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We discuss the uniformly asymptotic estimate of the finite-time ruin probability for all times in
a generalized compound renewal risk model, where the interarrival times of successive accidents
and all the claim sizes caused by an accident are two sequences of random variables following a
wide dependence structure. This wide dependence structure allows random variables to be either
negatively dependent or positively dependent.

1. Introduction

In this section, wewill introduce a generalized compound renewal risk model, some common
classes of heavy-tailed distributions, and some dependence structures of random variables
(r.v.s), respectively.

1.1. Risk Model

It is well known that the compound renewal risk model was first introduced by Tang et al.
[1], and since then it has been extensively investigated by many researchers, for example,
Aleškevičienė et al. [2], Zhang et al. [3], Lin and Shen [4], Yang et al. [5], and the references
therein. In the paper, we consider a generalized compound renewal riskmodel which satisfies
the following assumptions.
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AssumptionH1

The interarrival times {θi, i ≥ 1} of successive accidents are nonnegative, identically
distributed, but not necessarily independent r.v.s with finite mean λ−1.

AssumptionH2

The claim sizes and their number caused by nth accident are {X(n)
i , i ≥ 1} and Nn, n ≥ 1,

respectively, where {X(n)
i , i ≥ 1, n ≥ 1} are nonnegative and identically distributed r.v.s with

common distribution F and finite mean μ, and {X(n)
i , i ≥ 1} are not necessarily independent

r.v.s, but {X(n)
i , i ≥ 1} and {X(m)

i , i ≥ 1} are mutually independent for all n/=m, n,m ≥ 1, while
{Nn, n ≥ 1} are independent, identically distributed (i.i.d.), and positive integer-valued r.v.s
with common distribution G and finite mean ν.

AssumptionH3

The sequences {θi, i ≥ 1}, {X(n)
i , i ≥ 1, n ≥ 1}, and {Nn, n ≥ 1} are mutually independent.

Denote the arrival times of the nth accident by τn =
∑n

i=1 θi, n ≥ 1, which can form a
nonstandard renewal counting process

N(t) = sup{n ≥ 1, τn ≤ t}, t ≥ 0, (1.1)

with mean function λ(t) = EN(t). Hence the total claim amount at time τn and the total claim
amount up to time t ≥ 0 are, respectively,

S
(n)
Nn

=
Nn∑

i=1

X
(n)
i , S(t) =

N(t)∑

n=1

S
(n)
Nn
, (1.2)

and then the insurer’s surplus process is given by

R(t) = x + ct − S(t), t ≥ 0, (1.3)

where x ≥ 0 is the initial surplus and c > 0 is the constant premium rate. The finite-time ruin
probability within time t > 0 is defined as

ψ(x, t) = P
(

inf
0≤s≤t

R(s) < 0 | R(0) = x
)

. (1.4)

Clearly, the ruin can only arise at the times τn, 1 ≤ n ≤N(t), then

ψ(x, t) = P

(

max
0≤k≤N(t)

k∑

n=1

(
S
(n)
Nn

− cθn
)
> x

)

. (1.5)
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Let τ be a nonnegative r.v., the random time ruin probability is

ψ(x, τ) = P

(

max
0≤k≤N(τ)

k∑

n=1

(
S
(n)
Nn

− cθn
)
> x

)

. (1.6)

In order for the ultimate ruin not to be certain, we assume the safety loading condition
holds, namely,

κ = cλ−1 − νμ > 0. (1.7)

In the generalized compound renewal risk model above, if all the sequences {θi, i ≥ 1},
{X(n)

i , i ≥ 1, n ≥ 1}, and {Nn, n ≥ 1} are i.i.d. r.v.s, then the model is reduced to the standard
compound renewal risk model introduced by Tang et al. [1], if N1 = N2 = · · · = 1, then the
model is the renewal risk model, see Tang [6], Leipus and Šiaulys [7], Yang et al. [8], and
Wang et al. [9], among others.

1.2. Heavy-Tailed Distribution Classes

We now present some common classes of heavy-tailed distributions. Firstly, we introduce
some notions and notation. All limit relationships in the paper are for x → ∞ unless
mentioned otherwise. For two positive functions a(·) and b(·), we write a(x) � b(x) if
lim supa(x)/b(x) ≤ 1, write a(x) � b(x) if lim inf a(x)/b(x) ≥ 1, write a(x) ∼ b(x) if both,
write a(x) = o(b(x)) if lima(x)/b(x) = 0. For two positive bivariate functions a(·, ·) and
b(·, ·), we say that relation a(x, t) ∼ b(x, t) holds uniformly for all t ∈ Δ/= ∅ if

lim
x→∞

sup
t∈Δ

∣
∣
∣
∣
a(x, t)
b(x, t)

− 1
∣
∣
∣
∣ = 0. (1.8)

For a distribution V on (−∞,∞), denote its tail by V (x) = 1 − V (x), and its upper and lower
Matuszewska indices by, respectively, for y > 1,

J+V = − lim
y→∞

logV ∗
(
y
)

logy
, J−V = − lim

y→∞
logV

∗(
y
)

logy
, (1.9)

where V ∗(y) = lim infV (xy)/V (x) and V
∗
(y) = lim supV (xy)/V (x).

Chistyakov [10] introduced an important class of heavy-tailed distributions, the
subexponential class. By definition, a distribution V on [0,∞) belongs to the subexponential
class, denoted by V ∈ S, if

V ∗2(x) ∼ 2V (x), (1.10)
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where V ∗2 denotes the 2-fold convolution of V . Clearly, if V ∈ S then V is long tailed, denoted
by V ∈ L and characterized by

V
(
x + y

) ∼ V (x), ∀y > 0. (1.11)

One can easily see that a distribution V ∈ L if and only if there exists a function f(·) : [0,∞) �→
[0,∞) such that

f(x) ↑ ∞, f(x) = o(x), V
(
x ± f(x)) ∼ V (x). (1.12)

Korshunov [11] introduced a subclass of the class S, the strongly subexponential class,
denoted by S∗. Say that a distribution V ∈ S∗, if

∫∞
0 V (y)dy <∞ and

V ∗2
u (x) ∼ 2Vu(x) (1.13)

holds uniformly for u ∈ [1,∞), where Vu(x) = min{1, ∫x+ux V (y)dy}1{x≥0} + 1{x<0} with 1A
an indicator function of set A. Feller [12] introduced another important class of heavy-tailed
distributions, the dominant variation class, which is not mutually inclusive with the class L.
Say that a distribution V on [0,∞) belongs to the dominant variation class, denoted by V ∈ D,
if

V
∗(
y
)
<∞, ∀y > 0. (1.14)

Cline [13] introduced a slightly smaller class of L∩D, the consistent variation class, denoted
by C. Say that a distribution V ∈ C if

lim
y↘1

V ∗
(
y
)
= 1, or equivalently, lim

y↗1
V

∗(
y
)
= 1. (1.15)

Specially, the class C covers a famous class R, called the regular variation class. By definition,
a distribution V ∈ R−α, if there exists some α > 0 such that

lim
V
(
xy
)

V (x)
= y−α, ∀y > 0. (1.16)

It is well known that for the distributions with finite mean, the following inclusion
relationships hold properly, namely,

R ⊂ C ⊂ L ∩ D ⊂ S∗ ⊂ S ⊂ L, (1.17)

see, for example, Cline and Samorodnitsky [14], Klüppelberg [15], Embrechts et al. [16], and
Denisov et al. [17]. For more details of heavy-tailed distributions and their applications to
finance and insurance, the readers are referred to Bingham et al. [18] and Embrechts et al.
[16].
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1.3. Wide Dependence Structure

In this section we will introduce some concepts and properties of a wide dependence
structures of r.v.s, which was first introduced by Wang et al. [19] as follows.

Definition 1.1. Say that r.v.s {ξi, i ≥ 1} are widely upper orthant dependent (WUOD), if for
each n ≥ 1, there exists some finite positive number gU(n) such that, for all xi ∈ (−∞,∞),
1 ≤ i ≤ n,

P

(
n⋂

i=1

{ξi > xi}
)

≤ gU(n)
n∏

i=1

P(ξi > xi). (1.18)

Say that r.v.s {ξi, i ≥ 1} are widely lower orthant dependent (WLOD), if for each n ≥ 1, there
exists some finite positive number gL(n) such that, for all xi ∈ (−∞,∞), 1 ≤ i ≤ n,

P

(
n⋂

i=1

{ξi ≤ xi}
)

≤ gL(n)
n∏

i=1

P(ξi ≤ xi). (1.19)

Furthermore, {ξi, i ≥ 1} are said to be widely orthant dependent (WOD) if they are both
WUOD and WLOD.

The WUOD, WLOD, and WOD r.v.s are collectively called as widely dependent r.v.s.
Recall that if gU(n) ≡ 1 or gL(n) ≡ 1 for each n ≥ 1 in Definition 1.1, then {Xi, i ≥ 1} are
negatively upper orthant dependent or negatively lower orthant dependent (NLOD), see
Ebrahimi and Ghosh [20] or Block et al. [21]; if gU(n) = gL(n) ≡ M for some constantM > 0
and each n ≥ 1 such that the two inequalities in Definition 1.1 both hold, then {Xi, i ≥ 1} are
extended negatively dependent, see Liu [22] and Chen et al. [23]. Obviously, the WUOD and
WLOD structures allow a wide range of negative dependence structures among r.v.s, such
as extended negative dependence, negatively upper orthant dependence/negatively lower
orthant dependence, negative association (see Joag-Dev and Proschan [24]), and even some
positive dependence. For some examples to illustrate that the WUOD and WLOD structures
allow some negatively and positively dependent r.v.s, we refer the readers toWang et al. [19].

The following properties for widely dependent r.v.s can be obtained immediately
below.

Proposition 1.2. (1) Let {ξi, i ≥ 1} be WLOD (or WUOD). If {fi(·), i ≥ 1} are nondecreasing, then
{fi(ξi), i ≥ 1} are still WLOD (or WUOD); if {fi(·), i ≥ 1} are nonincreasing, then {fi(ξi), i ≥ 1} are
WUOD (or WLOD).

(2) If {ξi, i ≥ 1} are nonnegative and WUOD, then for each n ≥ 1,

E
n∏

i=1

ξi ≤ gU(n)
n∏

i=1

Eξi. (1.20)
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Particularly, if {ξi, i ≥ 1} are WUOD, then for each n ≥ 1 and any s > 0,

E exp

{

s
n∑

i=1

ξi

}

≤ gU(n)
n∏

i=1

E exp{sξi}. (1.21)

Following the wide dependence structures as above, we will consider a generalized
compound renewal risk model satisfying Assumption H3 and the following specific
assumptions.

AssumptionH∗
1

The interarrival times {θi, i ≥ 1} are nonnegative, identically distributed andWLOD r.v.s with
finite mean λ−1.

AssumptionH∗
2

The claim sizes caused by nth accident {X(n)
i , i ≥ 1} are nonnegative, identically distributed

and WUOD r.v.s, and the other statements of AssumptionH2 are still valid.
The rest of this work is organized as follows: in Section 2 we will state the motivations

and main results of this paper after presenting some existing results, and in Section 3 we will
give some lemmas and then prove the main results.

2. Main Results

In this section, we will present our main results of this paper. Before this, we prepare some
related results and the motivations of the main results. For later use, we define Λ = {t : λ(t) >
0} = {t : P(τ1 ≤ t) > 0}.

2.1. Related Results and Motivations

As mentioned above, the asymptotics for the finite-time ruin probability in the compound
renewal risk model have been studied by many authors. Among them, Aleškevičienė et al.
[2] considered the standard compound renewal risk model with condition (1.7) and showed
that

(i) if G ∈ C, F(x) = o(G(x)) and Eθp1 < ∞ for some p > J+G + 1, then it holds uniformly
for all t ∈ Λ that

ψ(x, t) ∼ 1
κ

∫x+κλ(t)

x

G

(
s

μ

)

ds; (2.1)

(ii) if F ∈ C, G(x) = o(F(x)) and Eθp1 < ∞ for some p > J+F + 1, then it holds uniformly
for all t ∈ Λ that

ψ(x, t) ∼ ν

κ

∫x+κλ(t)

x

F(s)ds; (2.2)
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(iii) if F ∈ R−α, G(x) ∼ cF(x) for some constant c > 0, and Eθp1 < ∞ for some p > α + 1,
then it holds uniformly for all t ∈ Λ that

ψ(x, t) ∼ ν + cμα

κ

∫x+κλ(t)

x

F(s)ds. (2.3)

Recently, Zhang et al. [3] extended the results of Aleškevičienė et al. [2] to the case that
the claim sizes {X(n)

i , i ≥ 1} caused by nth accident are negatively associated and obtained a
unified form of ψ(x, t) as follows: let F(x) ∼ cG(x) for c ∈ [0,∞], and one of the conditions
below holds: (i) for c = 0, G ∈ C, and Eθp1 < ∞ for some p > J+G + 1; (ii) for c > 0, F ∈ C, and
Eθ

p

1 <∞ for some p > J+F + 1; then it holds uniformly for all t ∈ Λ that

ψ(x, t) ∼ 1
κ

∫x+κλ(t)

x

(

νF(s) +G
(
s

μ

))

ds. (2.4)

Observe the results of Zhang et al. [3] especially extended case (iii) of Aleškevičienė et al.
[2]. Also, Lin and Shen [4] considered a generalized compound renewal risk model with
{X(n)

i , i ≥ 1} satisfying one type of asymptotically quadrant subindependent structure and
also obtained the same relations (2.2), (2.3), and (2.4) as that of Aleškevičienė et al. [2].

Inspired by the above results, we will further discuss some issues as follows:

(1) to cancel the moment condition on {θi, i ≥ 1}, namely, Eθp1 <∞ for some p > J+G + 1,
and Eθp1 <∞ for some p > J+F + 1;

(2) to extend partially the class C or R to the class L ∩ D;

(3) to discuss the case when {X(n)
i , i ≥ 1} are WUOD and {θi, i ≥ 1} are WLOD;

(4) to drop the interrelationships between F and G and investigate the case when both
F and G are heavy tailed.

In the paper, we will answer the four issues directly, and then we obtain our main
results in the next section.

2.2. Main Results

For the main results of this paper, we now state some conditions which are that of Wang et
al. [9].

Condition 1. The interarrival times {θi, i ≥ 1} are NLOD r.v.s.

Condition 2. The interarrival times {θi, i ≥ 1} are WOD r.v.s and there exists a positive and
nondecreasing function g(x) such that g(x) ↑ ∞, x−kg(x)↓ for some 0 < k < 1, Eθ1g(θ1) < ∞,
andmax{gU(n), gL(n)} ≤ g(n) for all n ≥ 1, where x−kg(x)↓means that x−k

1 g(x1) ≥ Cx−k
2 g(x2)

for all 0 ≤ x1 < x2 <∞ and some finite constant C > 0.

Condition 3. The interarrival times {θi, i ≥ 1} are WOD r.v.s with Eθp1 <∞ for some 2 ≤ p <∞
and there exists a constant α > 0 such that limn→∞ max{gU(n), gL(n)}n−α = 0.
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Condition 4. The interarrival times {θi, i ≥ 1} areWOD r.v.s with Eeβθ1 <∞ for some 0 < β <∞
and limn→∞ max{gU(n), gL(n)}e−γn = 0 for any γ > 0.

The first main result of this paper is the following.

Theorem 2.1. Consider the generalized compound renewal risk model with Assumptions H∗
1 , H

∗
2 ,

andH3 and condition (1.7), there exists a finite constant α > 0 such that

lim
n→∞

gL(n)n−α = 0, lim
n→∞

gU(n)e−γn = 0, for any γ > 0. (2.5)

Meanwhile, let one of Conditions 1–4 hold, and one of Conditions 1–4 with {θi, i ≥ 1} replaced by
{X(n)

i , i ≥ 1} still holds.

(1) If F(x) ∼ cG(x) for some c ∈ [0,∞], additionally, for c = 0 and G ∈ C; for 0 < c <∞ and
F ∈ C; for c = ∞ and F ∈ L ∩ D, then relation (2.4) holds uniformly for all t ∈ Λ.

(2) If F ∈ L ∩ D and G ∈ C, relation (2.4) holds uniformly for all t ∈ Λ.

Note that there do exist some WLOD r.v.s satisfying condition (2.5), see Wang et al.
[19]. In the second main result below, we discuss the random time ruin probability, which
requires another assumption.

AssumptionH4

Let τ be nonnegative r.v. and independent of the sequences {θi, i ≥ 1}, {Xn
i , i ≥ 1, n ≥ 1}, and

{Nn, n ≥ 1}.
Define Δ = {τ : P(τ ∈ Λ) > 0}.

Theorem 2.2. Under conditions of Theorem 2.1 and AssumptionH4, one has

(1) if F(x) ∼ cG(x) for some c ∈ [0,∞], additionally, for c = 0 and G ∈ C; for 0 < c <∞ and
F ∈ C; for c = ∞ and F ∈ L ∩ D, then it holds uniformly for all t ∈ Δ that

ψ(x, τ) ∼ 1
κ
E

∫x+κλ(τ)

x

(

νF(s) +G
(
s

μ

))

ds; (2.6)

(2) if F ∈ L ∩ D and G ∈ C, then relation (2.6) still holds uniformly for all t ∈ Δ.

Remark 2.3. According to the proofs below of Theorems 2.1 and 2.2, we can see that
Conditions 1–4 are doing nothing more than making {θi, i ≥ 1} and {Xn

i , i ≥ 1} satisfy the
strong law of large number, namely,

lim
k→∞

k−1
k∑

i=1

θi = λ−1, lim
k→∞

k−1
k∑

i=1

X
(n)
i = μ a.s.. (2.7)

So, Conditions 1–4 in Theorems 2.1 and 2.2 can be replaced by (2.7).
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3. Proofs of Main Results

In this section we will give the proofs of our main results, for which we need some following
lemmas.

Lemma 3.1. If {ξi, 1 ≤ i ≤ n} are nWUOD and nonnegative r.v.s with distributions Vi ∈ L∩D, 1 ≤
i ≤ n, respectively, then for any fixed 0 < a ≤ b <∞,

P

(
n∑

i=1

ciξi > x

)

∼
n∑

i=1

P(ciξi > x) (3.1)

holds uniformly for all cn = (c1, c2, . . . , cn) ∈ [a, b]n.

Proof. See Lemma 3.1 of Gao et al. [25].
Particularly, let c1 = c2 = · · · cn = 1 in Lemma 3.2, we have a lemma below.

Lemma 3.2. If {ξi, 1 ≤ i ≤ n} are nWUOD and nonnegative r.v.s with distributions Vi ∈ L∩D, 1 ≤
i ≤ n, then

P

(
n∑

i=1

ξi > x

)

∼
n∑

i=1

V i(x). (3.2)

Lemma 3.3. If {ξi, i ≥ 1} are WUOD and real-valued r.v.s with common distribution V ∈ D and
mean 0 and satisfying

lim
n→∞

gU(n)e−γn = 0 for any γ > 0, (3.3)

then for any γ > 0, there exists a constants C = C(γ) such that

P

(
n∑

i=1

ξi > x

)

≤ CnV (x) (3.4)

holds for all x ≥ γn and all n ≥ 1.

Proof. By Proposition 1.2 and along the same lines of the proof of Theorem 3.1 of Tang [26]
with slight modifications, we can derive that, for some positive integerm,

sup
n≥m,x≥γn

P
(∑n

i=1 ξi > x
)

nV (x)
<∞. (3.5)
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From Lemma 3.2, we have

sup
1≤n≤m,x≥γn

P
(∑n

i=1 ξi > x
)

nV (x)
≤

m∑

n=1

sup
x≥γn

P
(∑n

i=1 ξi > x
)

nV (x)
<∞. (3.6)

Combining (3.5) and (3.6), there exists a constant C(γ) > 0 such that (3.4) holds for all x ≥ γn
and all n ≥ 1.

The following lemma discusses the strong law of large numbers for widely dependent
r.v.s, which is due to Wang and Cheng [27].

Lemma 3.4. Let {ξi, i ≥ 1} be a sequence of real-valued r.v.s with finite mean a > 0 and satisfy one of
the Conditions 1–4 with {θi, i ≥ 1} replaced by {ξi, i ≥ 1}. Then

lim
n→∞

n−1
n∑

i=1

ξi = a a.s.. (3.7)

Proof. Follow Theorem 1 of Matula [28], Theorem 1.4, and the proofs of Theorems 1.1 and 1.2
of Wang and Cheng [27], respectively.

The lemma below gives the tail behavior of random sum, which extends the results of
Aleškevičienė et al. [2] and Zhang et al. [3].

Lemma 3.5. Let {ξi, i ≥ 1} be a sequence of identically distributed and real-valued r.v.s with
distribution V and finite mean a and satisfy one of the Conditions 1–4 with {θi, i ≥ 1} replaced
by {ξi, i ≥ 1}, where for Conditions 2 and 3 one further assumes that (3.3) holds. Let η be nonnegative
integer-valued r.v. with distribution U and finite mean b, independent of {ξi, i ≥ 1}. Assume that
V (x) ∼ cU(x) for some c ∈ [0,∞].

(1) If 0 ≤ c <∞,U ∈ C, and the conditions of Lemma 3.4 are valid, then

P

(
η∑

i=1

ξi > x

)

∼ bV (x) +U
(x

a

)
. (3.8)

(2) If c = ∞ and V ∈ L ∩ D, then relation (3.8) holds.

(3) Let no assumption be made on the interrelationship between V andU. If V ∈ L∩D,U ∈ C,
and the conditions of Lemma 3.4 are still valid, then relation (3.8) still holds.

Proof. Because η has finite mean, there exists a large integer m0 > 0 such that, for any fixed
ε > 0, it holds that

Eη1{η>m0} ≤ ε. (3.9)
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(1) First consider the case that 0 < c < ∞. Clearly, U ∈ C implies V ∈ C. For any x > 0
and any δ ∈ (0, 1), we have

P

(
η∑

i=1

ξi > x

)

=
∞∑

n=1

P

(
n∑

i=1

ξi > x

)

P
(
η = n

)

=

⎛

⎝
m0∑

n=1

+
(1−δ)x/a∑

n=m0+1

+
∑

n>(1−δ)x/a

⎞

⎠P

(
n∑

i=1

ξi > x

)

P
(
η = n

)

= K1 +K2 +K3.

(3.10)

For K1, by Lemma 3.2 it follows that

K1 ∼ V (x)
m0∑

n=1

nP
(
η = n

) ≤ bV (x). (3.11)

For K2, since n < (1 − δ)x/a and V ∈ C ⊂ D, we obtain by Lemma 3.3 that

P

(
n∑

i=1

ξi > x

)

= P

(
n∑

i=1

(ξi − a) > x − na
)

≤ P

(
n∑

i=1

(ξi − a) > δx
)

≤ C
(
γ
)
nV (δx)

≤ C̃
(
γ
)
nV (x),

(3.12)

where γ = δa/(1−δ), C(γ) and C̃(γ) are two constants only depending on γ . Hence, applying
(3.9), Lemma 3.2, and the dominated convergence theorem can yield that

K2 ∼ V (x)
(1−δ)x/a∑

n=m0+1

nP
(
η = n

) ≤ V (x)Eη1{η>m0} ≤ εV (x). (3.13)

For K3, since δ ∈ (0, 1) can be arbitrarily close to 0, we see byU ∈ C that

K3 ≤ U
(
(1 − δ)x

a

)

� U
(x

a

)
. (3.14)

Substituting (3.11)–(3.14) into (3.10) and considering the arbitrariness of ε > 0, we derive that

P

(
η∑

i=1

ξi > x

)

� bV (x) +U
(x

a

)
. (3.15)
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On the other hand, we note that

P

(
η∑

i=1

ξi > x

)

=
∞∑

n=1

P

(
n∑

i=1

ξi > x

)

P
(
η = n

)

≥
⎛

⎝
m0∑

n=1

+
∑

n>(1+δ)x/a

⎞

⎠P

(
n∑

i=1

ξi > x

)

P
(
η = n

)

= K1 +K4.

(3.16)

For K1, by Lemma 3.2 and (3.9), we get

K1 ∼
(
b − Eη1{η>m0}

)
V (x) ≥ (b − ε)V (x). (3.17)

For K4, by Lemma 3.4 we find that

lim
n→∞

P

(∑n
i=1 ξi
n

− a > − aδ

1 + δ

)

= 1, (3.18)

which, along with V ∈ C and the arbitrariness of δ ∈ (0, 1), leads to

K4 ≥
∑

n>(1+δ)x/a

P

(∑n
i=1 ξi
n

− a > − aδ

1 + δ

)

P
(
η = n

)

� U

(
(1 + δ)x

a

)

� U
(x

a

)
.

(3.19)

Hence, from (3.16)–(3.19) and the arbitrariness of ε > 0, we obtain that

P

(
η∑

i=1

ξi > x

)

� bV (x) +U
(x

a

)
. (3.20)

So, combining (3.15) and (3.20) proves that (3.8) holds for 0 < c <∞.
Next we turn to the case that c = 0, namely, V (x) = o(U(x)). According to Lemma 4.4

of Faÿ et al. [29], there exists a nondecreasing slowly varying function L(x) → ∞ such that
V (x) = o(U(x)/L(x)), which results in that for some x0 > 0,

V (x) ≤ U(x)/L(x) ≤ 1, for all x ≥ x0. (3.21)
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Define

V∗(x) =

⎧
⎪⎨

⎪⎩

1, if 0 ≤ x < x0,
U(x)
L(x)

, if x ≥ x0,

V −1
∗
(
y
)
= inf

{
x ∈ (−∞,∞) : V∗(x) ≥ y

}
, 0 ≤ y ≤ 1,

(3.22)

where V∗(x) = 1 − V∗(x). Let

ξ∗i = V
−1
∗ (V (ξi)), i ≥ 1. (3.23)

It is easy to verify that {ξ∗i , i ≥ 1} are stillWUOD and identically distributed r.v.s with common
distribution V∗ ∈ C. By the definition of V∗, we know that ξi ≤ ξ∗i , i ≥ 1, and then a ≤ Eξ∗i =
a∗ <∞. Thus, K1 +K2 in (3.10) is divided into three parts as

K1 +K2 ≤
(

m0∑

n=1

+
(1−δ)x/a∗∑

n=m0+1

)

P

(
n∑

i=1

ξ∗i > x

)

P
(
η = n

)

+
∑

(1−δ)x/a∗<n≤(1−δ)x/a
P

(
n∑

i=1

ξi > x

)

P
(
η = n

)

= K′
1 +K

′
2 +K

′′
2 .

(3.24)

Clearly, {ξ∗i , i ≥ 1} are such that the conditions of Lemmas 3.2 and 3.3 hold, then (3.11) and
(3.13) can still hold with K1, K2, and {ξi, i ≥ 1} replaced by K′

1, K
′
2, and {ξ∗i , i ≥ 1}. So, we

deduce by V∗ ∈ C ⊂ D and V∗(x) = o(U(x)) that

K′
1 +K

′
2 � (b + ε) · V∗(x)

V∗(x/a)
· V∗(x/a)

U(x/a)
·U
(x

a

)
= o
(
U
(x

a

))
. (3.25)

For K′′
2, it follows from Lemma 3.4 that

lim
n→∞

P

(∑n
i=1 ξi
n

− a > aδ

1 − δ
)

= 0. (3.26)

Then, byU ∈ C ⊂ D we have

K′′
2 ≤

∑

(1−δ)x/a∗<n≤(1−δ)x/a
P

(∑n
i=1 ξi
n

− a > aδ

1 − δ
)

P
(
η = n

)

= o

(

U

(
(1 − δ)x

a∗

))

= o
(
U
(x

a

))
.

(3.27)
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From (3.10), (3.14), and (3.24)–(3.27), we find that

P

(
η∑

i=1

ξi > x

)

� U
(x

a

)
. (3.28)

Again by (3.16) and (3.19), it is seen that

P

(
η∑

i=1

ξi > x

)

≥ K4 � U
(x

a

)
. (3.29)

SinceU ∈ C ⊂ D and V (x) = o(U(x)), we get

V (x) =
V (x)

U(x)
· U(x)

U(x/a)
·U
(x

a

)
= o
(
U
(x

a

))
. (3.30)

Consequently, we obtain by combining (3.28)–(3.30) that (3.8) holds for c = 0.
(2)Now we deal with the case that c = ∞, namely,U(x) = o(V (x)). Apparently, when

V ∈ L ∩ D, we can derive by Lemmas 3.2 and 3.3 that (3.11) and (3.13) still hold. As for K3,
byU(x) = o(V (x)) and V ∈ L ∩ D, we know that

K3 ≤ U((1 − δ)x/a)
V ((1 − δ)x/a)

· V ((1 − δ)x/a)
V (x)

· V (x) = o
(
V (x)

)
. (3.31)

Substituting (3.11), (3.13), and (3.31) into (3.10) implies that

P

(
η∑

i=1

ξi > x

)

� bV (x). (3.32)

For V ∈ L ∩ D, by Lemma 3.2 we also get (3.17). As for K4, arguing as (3.19) and (3.31), we
still have that

K4 � U

(
(1 + δ)x

a

)

= o
(
V (x)

)
. (3.33)

From (3.16), (3.17), and (3.33), we conclude that

P

(
η∑

i=1

ξi > x

)

� bV (x). (3.34)

Similarly to the derivation of (3.30), by U(x) = o(V (x)) and V ∈ L ∩ D we still see that
U(x/a) = o(bV (x)). This, along with (3.32) and (3.34), gives relation (3.8) immediately.
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(3) According to the proof of (2), we know that if V ∈ L ∩ D, then (3.11) and (3.13)
hold. While from the proof of (1), we have (3.14) ifU ∈ C. Hence, under the conditions of (3),
we obtain (3.15).

On the other hand, from the proof of (2), we can get (3.17)when V ∈ L ∩ D. Again by
the proof of (1), relation (3.19) also holds forU ∈ C. So, (3.20) is proved under the conditions
of (3). As a result, we show (3.8) directly.

The next two lemmas will give some results of the renewal risk model, which is the
compound renewal risk model withN1 =N2 = · · · = 1.

Condition 5. For α in (2.5), there exist t0 ∈ Λ ∩ (0,∞) and f in (1.12) such that (f(x))α(P(θ1 ≤
t0))

f(x) = o(F(x)).

Lemma 3.6 (Corollary 2.1 of Wang et al. [9]). Consider the compound renewal risk model with
N1 = N2 = · · · = 1 and c > λμ, in which {Xi, i ≥ 1} are i.i.d. r.v.s with common distribution F, and
{θi, i ≥ 1} are WLOD r.v.s satisfying (2.5) and one of Conditions 1–4.

(1) If F ∈ S∗, then for any t0 ∈ Λ, it holds uniformly for all t ∈ (t0,∞) that

ψ(x, t) ∼ λ

c − λμ
∫x+μλ(t)

x

F(s)ds. (3.35)

(2) Furthermore, if Condition 5 holds, then relation (3.35) still holds uniformly for all t ∈ Λ.

Lemma 3.7 (Corollary 2.2 of Wang et al. [9]). Under conditions of Lemma 3.6 and assumption
H4, one has

(1) if F ∈ S∗, then

ψ(x, τ) ∼ λ

c − λμE
∫x+μλ(τ)

x

F(s)ds (3.36)

holds uniformly for all τ ∈ {τ : P(τI{τ≥t0} ∈ Λ) > 0} for any t0 ∈ Λ.

(2) Additionally, if Condition 5 holds, then relation (3.36) still holds uniformly for all t ∈ Δ.

Now we prove the main results as follows.

Proof of Theorem 2.1. Clearly, if F ∈ L∩D then F satisfies Condition 5. In fact, the assumption
F ∈ L ∩ D indicates that the tail of F behaves essentially like a power function, thus there
exists q > 0 such that xqF(x) → ∞. Take f(x) = xp for any 0 < p < 1, which satisfies (1.12).
So, for any s > 0, e−sx

p
/F(x) → 0 and Condition 5 holds.

First, consider Theorem 2.1(1). For the case that 0 ≤ c < ∞, we can obtain relation
(2.4) by (1.5) and Lemmas 3.5(1) and 3.6, and going along the similar ways to that of
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Theorems 2.2(2) and (3) of Aleškevičienė et al. [2]. For the case that c = ∞, since F ∈ L ∩ D,
by Lemma 3.5(2) we have that for any y > 0,

lim sup
x→∞

P
(
SN > xy

)

P(SN > x)
= lim sup

x→∞

F
(
xy
)

F(x)
<∞, lim

x→∞
P
(
SN > x + y

)

P(SN > x)
= lim

x→∞
F
(
x + y

)

F(x)
= 1,

(3.37)

which tell us that the distribution of SN belongs to the classL∩D. Then, arguing as the proof
of Theorem 2.2(1) of Aleškevičienė et al. [2], we also obtain relation (2.4).

Now consider Theorem 2.1(2). By Lemma 3.5(3), F ∈ L ∩ D and G ∈ C, it is also clear
that the distribution of SN belongs to L ∩ D. Hence, relation (2.4) still holds from (1.5) and
Lemmas 3.5(3) and 3.6.

Proof of Theorem 2.2. By (1.6), the uniformity of (2.4) in Theorem 2.1, and the independence
between τ and the risk system, we can get the proof of Theorem 2.2.
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