. Domestic bonds are low risk and medium return, which
is in contrast with equity that shows higher return but also higher risk, and with foreign
bonds that show low return and risk. Therefore, in a sense, domestic bonds are a compromise
between the characteristic of the four equities and bonds.

Figure 2 shows the trajectory of the future Reserve Fund for different values of the
yearly return (assumed to be constant from T0 + 1 to T) ranging from 2.7% to 3.7%. Since the
investment term is extremely long, 100 years, the Reserve Fund is quite sensitive to the choice
of the yearly return. In the 2004 Pension Reform, authorities assumed a yearly return of the
portfolio of 3.2%, which corresponds to the middle thick line of the figure.

4. Optimal Portfolio with Time-Dependent Returns and Heavy Tails

In this section, we consider the second scenario where returns follow a dependent mod-
el with stable innovations. The theory of portfolio choice is mostly based on the assump-
tion that investors maximize their expected utility. The most well-known utility is the Mark-
owitz’s mean-variance function that is optimal under Gaussianity. However, it is widely
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acknowledged that financial returns show fat tails and, frequently, skewness. Moreover, the
variance may not always be the best risk measure. Since the purpose of GPIF is to avoid
making a big loss at a certain point in future, risk measures that summarize the probability
that the Reserve Fund is below the prescribed level at a certain future point, such as value
at risk (VaR), are more appropriate [7]. In addition, the traditional mean-variance approach
considers that returns are i.i.d., which is not realistic as past information may help to explain
today’s distribution of returns.

We need a specification that allows for heavy tails and skewness and time depend-
encies. This calls for a general model with location and scale that are a function of past
observations and with innovations that are stable distributed. The location-scale model for
the returns is the conditional heteroscedastic autoregressive nonlinear (CHARN), which is
fairly general and it nests important models such as ARMA and ARCH.

Estimation of the parameters in a stable framework is not straightforward since the
density does not have a closed form (Maximum likelihood is feasible for the i.i.d. uni-
variate case thanks to the STABLE packages developed by John Nolan—see Nolan [8]
and the website http://academic2.american.edu/∼jpnolan/stable/stable.html. For more
complicated cases, including dynamics, maximum likelihood is a quite complex task.). We
rely on empirical likelihood, which is one of the nonparametric methods, as it has been
already studied in this context [9]. Once the parameters are estimated, we simulate samples
of the returns, which are used to compute the Reserve Fund at the end-of-period target,
and estimate the optimal portfolio weights by means of minimizing the empirical VaR of
the Reserve Fund at time T .

Suppose that the vector of returns Xt ∈ R
k follows the following CHARN model:

Xt = Fμ
(
Xt−1, . . . ,Xt−p

)
+Hσ

(
Xt−1, . . . ,Xt−p

)
εt, (4.1)

where Fμ : R
kp → R

k is a vector-valued measurable function with a parameter μ ∈ R
p1

and Hσ : R
kq → R

k × R
k is a positive definite matrix-valued measurable function with a
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parameter σ ∈ R
p2 . Each element of the vector of innovations εt ∈ R

k is standardized stable
distributed: εi,t ∼ S(αi, βi, 1, 0) and εi,t’s are independent with respect to both i and t. We set
θ = (μ,σ,α,β), where α = (α1, . . . , αk) and β = (β1, . . . , βk).

The stable distribution is often represented by its characteristic function:

φ(ν) = E
[
exp(iνεi,t)

]
= exp

(
−γα|ν|α

(
1 + iβ sgn(ν) tan

πα

2

(∣∣γν∣∣1−α − 1
))

+ iνδ
)
, (4.2)

where δ ∈ R is a location parameter, γ > 0 is a scale parameter, β ∈ [−1, 1] is a skewness
parameter, and α ∈ (0, 2] is a characteristic exponent that captures the tail thickness of the
distribution: the smaller the α the heavier the tail. The distributions with α = 2 correspond
to the Gaussian. The existence of moments is given by α: moments of order higher than α do
not exist, with the case of α = 2 being an exception, for which all moments exist.

The lack of important moments may, in principle, render estimation by the method of
moments difficult. However, instead of matching moments, it is fairly simple to match the
theoretical and empirical characteristic function evaluated at a grid of frequencies [9]. Let

εt = H−1
σ

(
Xt − Fμ

)
(4.3)

be the residual of the CHARN model. If the parameters μ and σ are the true ones, the
residuals εi,t should be independently and identically distributed to S(αi, βi, 1, 0). So the aim
is to find the estimated parameters such that the residuals are i.i.d. and stable distributed,
meaning that their probability law is expressed by the above characteristic function. Or, in
other words, estimate the parameters by matching the empirical and theoretical characteristic
functions and minimizing their distance. Let J be the number of frequencies at which
we evaluate the characteristic function: ν1, . . . , νJ . That makes, in principle, a system of
J matching equations. But since the characteristic function can be split into the real and
imaginary parts, φ(ν) = E[cos(νεi,t)] + iE[sin(νεi,t)], we double the dimension of the system
by matching these parts. Let Re(φ(ν)) and Im(φ(ν)) be the real and imaginary parts of the
theoretical characteristic function, and cos(νεi,t) and sin(νεi,t) the empirical counterparts. The
estimating functions are

ψθ(εi,t) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

cos(ν1εi,t) − Re
(
φ(ν1)

)
...

cos
(
νJεi,t

) − Re
(
φ
(
νJ
))

sin(ν1εi,t) − Im
(
φ(ν1)

)
...

sin
(
νJεi,t

) − Im
(
φ
(
νJ
))

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (4.4)

for each i = 1, . . . , k, and gather them into the vector

ψθ(εt) =
(
ψθ(ε1,t), . . . ,ψθ(εk,t)

)
. (4.5)
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The number of frequencies J and the frequencies themselves are chosen arbitrary. Feuerver-
ger and McDunnough [10] show that the asymptotic variance can be made arbitrarily close
to the Cramér-Rao lower bound if the number of frequencies is sufficiently large and the
grid is sufficiently fine and extended. Similarly, Yu [11, Section 2.1] argues that, from the
viewpoint of the minimum asymptotic variance, many and fine frequencies are the appro-
priate. However, Carrasco and Florens [12] show that too fine frequencies lead to a singular
asymptotic variance matrix and we cannot calculate its inverse.

Given the estimating functions (4.5), the natural estimator is constructed by GMM:

θ̂ = arg min
θ
E
[
ψθ(εt)

′]WE
[
ψθ(εt)

]
, (4.6)

where W is a weighting matrix defining the metric (its optimal choice is typically the
inverse of the covariance matrix of ψθ(εt)) and the expectations are replaced by sample
moments. GMM estimator can be generalized to the empirical likelihood estimator, which
was originally proposed by Owen [13] as nonparametric methods of inference based on a
data-driven likelihood ratio function (see also [14], for a review and applications). It produces
a better variance estimate in one step, while, in general, the optimal GMM requires a
preliminary step and a preliminary estimation of an optimal W matrix. We define the
empirical likelihood ratio function for θ as

R(θ) = max
p

{
T0∏
t=1

T0pt |
T0∑
t=1

ptψθ(εt) = 0,
T0∑
t=1

pt = 1, pt ≥ 0

}
, (4.7)

where p = (p1, . . . , pT0) and the maximum empirical likelihood estimator is

θ̃ = arg max
θ

R(θ). (4.8)

Qin and Lawless [15] show that this estimator is consistent, asymptotically Gaussian, and
with covariance matrix (B′

θ0
A−1
θ0
Bθ0)

−1, where

Bθ = E
[
∂ψθ
∂θ′

]
, Aθ = E

[
ψθ(εt)ψθ(εt)

′]. (4.9)

Once the parameters are estimated, we compute the optimal portfolio weights and
the portfolio Reserve Fund at the end-of-period target. Because of a notational conflict, the
weights are now denoted by a = (a1, . . . , ak). And, for simplicity, we assume that there is no
maintenance cost, so (2.5) simplifies to

FT (a) =
k∑
i=1

aiFi,T0 exp

(
T∑

t=T0+1

Xi,t

)
. (4.10)

The procedure to estimate the optimal portfolio weights is as follows.
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Step 1. For each asset i = 1, . . . , k, we simulate the innovation process

ε̃i,t
i.i.d.∼ S

(
α̂i, β̂i, 1, 0

)
, t = T0 + 1, . . . , T (4.11)

based on the maximum empirical likelihood estimator (α̂i, β̂i).

Step 2. We calculate the predicted log-returns

X̃t = Fμ̃
(
X̃t−1, . . . , X̃t−p

)
+Hσ̃

(
X̃t−1, . . . , X̃t−p

)
ε̃t (4.12)

for t = T0+1, . . . , T and based on the estimators (μ̂, σ̂) and the simulated ε̃t obtained in Step 1.

Step 3. For a given portfolio weight a, we calculate the predicted values of fund at time T ,
FT (a), with (4.10).

Step 4. We repeat Step 1–Step 3 M times and save F(1)
T (a), . . . , F(M)

T (a). Then we calculate the
proportion that the predicted values fail below the prescribed level F, that is,

g(a) =
1
M

M∑
m=1

I{F(m)
T (a)<F}. (4.13)

Step 5. Minimize g(a) with respect to a: a∗ = arg minag(a).

4.1. An Illustration

In this section, we apply the above procedure to real financial data. We consider the same
monthly log-returns data in Section 3.1. domestic bond (DB), domestic equity (DE), foreign
bond (FB), and foreign equity (FE) are assumed to follow the following ARCH(1) model:

Xt = σtεt, σ2 = bX2
t−1, (4.14)

respectively. Here b > 0 and εt
i.i.d.∼ S(α, β, 1, 0). Cash is virtually constant so we assume the

log-return of cash as 0, permanently. Set the present Reserve Fund FT0 = 1 and the target
period is fixed to half years.

Table 2 shows the estimated optimal portfolio weights for the different prescribed level
F. The weights of domestic and foreign bonds tend to be high when F is small. Small F implies
that we want to avoid the loss. On the contrary, the weights of equities become higher when
F is larger. Large F implies that we do not want to miss the chance of big gain. This result
seems to be natural because bonds are lower risk (less volatile) than equities.

5. Conclusions

In this paper, we study the estimation of optimal portfolios for a Reserve Fund with an end-
of-period target in two different settings. In the first setting, one assets are split into short
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Table 2: Estimated optimal portfolio weights (Section 4).

F DB DE FB FE Cash
0.90 0.79 0.03 0.07 0.05 0.05
0.95 0.49 0.03 0.38 0.05 0.05
1.00 0.39 0.01 0.54 0.01 0.05
1.05 0.17 0.36 0.36 0.06 0.05
1.10 0.37 0.27 0.26 0.05 0.05

memory (bonds) and long memory (equity), and the optimality of the portfolio is based
on maximizing the Sharpe ratio. The simulation result shows that the portfolio weight of
domestic bonds is quite high. The reason is that the investment term is extremely long (100
years). Because the investment risk for the Reserve Fund is exponentially amplified year
by year, the portfolio selection problem for the Reserve Fund is quite sensitive to the year-
based portfolio risk. In the second setting, returns follow a conditional heteroskedasticity
autoregressive nonlinear model, and we study when the distribution of the innovation vector
is heavy-tailed stable. Simulation studies show that we prefer the bonds when we want to
avoid the big loss in the future. The result seems to be natural because the bonds are less
volatile than the equities.
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