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This paper proposes to use the method of generalized empirical likelihood to find the optimal
portfolio weights. The log-returns of assets aremodeled bymultivariate stationary processes rather
than i.i.d. sequences. The variance of the portfolio is written by the spectral density matrix, and we
seek the portfolio weights which minimize it.

1. Introduction

The modern portfolio theory has been developed since circa the 1950s. It is common
knowledge that Markowitz [1, 2] is a pioneer in this field. He introduced the so-called mean-
variance theory, in which we try to maximize the expected return (minimize the variance)
under the constant variance (the constant expected return). After that, many researchers
followed, and portfolio theory has been greatly improved. For a comprehensive survey of
this field, refer to Elton et al. [3], for example.

Despite its sophisticated paradigm, we admit there exists several criticisms against
the early portfolio theory. One of them is that it blindly assumes that the asset returns are
normally distributed. As Mandelbrot [4] pointed out, the price changes in the financial
market do not seem to be normally distributed. Therefore, it is appropriate to use the
nonparametric estimation method to find the optimal portfolio. Furthermore, it is empirically
observed that financial returns are dependent. Therefore, it is unreasonable to fit the
independent model to it.

One of the nonparametric techniques which has been capturing the spotlight recently
is the empirical likelihood method. It was originally proposed by Owen [5, 6] as a method of
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inference based on a data-driven likelihood ratio function. Smith [7] and Newey and Smith
[8] extended it to the generalized empirical likelihood (GEL). GEL can be also considered
as an alternative of generalized methods of moments (GMM), and it is known that its
asymptotic bias does not grow with the number of moment restrictions, while the bias of
GMM often does.

From the above point of view, we consider to find the optimal portfolio weights by
using the GEL method under the multivariate stationary processes. The optimal portfolio
weights are defined as the weights which minimize the variance of the return process with
constant mean. The analysis is done in the frequency domain.

This paper is organized as follows. Section 2 explains about a frequency domain
estimating function. In Section 3, we review the GEL method and mention the related
asymptotic theory. Monte Carlo simulations and a real-data example are given in Section 4.
Throughout this paper, A′ and A∗ indicate the transposition and adjoint of a matrix A,
respectively.

2. Frequency Domain Estimating Function

Here, we are concerned with the m-dimensional stationary process {X(t)}t∈Z
with mean

vector 0, the autocovariance matrix

Γ(h) = Cov[X(t + h),X(t)] = E
[
X(t + h)X(t)′

]
, (2.1)

and spectral density matrix

f(λ) =
1
2π

∞∑

h=−∞
Γ(h)e−ihλ, −π ≤ λ < π. (2.2)

Suppose that information of an interested p-dimensional parameter θ ∈ Θ ⊂ R
p exists

through a system of general estimating equations in frequency domain as follows. Let
φj(λ;θ), (j = 1, . . . , q, q ≥ p) be m × m matrix-valued continuous functions on [−π,π)
satisfying φj(λ;θ) = φj(λ;θ)

∗ and φj(−λ;θ) = φj(λ;θ)
′. We assume that each φj(λ;θ) satisfies

the spectral moment condition

∫π

−π
tr
{
φj(λ;θ0)f(λ)

}
dλ = 0

(
j = 1, . . . , q

)
, (2.3)

where θ0 = (θ10, . . . , θp0)
′ is the true value of the parameter. By taking an appropriate function

for φj(λ;θ), (2.3) can express the best portfolio weights as shown in Example 2.1.

Example 2.1 (portfolio selection). In this example, we setm = p = q. Let xi(t) be the log-return
of ith asset (i = 1, . . . , m) at time t and suppose that the process {X(t) = (x1(t), . . . , xm(t))

′} is
stationary with zero mean. Consider the portfolio p(t) =

∑m
i=1 θixi(t), where θ = (θ1, . . . , θm)

′

is a vector of weights, satisfying
∑m

i=1 θi = 1. The process {p(t)} is a linear combination of the
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stationary process, hence {p(t)} is still stationary, and, from Herglotz’s theorem, its variance
is

Var
{
p(t)

}
= θ′ Var{X(t)}θ = θ′

{∫π

−π
f(λ)dλ

}
θ. (2.4)

Our aim is to find the weights θ0 = (θ10, . . . , θm0)
′ that minimize the variance (the risk) of the

portfolio p(t) under the constrain of
∑m

i=1 θi = 1. The Lagrange function is given by

L(θ, λ) = θ′
{∫π

−π
f(λ)dλ

}
θ + ξ

(
θ′e − 1

)
, (2.5)

where e = (1, 1, . . . , 1)′ and ξ is Lagrange multiplier. The first order condition leads to

(
I − eθ′

0
)[
∫π

−π

{
f(λ) + f(λ)′

}
dλ

]
θ0 = 0, (2.6)

where I is an identity matrix. Now, for fixed j = 1, . . . , m, consider to take

φj(λ;θ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

2θj
(
1 − θj

) (
j, j

)
th component

1 − 2θjθ�
(
j, �

)
th and

(
�, j

)
th component with � = 1, . . . , m and � /= j

−2θkθ� (k, �)th component with k, � = 1, . . . , m and k /= j, � /= j.

(2.7)

Then, (2.3) coincides with the first order condition (2.6), which implies that the best portfolio
weights can be solved with the framework of the spectral moment condition.

Besides, we can express other important indices for time series. In what follows, several
examples are given.

Example 2.2 (autocorrelation). Denote the autocovariance and the autocorrelation of the
process {xi(t)} (ith component of the process {X(t)}) with lag h by γi(h) and ρi(h),
respectively. Suppose that we are interested in the joint estimation of ρi(h) and ρj(k). Take

φ1(λ;θ) =

⎧
⎨

⎩

cos(hλ) − θ1 (i, i)th component

0 otherwise,

φ2(λ;θ) =

⎧
⎨

⎩

cos(kλ) − θ2
(
j, j

)
th component

0 otherwise.

(2.8)
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Then, (2.3) leads to

θ10 =
{∫π

−π
exp(ihλ)fii(λ)dλ

}{∫π

−π
fii(λ)dλ

}−1
,

θ20 =
{∫π

−π
exp(ikλ)fjj(λ)dλ

}{∫π

−π
fjj(λ)dλ

}−1
.

(2.9)

From Herglotz’s theorem, θ10 = γi(h)/γi(0), and θ20 = γj(k)/γj(0). Then, θ0 = (θ10, θ20)
′

corresponds to the desired autocorrelations ρ = (ρi(h), ρj(k))
′. The idea can be directly

extended to more than two autocorrelations.

Example 2.3 (Whittle estimation). In this example, we set p = q. Consider fitting a parametric
spectral density model fθ(λ) to the true spectral density f(λ). The disparity between fθ(λ)
and f(λ) is measured by the following criterion:

D
(
fθ, f

) ≡
∫π

−π

[
log det fθ(λ) + tr

{
fθ(λ)

−1f(λ)
}]

dλ, (2.10)

which is based on Whittle likelihood. The purpose here is to seek the quasi-true value θ
defined by

θ = arg min
θ∈Θ

D
(
fθ, f

)
. (2.11)

Assume that the spectral density model is expressed by the following form:

fθ(λ) =

⎧
⎨

⎩

∞∑

j=0

Bθ
(
j
)
exp

(
ijλ

)
⎫
⎬

⎭
K

⎧
⎨

⎩

∞∑

j=0

Bθ
(
j
)
exp

(
ijλ

)
⎫
⎬

⎭

∗

, (2.12)

where each Bθ(j) is an m ×mmatrix (Bθ(0) is defined as identity matrix), and K is an m ×m
symmetric matrix. The general linear process has this spectral form, so this assumption is
not so restrictive. The key of this assumption is that the elements of the parameter θ do not
depend on K. We call such a parameter innovation-free. Imagine that you fit the VARMA
process, for example. Innovation-free implies that the elements of the parameter θ depend on
only AR or MA coefficients and not on the covariance matrix of the innovation process. Now,
let us consider the equation:

∂

∂θ
D
(
fθ, f

)
∣∣∣∣
θ=θ

= 0, (2.13)

to find quasi-true value. The Kolmogorov’s formula says

det K = exp
[

1
2π

∫π

−π
log det

{
2πfθ(λ)

}
dλ

]
. (2.14)
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This implies that if θ is innovation-free, the quantity
∫π
−π log det{fθ(λ)}dλ is independent of

θ and (2.13) leads to

∂

∂θ

∫π

−π
tr
{
fθ(λ)

−1f(λ)dλ
}∣∣∣∣

θ=θ
= 0. (2.15)

This corresponds to (2.3), when we set

φj(λ;θ) =
∂fθ(λ)

−1

∂θj

(
j = 1, . . . , p

)
, (2.16)

so the quasi-true value can be expressed by the spectral moment condition.

Based on the form of (2.3), we set the estimating function for θ as

m(λt;θ) =
(
tr
{
φ1(λt;θ)In(λt)

}
, . . . , tr

{
φq(λt;θ)In(λt)

})′
, (2.17)

where In(λ) is the periodogram, defined by

In(λ) = (2πn)−1
{

n∑

t=1

X(t) exp(itλ)

}{
n∑

t=1

X(t) exp(itλ)

}∗
, (2.18)

where λt = (2πt)/n, (t = −[(n − 1)/2], . . . , [n/2]). Then, we have

2π
n

[n/2]∑

−[(n−1)/2]
E[m(λt;θ)] −→

[∫π

−π
tr
{
φj(λ;θ0)f(λ)

}
dλ

]

j=1,...,q
= 0. (2.19)

3. Generalized Empirical Likelihood

Once we construct the estimating function, we can make use of the method of GEL as in the
work by Smith [7] and Newey and Smith [8]. GEL is introduced as an alternative to GMM
and it is pointed out that its asymptotic bias does not grow with the number of moment
restrictions, while the bias of GMM often does.

To describe GEL let ρ(v) be a function of a scalar v which is concave on its domain, an
open interval V containing zero. Let Λ̂n(θ) = {λ : λ′m(λt;θ) ∈ V, t = 1, . . . , n}. The estimator
is the solution to a saddle point problem

θ̂GEL = arg min
θ∈Θ

sup
λ∈Λ̂n(θ)

n∑

t=1

ρ
(
λ′m(λt;θ)

)
. (3.1)

The empirical likelihood (EL) estimator (cf. [9]) the exponential tilting (ET) estimator (cf.
[10]), and the continuous updating estimator (CUE) (cf. [11]) are special cases with ρ(v) =
log(1 − v), ρ(v) = −ev and ρ(v) = −(1 + v)2/2, respectively. Let Ω = E[m(λt;θ0)m(λt;θ0)

′],
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Table 1: Estimated autocorrelations for two-dimensional-AR(1)model.

EL ET CUE

Mean s.d. Mean s.d. Mean s.d.

ρ1 (1) 0.3779 0.0890 0.3760 0.0900 0.3797 0.0911
ρ2 (1) 0.4680 0.0832 0.4660 0.0817 0.4650 0.0855

G = E[∂m(λt;θ0)/∂θ], and Σ = (G′Ω−1G)−1. The following assumptions and theorems are
due to Newey and Smith [8].

Assumption 3.1. (i) θ0 ∈ Θ is the unique solution to (2.3).
(ii) Θ is compact.
(iii)m(λt;θ) is continuous at each θ ∈ Θ with probability one.
(iv) E[supθ∈Θ||m(λt;θ)||α] < ∞ for some α > 2.
(v) Ω is nonsingular.
(vi) ρ(v) is twice continuously differentiable in a neighborhood of zero.

Theorem 3.2. Let Assumption 3.1 hold. Then θ̂GEL
p→ θ0.

Assumption 3.3. (i) θ0 ∈ int(Θ).
(ii) m(λt;θ) is continuously differentiable in a neighborhood N of θ0 and

E[supθ∈N||∂m(λt;θ)/∂θ′||] < ∞.
(iii) rank(G) = p.

Theorem 3.4. Let Assumptions 3.1 and 3.3 hold. Then
√
n(θ̂GEL − θ0)

p→ N(0,Σ).

4. Monte Carlo Studies and Illustration

In the first part of this section, we summarize the estimation results of Monte Carlo studies of
the GEL method. We generate 200 observations from the following two-dimensional-AR(1)
model

[
X1(t)

X2(2)

]

=

[
0.2 −0.5
−0.5 0.3

][
X1(t − 1)

X2(t − 2)

]

+

[
U1(t)

U2(t)

]

, (4.1)

where {U(t) = (U1(t), U2(t))
′}t∈Z

is an i.i.d. innovation process, distributed to two-
dimensional t-distribution whose correlation matrix is identity, and degree of freedom is 5.
The true autocorrelations with lag 1 of this process are ρ1(1) = 0.3894 and ρ2(1) = 0.4761,
respectively. As described in Example 2.2, we estimate ρ1(1) and ρ2(1) by using three types
of frequency domain GEL method (EL, ET, and CUE). Table 1 shows the mean and standard
deviation of the estimation results whose repetition time is 1000. All types work properly.

Next, we apply the proposed method to the returns of market index data. The sample
consists of 7 weekly indices (S&P 500, Bovespa, CAC 40, AEX, ATX, HKHSI, and Nikkei)
having 800 observations each: the initial date is April 30, 1993, and the ending date is August
22, 2008. Refer to Table 2 for the market of each index.
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Table 2: Market.

Index Market
S&P 500 NYSE
Bovespa São Paulo Stock Exchange
CAC 40 Bourse de Paris
AEX Amsterdam Stock Exchange
ATX Wiener Börse
HKHSI Hong Kong Exchanges and Clearing
Nikkei Tokyo Stock Exchange

Table 3: Estimated portfolio weights.

EL ET CUE
S&P 500 0.0759 0.0617 0.0001
Bovespa 0.6648 0.6487 0.6827
CAC 40 0.0000 0.0000 0.0000
AEX 0.0000 0.0000 0.0000
ATX 0.2593 0.2558 0.3168
HKHSI 0.0000 0.0000 0.0000
Nikkei 0.0000 0.0338 0.0004

As shown in Example 2.1, we use frequency domain GEL method to estimate the
optimal portfolio weights, and the results are shown in Table 3. Bovespa and ATX account
for large part in the optimal portfolio.
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