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Abstract. The sample correlation coefficient R is almost universally used to estimate the
population correlation coefficient p. If the pair (X, Y)has a bivariate normal distribution, this
would not cause any trouble. However, if the marginals are nonnormal, particularly if they
have high skewness and kurtosis, the estimated value from a sample may be quite different from
the population correlation coefficient p.
The bivariate lognormal is chosen as our case study for this robustness study. Two approaches
are used: (i) by simulation and (ii) numerical computations.
Our simulation analysis indicates that for the bivariate lognormal, the bias in estimating p can
be very large if p s0, and it can be substantially reduced only after a large number (three to four
million) of observations. This phenomenon, though unexpected at first, was found to be
consistent to our findings by our numerical analysis.
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1. Introduction

The Pearson product-moment correlation coefficient p is a measure of linear dependence
between a pair of random variables (X,Y). The sample (product-moment) correlation
coefficient R, derived from n observations of the pair (X, Y), is normally used to estimate
p. Historically, R has been studied and applied extensively. The distribution of R has
been thoroughly reviewed in Chapter 32 of Johnson et al. (1995). While the properties of
R for the bivariate normal are clearly understood, the same cannot be said about
nonnormal bivariate populations. Cook (1951), Gayen (1951) and Nakagawa and Niki
(1992) obtained expressions for the first four moments of R in terms of the cumulants and
cross-cumulants of the parent population. However, the size of the bias and the variance
of R are still rather hazy for general bivariate nonnormal populations when p 0, since
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the cross-cumulants are difficult to quantify in general. Although various specific
nonnormal populations have been investigated, the messages on the robustness of R are
conflicting Johnson et al. (1995, pp.580) remarked that "Contradictory, confusing, and
uncoordinated floods of information on the ’robustness’ properties of the sample
correlation coefficient R are scattered in dozens of journals." We do not intend to enter
into the fray. Instead we use an easily understood example to illustrate that we do have a
problem in estimating the population correlation when p 0 and when the skewness of
the marginal populations is large.

Results of our simulations indicate that for smaller sample sizes the sample correlation
R for the bivariate lognormal with skewed marginals and with p, 0 has large bias and

large variance. Several million observations are required in order to reduce the bias and
variance significantly. This result may be surprising to many readers. Various histograms
of the sample correlation coefficient R based on our simulation results are plotted Section
3. Tables of summary statistics are also provided.

The present study is in some way a follow-up of Hutchinson (1997) who noted that the
sample correlation is possibly a poor estimator of p. The advantage of using the bivariate
lognormal as our case study on robustness of R, apart from the ease of simulations, is the
tractability of the cross-cumulants. We compute the lower cross-cumulant ratios that
contribute to the terms in n-1 and n-2 in the mean and variance of R. The magnitude of
these values cause difficulties in estimating the sizes of the bias and variance.
Nevertheless, they do shed some light on where the difficulties lie.

2. Sample ’Correlation of the Bivariate Lognormal Distribution

Let (X, Y) denote a pair of bivariate lognormal random variables with correlation
coefficient p, derived from the bivariate normal with marginal means 1, 2, standard

deviations Yl, 62, and correlation coefficient pN.

It is well known that if we start with a bivariate normal distribution, and apply any
nonlinear transformations to the marginals, Pearson’s product moment correlation
coefficient in the resulting distribution is smaller in absolute magnitude than the original
bivariate normal one. Of course, if the transformations are monotonic, rank correlation
coefficients are unaltered. The expression for the correlation coefficient of the bivariate
lognormal can be found in Johnson and Kotz (1972, p.20):

exp(pc1c2)-
P= /{exp(cy2) 1}{exp(c)-1}

(1)
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Since (1)indicates that p is independent of 1 and 2, we subsequently set them both
to zero for convenience sake. We note that the ’s measure the skewness of the

lognormal marginals: tx3 =a]l =(m-1)l/2(m++2),t.o=exp(2); see Johnson et al.

(1994, pp. 212). Eq(1) indicates that p increases as pie increases for any fixed tl and

G2

For 1 1 and t2 2, we have

t ,
p= 0.179,

[ 0.666,

if p=0
if p 0.5

if p=l

(2)

We note the skewness coefficients for 1 land 2 2 are 6.18 and 429, respectively.
The correlation p for the bivariate lognormal may not be very meaningful if one or both

of the marginals are skewed. Consider the case for which and 2 4. By setting

Pv -1 and pv in (1), respectively, we work out the lower and upper limits for
correlation between Xand Y to be -0.000251 and 0.0312. As Romano and Siegel (1986,
section 4.22) say, "Such a result raises a serious question in practice about how to
interpret the correlation between lognormal random variables. Clearly, small correlations
may be very misleading because a correlation of 0.01372 indicates, in fact, Xand Y are
perfectly functionally (but nonlinearly) related."

The distribution of R when (X, Y) has a bivariate normal distribution is well known
and has been well documented in Johnson and et al. (1995, Chapter 32). The bias

(E(R) P)" and the variance of R are both of O(n-) and therefore p can be successfully

estimated from samples or simulations. For nonnormal populations, the moments of R
may be obtained from the bivariate Edgeworth expansion, which involves cross-cumulant
ratios of the parent population.

3. Simulation Study

In order to study the sampling distribution of R and assess its performance as an
estimator of p, we carded out a large-scale simulation exercise. In our simulation
procedure, we use the following steps:

Step 1: Generate n observations from each of the pair of independent unit normals
(u, v).

Step 2: Obtain the bivariate normal (X*, Y*) through the relationship:
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X* OlU1, Y*=O2PNU+O2(1--PN)I/2y (3)

Step 3: Set X exp(X* ) and Y exp(Y* ). Then (X, Y) has a bivariate lognormal
distribution with correlation coefficient given by (1). As we are only interested in the
correlation coefficient, we set both 1 and 2 to zero.

All the simulations and plots are carded out using MINITAB commands.

Three cases are considered, each with Ol 1 and o2 2: (i) pv 1, (ii) pv 0.5 and

(iii) Pv =0. The corresponding correlation coefficients of the bivariate lognormal

population are (i) p 0.666, (ii) p 0.179 and (iii) p 0, respectively. The following
histograms are plotted for the three cases considered:

Fig 1" 50 Samples of 4 Million (with rho 1)
Fig 2:100 Samples of 3 million (rho =0.5)

20-

Frequency

10"

Correlation Coefficient

Frquency

Correlation Coefficient



ROBUSTNESS OFTHESAMPLE CORRELATION 11

Fig 3:100 Samples of 3 Million (rho 0)
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Table 1: Summary of Simulations
p Sample Size N0"’of "’Mean

Samples
0.666 4 Million 50 0.68578
0.179 3 Million 100 0.18349
0.0 3 Million 100 0:00006.

Standard
Deviation
0.029979
0.015’9

’0.000526

The plots displayed above indicate that the distributions of R are skewed to the left, and,
except for the case p 0, they have quite large variances even for such large sample sizes.
We have also calculated the asymptotic expansions for both the bias and the variance of
R, and found, except when p 0, the leading coefficients in each case to be very large.
So there is sound theory behind the simulation demonstrations.

For the bivariate normal, the bias in R as an estimate of p is approximately
-p(1-p2)n-1/2 and vat(R)--(l-p2)2 /n; see Johnson et al. (1995, pp. 556). So for

p 0.666, 0.179 and 0, we would expect the standard errors to be 0.0003, 0.0006, and
0.0005, respectively.

In order to reassure the readers that 50 or 100 samples is sufficient, we consider case (ii)
with fixed the sample size n 100,000 and let the number of simulations, k say, vary.
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The following histograms indicate that the shape changes very little as k varies; all are
skewed to the left.

Figure 4: Histograms of R (with Ply 0.5, (p 0.179), <1 1, (2 2, n 100,000)

0.12 0.16 0.20 0.24

(a) k 50
0.’12 0;11’’ 0.0’ 0.24

() k ]00

0.1 0.2 0.0 0.1

(c) k 500 (d) k 1000
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k
50
100
500
1000

Table 2: Summary Statistics from four values of k, all with n 100,000

Mea 
0.20644
0.19779
0.19582
0.19931

ledian St Iev
0.20875 0.01978’"
0.20372 0.03118
0.20131 0.03460
0.20418 0.02965

Min
0.12860
0.11145
0.04924
0.044"72

Max Q1 Q3
0.25300 O. 19606 0.21871
0.25910 0.18012 0.22023
0.28928 0.18159 0.21855
0.30495 0.18370 0.21913

On the other hand, if we fix k 100 and allow n to vary from n 50 to n 1000000,
we then have the following box-plots and table of summary statistics:

Figure 5" Box-plots of various n, k 100
1.0--

0.5""

0.0--

50 1 O0 000 10000 100000 1000000
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Table 3" Summary:(p =0.179, tl=l, 2=2)

Sample Size
50

100

1000

10000

100000

1000000

Mean

0.3379

0.3258

0.2613

0.2195

0.1979

0.1849

Median

0.3289

0.2928

0.2421

0.2140

0.2015

0.1905

StDev

0.2237

0.1506

0.0960

0.0501

0.0266

0.0214

The last column of the preceding table suggests that the standard error is not

proportional to n-1/2 as one would probably expect should this be a well-behaved bivariate
distribution.

If the skewness of the marginals is reduced, the bias and sampling variance of R both
seem to be reduced. For example, consider the case when Cl 2 0.5 and pN 0.5;
then p 0.4688. Also recall that the o’s measure the skewness of the lognormals. We
simulated 100 sarnples of (a) 100,000 and (b) lmillion observations, and their results are
now summarized as follows:

Fig 6: Histograms based on 100 Samples (with (Yl t2 0.5 and p 0.4688)

0.40 0.45 0.40 0.45
0.4665 0.4685 0.4695 0.4715

.
(a) Sample size: 100,000 (b) Sample size: 1 million
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Table 4: Summary Statistics of Two Different Sample Sizes (k =100)

Mean StDev

0.4689 0.0027
0.4689 0..0009

Min

0.4611
0.4667

1st Median 3rd Max
Ouar..’le Quartile
0.4672 0’4689 0.4710 0.4747
0.4682 0.4688 0.4695 0.4714

We see that the normals fit the above data well. Indeexl, formal goodness of fit tests
show almost perfect fit. It seems that the skewness of the marginals affect the skewness
of R.

4. Cross-Cumulant Ratios and Asymptotic Expansions

4.1. Asymptotic Expansions

The expected value of R for any bivariate distributions (not necessarily bivariate normal)
with the population correlation coefficient p, is given by (see Johnson and et al 1995,
page 562):

E(R) p +’ -p(1 p2 ) 2 + -L4,1 + O(n-2 )

where

L4,1 3P(Y40 + 704)- 4(731 + Y13) + 2Pqt22,
and y0. denotes the cumulant ratio

(4)

(5)

’0 :f/:f2 (6)

with c0being the cross cumulants of the bivariate population.

Nakagawa and Niki (1992)include an extra term 4 in (5), but we accept the

expression given by Johnson et al (1995). Nevertheless, we subsequently find the
additional term is numerically small and it makes no difference to our calculations.

Equation (4) may be written alternatively as"



16 C.D. LAI, J.C.W. RAYNER AND T.P. HUTCHINSON

E(R)-p=l[-p(1-p2)/2+ ]n " L4,I + O(n-2) (7)

Rodriguez (1982) noted that R is an approximately unbiased as well as a consistent
estimator of p.

Gayen (1951) showed that after adding the term in n-2, (7) then becomes:

E(R)-P=-n -p(1-p )/2+-L4,1
_3 2 5 2

+--8P(I-P )(l+3p2)+---p(1-p )(T40+T04)+--(9p2-5)(T31 +T13)
n 16 4

-p(9p2+7)T22+ P(T30+ )+ +T )- (T30T +T )-T21’s 03 03 1

+ O(n (8)

The variance of R is given by:

where

"1- L4,2 -!- O(/’1-2) (9)

L4,2 p2(T40 + ’’04)- 4P(T13 + ’31) + 2(2 + p2)qt22 (lO)

4.2. Cumulants and Cross Cumulant Ratios

The bivariate cumulants may be expressed in terms of product moments t. (about the
origin) (See Cook (1951)):
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When 1 2 =0, using Johnson and Kotz (1972, page 20), the product moments of
the bivariate lognormal distribution are

1.1,/./. exp /jpNOiO2 q- - /20" "b j20"22

In what follows, we assume and 0.1 land 0.2 2 so that

(11)

Using (12), the cross-cumulants formulae, and (6) we obtained Table 5 and Table 6
below:

Table 5: Cross-Cumulants Ratios

p
0
.179
.666

03
414.36
414.36
’414.36’

30
8.47
8.47
8.47

’21
0
0.36
1.11

’12
0
4.78
4.91

0 110.94 9220556
78.43 110.94 9220556
4734.83 110.94 9220556

Table 6" Cross-Cumulant Ratios and L functions

.179

.666

t13

6036.47
127316.53

31

19.86
462.84

4927300.88
18’956928

291421.80

3.’....7.72568...:34
Now

forPN =0

0.07, for pN .5

L 0.18, for PN

After adding 471, Z4,1 now becomes
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0,

L4,1 4927300.88,

[18956928.02,

forp=0
forp .179

for p .666

which shows that the additional term hardly makes any change to our calculations.

Table 7 below gives the values of the appropriate terms in (8) and (9), which we
obtained from the last two tables:

Table 7: Coefficients in the Asymptotic Expansions for the Mean and Variance

P coeff of n’1 [bias (8)]
0 1
.179 615912.’44
.666 2369615.63

coeff of n-2 [bias (8)] coeff of n.-1, [var (9)]
0
3311342.19 72856.39
3303158.59 943142.40

We note that the values of the last two rows of Table 7 very large. It is our conjecture
that further coefficients in the asymptotic expansion of the bias and variance are large
also. This is why the expansion up to the order n2 cannot be used to estimate the bias and
variance when p 0.

Conclusion

Many non-normal bivariate distributions are of interest in engineering, geology,
meteorology, and psychology. Often the correlation coefficient is used to estimate the
sample correlation R. In most cases the sample sizes concerned are in the order of
hundreds instead of thousands or millions for obvious reasons. So the bias may be quite
significant in some cases, especially if p is not close to zero.

By using an easily understood example we have illustrated the problem that in
estimating the population correlation by the sample correlation, a large bias and a large
sampling variance may occur. We therefore lend our support to the claim that R is not a
robust estimator of the population correlation. To our knowledge, most elementary texts
do not discuss or highlight this important issue. It is our view that statistics students, as
well as researchers, should be cautioned about this problem. The underlying assumptions
on the populations should be checked before reporting their findings on the correlation.
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