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Abstract. The purpose of this paper is to present a survey of recent developments concerning
the distributions of occupation times of Brownian motion and their applications in mathematical
finance. The main result is a closed form version for Akahori’s generalized arc-sine law which can
be exploited for pricing some innovative types of options in the Black & Scholes model. Moreover
a straightforward proof for Dassios’ representation of the α-quantile of Brownian motion with drift
shall be provided.
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1. INTRODUCTION

Problems of pricing derivative securities in the traditional Black & Scholes frame-
work are often closely connected to the knowledge of distributions induced by appli-
cation of measurable functionals to Brownian motion. Familiar types of measurable
functionals such as passage times and maximum or minimum functionals were al-
ready considered in early investigations of Brownian motion and – from a stochastic
point of view – are responsible for popular exotic option constructions like barrier
options and look-back options. In the context of this paper we concentrate on ap-
plications of occupation times of Brownian motion to problems in mathematical
finance.

For instance the distribution of occupation times is decisive for the pricing of so-
called α-quantile options, a certain class of average options. Although occupation
times of Brownian motion had been a subject of intensive research in stochastic
calculus years ago (e.g. a nice proof of Lévy’s famous arc-sine law is presented in
Billingsley (1968)) the interest of financial economists and applied mathematicians
in questions concerning quantile options has caused a renaissance in this topic [see
Akahori (1995), Dassios (1995)].

This paper intends to present a survey and a summary of familiar and recent
results with respect to the distribution of occupation times of Brownian motion
(with drift) in Section 1. The main result of this section is Theorem 1.1, where
a representation of the occupation times’ density by the partial derivatives of a
convolution integral is provided. In Section 2 we demonstrate how this represen-
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tation can be used to derive by elementary methods one of the most interesting
results of recent research – Dassios’ identity in law for occupation times. Then, in
Section 3, a closed form representation of the distribution in question is introduced
which is appropriate for the calculation of option pricing formulae in the Black &
Scholes framework. Such an application we present in Section 4 where the explicit
formula of a quantile option is discussed. Finally, in the Appendix miscellaneous
remarks and computational aspects of proofs are provided for those readers who
are interested in technical details.

2. OCCUPATION TIMES AND A GENERALIZED ARC-SINE LAW

Let (Wt, t ≥ 0) be a one-dimensional standard Brownian motion. With ν ∈ gR we
introduce the Brownian motion with drift Z defined by Zt = Wt + νt, t ≥ 0. In the
framework of this paper we consider the restriction of Z to the time-interval [0;T ],
i.e. Z is a random variable with values in the measurable space

(
C[0;T ]; C[0;T ]

)
,

the space of all continuous functions on [0;T ] endowed with the σ-algebra of Borel
sets [see Billingsley (1968), Chapter 2]. Then by application of the measurable
functional Γ+(T, k) : C [0;T ]→ gR defined by

Γ+(T, k)(z) :=
∫ T

t=0

1 [z(t) > k] dt, z ∈ C [0;T ] , (1)

to Z we obtain the real-valued random variable occupation time Γ+ (T, k) (Z) of
(k;∞) up to time T [see Karatzas & Shreve (1988), Example 3.6.2]. In the driftless
case ν = 0 with k = 0 the distribution of Γ+(T, 0)(W ) is a familiar example in the
literature on Brownian motion and provides a well-known arc-sine law. As an appli-
cation of the central limit theorem of random walk Billingsley presents an elemen-
tary derivation for the joint density P [Γ+(T, 0)(W ) ∈ du;WT ∈ dx] [see Billingsley
(1968), Chapter 2, pp. 80-83]. The joint density P [Γ+(T, 0)(W ) ∈ du;WT ∈ dx] is
thus given by the formula,

P [Γ+(T, 0)(W ) ∈ du;WT ∈ dx] =


|x|
2π

∫ T

t=u

exp
{
− x2

2(T−t)

}
[t (T − t)]

3
2

dtdudx , x < 0;

|x|
2π

∫ T

t=T−u

exp
{
− x2

2(T−t)

}
[t (T − t)]

3
2

dtdudx , x > 0.

(2)

With respect to the following explicit calculations of distributions and their appli-
cations in mathematical finance we denote the univariate and the bivariate standard
normal distribution functions by

N (x) =
1√
2π

∫ x

v=−∞
exp

{
−v

2

2

}
dv
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for all x ∈ gR and by

N (x, y; ρ) =
1

2π
√

1− ρ2

∫ x

v=−∞

∫ y

w=−∞
exp

{
− 1

2 (1− ρ2)
(
v2 − 2ρvw + w2

)}
dwdv

for all x, y ∈ gR and all ρ ∈ (−1; 1).
By Girsanov’s theorem we obtain the joint density

P [Γ+(T, 0)(Z) ∈ du;ZT ∈ dx] = exp
{
−ν

2

2
T + νx

}
P [Γ+(T, 0)(W ) ∈ du;WT ∈ dx]

and by application of Fubini’s theorem the first result of Akahori’s generalized
arc-sine law [see Akahori (1995), Theorem 1.1 (i)],

P [Γ+(T, 0)(Z) ∈ du] (3)

=

{
1
π

exp
{
−ν

2

2
T

}
1√

u (T − u)
+

√
2
π

ν√
T − u

exp
{
−ν

2

2
(T − u)

}
N
(
ν
√
u
)

−
√

2
π

ν√
u

exp
{
−ν

2

2
u

}
N
(
−ν
√
T − u

)
− 2ν2N

(
ν
√
u
)
N
(
−ν
√
T − u

)}
du.

Actually for ν = 0 this result yields Lévy’s classical arc-sine law for occupation
times

P [Γ+(T, 0)(W ) ≤ u] =
1
π

∫ u

t=0

dt√
t (T − t)

=
2
π

arcsin
√
u

T

for 0 ≤ u ≤ T .
With eq. (3) we immediately obtain a double integral representation for P [Γ+(T, k)(Z) ≤ t].

First we introduce the functional passage time Tk by

Tk(z) = inf {t ≥ 0 |zt = k }

and consider Tk(Z) with distribution

P [Tk(Z) ≤ t] = P

[
min

0≤s≤t
Zs ≤ k

]
= N

(
k√
t
− ν
√
t

)
+ (4)

exp {2kν}N
(
k√
t

+ ν
√
t

)
for k < 0 and with distribution

P [Tk(Z) ≤ t] = P

[
max

0≤s≤t
Zs ≥ k

]
= N

(
− k√

t
+ ν
√
t

)
+ (5)

exp {2kν}N
(
− k√

t
− ν
√
t

)
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for k > 0. Obviously the following density formula is valid.

P [Tk(Z) ∈ dt] = h (t, k; ν) dt,

where h (t, k; ν) =
|k|√
2πt3

exp

{
− (k − νt)2

2t

}
[see Karatzas & Shreve (1988), p.

196f ]. Furthermore we denote

φ (T, t; ν) = P [Γ+(T, 0)(Z) ≤ t] , 0 ≤ t ≤ T,

and since Z has independent increments we have for all k < 0 and all 0 ≤ t < T
the relation

P [Γ+(T, k)(Z) ≤ t] =
∫ t

s=0

φ (T − s, t− s; ν)h (s, k; ν) ds, (6)

and by the obvious identity in law

Γ+(T, k) (W (·) + ν·) D= T − Γ+(T,−k) (W (·)− ν·)

the corresponding relation for all k > 0 and all 0 ≤ t ≤ T

P [Γ+(T, k)(Z) ≤ t] = 1−
∫ T−t

s=0

φ (T − s, T − t− s;−ν)h (s,−k;−ν) ds. (7)

Eq.s (6) and (7) correspond with Akahori’s Theorem 1.1 (ii) [see Akahori (1995)].
As our first original result in this paper we now present a single integral version

for the distribution of Γ+(T, k)(Z) and thus an explicit formula for its density. For
values 0 ≤ θ ≤ τ, κ, µ ∈ gR we define the functions F (τ, θ, κ;µ) and D (τ, θ, κ;µ)
by

F (τ, θ, κ;µ) =
∫ θ

s=0

φ (τ − s, θ − s;µ)h (s, κ;µ) ds (8)

and by

D (τ, θ, κ;µ) =
∫ θ

s=0

N
(
−µ
√
τ − s

)
N
(
−sign(κ)

(
κ√
s

+ µ
√
s

))
ds. (9)

We shall demonstrate in the following theorem that the distribution of occupation
times of Brownian motion with drift can be described completely by the integral D
and its partial derivatives with respect to κ and τ .

Theorem 1.1. Let F and D be defined as in eqs. (8) and (9). Then the distri-
bution of Γ+(T, k)(Z) is determined on [0;T ) by

P [Γ+(T, k)(Z) ≤ t] = F (T, t, k; ν) , k < 0;
P [Γ+(T, k)(Z) ≤ t] = 1− F (T, T − t,−k;−ν) , k > 0,
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and for κ < 0 the function F can be represented in the following way.

F (τ, θ, κ;µ) = −2µ2 exp {2κµ}D (τ, θ, κ;µ)− 2µ exp {2κµ} ∂

∂κ
D (τ, θ, κ;µ)

−4 exp {2κµ} ∂
∂τ
D (τ, θ, κ;µ)− 4

µ
exp {2κµ} ∂2

∂κ∂τ
D (τ, θ, κ;µ) .

For t < 0 we trivially have P [Γ+ (T, k) (Z) ≤ t] = 0 and for t ≥ T we have
P [Γ+ (T, k) (Z) ≤ t] = 1.

Proof. For κ < 0 we rewrite eq. (8) as

F (τ, θ, κ;µ) =
∫ θ

s=0

∫ θ−s

u=0

∂

∂u
φ (τ − s, u;µ)h (s, κ;µ) duds

and obtain the partial derivative of F with respect to θ by

∂

∂θ
F (τ, θ, κ;µ) =

∫ θ

s=0

∂

∂u
φ (τ − s, θ − s;µ)h (s, κ;µ) ds,

where
∂

∂u
φ (τ − s, u;µ) is determined by eq. (3). Thus we have the following

representation for
∂

∂θ
F (τ, θ, κ;µ).

∂

∂θ
F (τ, θ, κ;µ) =

4∑
i=1

Gi (τ, θ, κ;µ) ,

where we define

J (θ, κ;µ) =
∫ θ

s=0

κ√
2πs3

N
(
µ
√
θ − s

)
exp

{
− (κ− µs)2

2s

}
ds,

G1 (τ, θ, κ;µ) = 2µ2N
(
−µ
√
τ − θ

)
J (θ, κ;µ) ,

G2 (τ, θ, κ;µ) = 4N
(
−µ
√
τ − θ

){ ∂

∂θ
J (θ, κ;µ)− κ

2
√

2πθ3
exp

{
− (κ− µθ)2

2θ

}}
,

G3 (τ, θ, κ;µ) = 4
∂

∂τ
N
(
−µ
√
τ − θ

)
J (θ, κ;µ) ,

G4 (τ, θ, κ;µ) =
8
µ2

∂

∂τ
N
(
−µ
√
τ − θ

){ ∂

∂θ
J (θ, κ;µ)− κ

2
√

2πθ3
exp

{
− (κ− µθ)2

2θ

}}
.

We only have to calculate J (θ, κ;µ) and by partial differentiation we obtain explicit

versions for Gi (τ, θ, κ;µ) , 1 ≤ i ≤ 4, and thus for
∂

∂θ
F (τ, θ, κ;µ).

Since
∂

∂θ
J (θ, κ;µ) =

1
2
√

2π
exp {2κµ}

(
κ

θ
3
2
− µ

θ
1
2

)
exp

{
−1

2

(
κ√
θ

+ µ
√
θ

)2
}

we

have

J (θ, κ;µ) = − exp {2κµ}N
(
κ√
θ

+ µ
√
θ

)
.
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We set

d (τ, θ, κ;µ) :=
∂

∂θ
D (τ, θ, κ;µ) = N

(
−µ
√
τ − θ

)
N
(
κ√
θ

+ µ
√
θ

)
,

and obtain the assertion of Theorem 1.1 immediately.

Remark 1.2. The joint density in eq. (2) can be expressed explicitly by

P [Γ+(T, 0)(W ) ∈ du,WT ∈ dx]

=

{
− x

πT 2

√
T − u
u

exp
{
− x2

2 (T − u)

}
+√

2
π

exp
{
− x

2

2T

}
T − x2

T
5
2
N
(

x√
T

√
u

T − u

)}
dudx

for x < 0 and by

P [Γ+(T, 0)(W ) ∈ du,WT ∈ dx]

=
{

x

πT 2

√
u

T − u
exp

{
−x

2

2u

}
+√

2
π

exp
{
− x

2

2T

}
T − x2

T
5
2
N

(
− x√

T

√
T − u
u

)}
dudx

for x > 0.
An alternative approach to the distribution of occupation times was presented by

Karatzas & Shreve (1984, 1988) who provided a density formula for

P [Γ+(T, 0)(W ) ∈ du,WT ∈ dx,LT (W ) ∈ db]

where L denotes the local time of Brownian motion [see Karatzas & Shreve (1988),
Proposition 6.3.9].

Remark 1.3. For convenience of some calculations the partial derivatives of
d (τ, θ, κ;µ) are provided.

∂

∂κ
d (τ, θ, κ;µ) =

1√
2πθ

exp

{
−1

2

(
κ√
θ

+ µ
√
θ

)2
}
N
(
−µ
√
τ − θ

)
,

∂

∂τ
d (τ, θ, κ;µ) = − µ

2
√

2π (τ − θ)
exp

{
−µ

2

2
(τ − θ)

}
N
(
κ√
θ

+ µ
√
θ

)
,

∂2

∂κ∂τ
d (τ, θ, κ;µ) = − µ

4π
√
θ (τ − θ)

exp
{
−κ

2

2θ
− κµ− µ2

2
τ

}
.

Remark 1.4. Though in Akahori (1995) a different notation is used it is evident
that in Akahori’s Theorem 1.1 (ii) are some slight incorrectnesses beside a few minor
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typographic errors. Otherwise F (T, t, k; ν) = 1 − F (T, T − t,−k;−ν) would hold
for all values k > 0, ν ∈ gR and all 0 ≤ t ≤ T . To demonstrate this contradiction
choose ν = 0 and prove by using Remark A.2 that in general

∂

∂θ
F (T, t, k; 0) 6= ∂

∂θ
F (T, T − t,−k; 0) .

Remark 1.5. The function P [Γ+(T, k)(Z) ≤ t] is continuous in the crucial point
k = 0, thus it is continuous for all k ∈ gR. This can be easily proved by Theorem
1.1, Remark 1.3 and eq. (3).

Furthermore P [Γ+(T, k)(Z) ≤ t] is continuous for all t 6= T if k < 0 since

P [Γ+(T, k)(Z) = T ] = P [Tk(Z) ≥ T ] > 0.

Analogously P [Γ+(T, k)(Z) ≤ t] is continuous for all t 6= 0 if k > 0. Evidently it is
continuous on gR for k = 0.

3. A STRAIGHTFORWARD PROOF FOR DASSIOS’ IDENTITY IN
LAW

A simple but remarkable relationship between the distribution of occupation times
and passage times was discovered by Dassios [see Dassios (1995)] who pursued
the investigations of Akahori on the so-called α-quantile or α-percentile options, a
problem in mathematical finance which we shall illuminate in Section 4. In the
language of this paper we present the result of Dassios in the following way.

P

[∫ T

s=0

1 [Ws + νs > k] ds ≤ t

]
(10)

= P

[
max

0≤s≤T−t
{Ws + νs}+ min

0≤s≤t
{W ∗s + νs} ≤ k

]
for all k ∈ gR and all t ∈ [0;T ] where W and W ∗ are independent standard

Brownian motions. Dassios proved this property using Feynman & Kac computa-
tions, two further proofs based on stochastic properties of Brownian motion were
provided by Embrechts, Rogers and Yor (1995).

In this paper we point out a direct proof of Dassios’ identity in law using the
explicit density of Γ+(T, k)(Z) and the knowledge of the distribution of passage

times. Before we prove eq. (10) we provide a representation of
∂

∂θ
F (τ, θ, κ;µ) as

a convolution integral. Referring to this convolution integral Dassios’ result can be
derived by relatively elementary methods.

Proof of Dassios’ theorem. By Theorem 1.1 the following representation holds for
κ < 0,
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∂

∂θ
F (τ, θ, κ;µ) = g1 (τ, θ, κ;µ) + g2 (τ, θ, κ;µ) ,

where

g1 (τ, θ, κ;µ) = −2 exp {2κµ}
{
µ2d (τ, θ, κ;µ) + µ

∂

∂κ
d (τ, θ, κ;µ) +

2
∂

∂τ
d (τ, θ, κ;µ)

}
,

g2 (τ, θ, κ;µ) = − 4
µ

exp {2κµ} ∂2

∂κ∂τ
d (τ, θ, κ;µ) .

Since d (τ, θ, κ;µ) is a product of two functions converging to 0 for κ→ −∞ it can
be interpreted as a convolution integral.

d (τ, θ, κ;µ) = N
(
−µ
√
τ − θ

)
N
(
κ√
θ

+ µ
√
θ

)
=
∫ κ

z=−∞

∂

∂z
N
(
z√
θ

+ µ
√
θ

)
N
(
− κ− z√

τ − θ
− µ
√
τ − θ

)
dz

+
∫ κ

z=−∞

∂

∂z
N
(
− κ− z√

τ − θ
− µ
√
τ − θ

)
N
(
z√
θ

+ µ
√
θ

)
dz.

Partial differentiation with respect to κ yields the representation of
∂

∂κ
d (τ, θ, κ;µ)

as convolution. The following relation is the crucial idea of this proof. It is obtained

by integration by parts and Remark 1.3 to
∂

∂τ
d (τ, θ, κ;µ), namely

µ
∂

∂κ
d (τ, θ, κ;µ) = µ

∫ κ

z=−∞

∂2

(∂z)2N
(
z√
θ

+ µ
√
θ

)
N
(
− κ− z√

τ − θ
− µ
√
τ − θ

)
dz

−µ
∫ κ

z=−∞

∂2

(∂z)2N
(
− κ− z√

τ − θ
− µ
√
τ − θ

)
N
(
z√
θ

+ µ
√
θ

)
dz

−2
∂

∂τ
d (τ, θ, κ;µ) .

We arrive at

g1 (τ, θ, κ;µ)

= 2µ
∫ κ

z=−∞

κ− z√
2π (τ − θ)3

exp

{
−1

2

(
κ− z√
τ − θ

− µ
√
τ − θ

)2
}
·

exp {2zµ}N
(
z√
θ

+ µ
√
θ

)
dz + 2µ

∫ κ

z=−∞

z√
2πθ3

exp

{
−1

2

(
z√
θ
− µ
√
θ

)2
}
·
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exp {2 (κ− z)µ}N
(
− κ− z√

τ − θ
− µ
√
τ − θ

)
dz.

Similarly
∂2

∂τ∂κ
d (τ, θ, κ;µ) =

∂

∂τ
N
(
−µ
√
τ − θ

) ∂

∂κ
N
(
κ√
θ

+ µ
√
θ

)
can be repre-

sented as convolution. We obtain

g2 (τ, θ, κ;µ)

=
∫ κ

z=−∞

κ− z√
2π (τ − θ)3

exp

{
−1

2

(
κ− z√
τ − θ

− µ
√
τ − θ

)2
}
·

2√
2πθ

exp

{
−1

2

(
z√
θ
− µ
√
θ

)2
}
dz −

∫ κ

z=−∞

z√
2πθ3

exp

{
−1

2

(
z√
θ
− µ
√
θ

)2
}
·

2√
2π (τ − θ)

exp

{
−1

2

(
κ− z√
τ − θ

− µ
√
τ − θ

)2
}
dz.

Since by eqs. (4) and (5)

P

[
min

0≤s≤θ
{W ∗s + µs} ∈ dz

]
= 2µ exp {2zµ}N

(
z√
θ

+ µ
√
θ

)
dz

+
2√
2πθ

exp

{
−1

2

(
z√
θ
− µ
√
θ

)2
}
dz,

P

[
max

0≤s≤τ−θ
{Ws + µs} ∈ d (κ− z)

]
= 2µ exp {2 (κ− z)µ}N

(
− κ− z√

τ − θ
− µ
√
τ − θ

)
dz

− 2√
2π (τ − θ)

exp

{
−1

2

(
κ− z√
τ − θ

− µ
√
τ − θ

)2
}
dz,

∂

∂θ
P

[
min

0≤s≤θ
{W ∗s + µs} ≤ z

]
= − z√

2πθ3
exp

{
−1

2

(
z√
θ
− µ
√
θ

)2
}
,

∂

∂θ
P

[
max

0≤s≤τ−θ
{Ws + µs} ≤ κ− z

]
=

κ− z√
2π (τ − θ)3

exp

{
−1

2

(
κ− z√
τ − θ

− µ
√
τ − θ

)2
}
,

we obtain a final convolution integral representation by

∂

∂θ
F (τ, θ, κ;µ) =

∂

∂θ
P

[∫ τ

s=0

1 [Ws + µs > κ] ds ≤ θ
]

=
∫ κ

z=−∞

∂

∂θ
P

[
max

0≤s≤τ−θ
{Ws + µs} ≤ κ− z

]
P

[
min

0≤s≤θ
{W ∗s + µs} ∈ dz

]
−
∫ κ

z=−∞

∂

∂θ
P

[
min

0≤s≤θ
{W ∗s + µs} ≤ z

]
P

[
max

0≤s≤τ−θ
{Ws + µs} ∈ d (κ− z)

]
=

∂

∂θ
P

[
max

0≤s≤τ−θ
{Ws + µs}+ min

0≤s≤θ
{W ∗s + µs} ≤ κ

]
.
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From this and by the fact that eq. (10) holds trivially for k < 0 and t = 0 eq.
(10) is generally valid for k < 0. For k ≥ 0 we use Theorem 1.1 and obtain

P

[∫ T

s=0

1 [Ws + νs > k] ds ≤ t

]

= 1− P

[∫ T

s=0

1 [−Ws − νs > −k] ds ≤ T − t

]

= 1− P
[

max
0≤s≤t

{−W ∗s − νs}+ min
0≤s≤T−t

{−Ws − νs} ≤ −k
]

= P

[
max

0≤s≤T−t
{Ws + νs}+ min

0≤s≤t
{W ∗s + νs} ≤ k

]
.

This completes the proof.

4. A CLOSED FORM DISTRIBUTION FUNCTION

In Section 1, Theorem 1.1, we provided a single integral version for the distribution
of Γ+ (T, k) (Z) and thus an explicit representation for its density. With respect to
various applications in mathematical finance an explicit formula for this distribution
would be a comfortable result. By eq. (8) and Theorem 1.1 it is sufficient to obtain
an explicit version of the function F .

Theorem 3.1. The function F defined by eq. (8) can be represented explicitly
for all values κ < 0 in the following way.

F (τ, θ, κ;µ) =
{

3 + 2κµ+ 2µ2τ
}

exp {2κµ}N
(
κ√
τ

+ µ
√
τ ,−µ

√
τ − θ;

−
√

1− θ

τ

)

+N

(
κ√
τ
− µ
√
τ , µ
√
τ − θ;−

√
1− θ

τ

)

−
{

1 + 2κµ+ 2µ2θ
}

exp {2κµ}N
(
κ√
θ

+ µ
√
θ

)
N
(
−µ
√
τ − θ

)
+N

(
κ√
θ
− µ
√
θ

)
N
(
−µ
√
τ − θ

)
−2µ

√
θ

2π
exp

{
−1

2

(
κ√
θ
− µ
√
θ

)2
}
N
(
−µ
√
τ − θ

)
+2µ

√
τ

2π
exp

{
−1

2

(
κ√
τ
− µ
√
τ

)2
}
N

(
κ

√
1
θ
− 1
τ

)



DISTRIBUTIONS OF OCCUPATION TIMES OF BROWNIAN MOTION 51

−2µ

√
τ − θ

2π
exp

{
−1

2
µ2 (τ − θ)

}
exp {2κµ}N

(
κ√
θ

+ µ
√
θ

)
.

Since the proof of Theorem 3.1 is very technical with respect to the explicit
calculation of F (τ, θ, κ;µ) we omit it here and refer the reader interested in the
details of the proof to the appendix of the paper.

5. THE PRICE OF A QUANTILE OPTION

In the last few years a lot of problems concerning the application of measurable
functionals to Brownian motion with drift have been stimulated by the rapid devel-
opment of mathematical finance based on the fundamental ideas of Black & Scholes.
In this paper we do not want to discuss economic models and the reader interested
in those questions should be referred to a number of excellent surveys on option
pricing theory (e.g. Harrison & Pliska (1981), Duffie (1988), et al.).

For our purposes it is sufficient to know that an option is determined uniquely by
a measurable functional Φ on a certain underlying security S with initial price S0,
the so-called payout profile, and that the price of this option can be calculated in
the Black & Scholes model by the discounted expectation

r−TEΦ(X)

using the no-arbitrage price-process X which is described by

Xt = S0 exp {σWt + µBSt} , 0 ≤ t ≤ T,

where [0;T ] is the considered time-horizon, σ the volatility of the underlying secu-
rity, r(> 1) is one plus the risk-free interest rate and

µBS = log r − 1
2
σ2

the risk-neutral drift determined by the assumptions of Black & Scholes.
The option types we want to discuss here are so-called average options, especially

the class of α-quantile options or – in Akahori’s terminology – α-percentile options.
As mentioned before Dassios found his identity in law when investigating α-quantile
options. To illustrate the properties of such an option let z be a continuous function
on the time-interval [−T0;T ] with T0, T ≥ 0. Then for 0 < α < 1 the α-quantile
M (α, T0 + T ) of z is defined by

M (α, T0 + T ) (z) = inf

{
k ∈ gR

∣∣∣∣∣
∫ T

τ=−T0

1 [z (τ) ≤ k] dτ > α (T0 + T )

}
. (11)

Now we represent the price-process S of the underlying security by

Sτ = S0 exp {σs(τ)} , −T0 ≤ τ ≤ T,
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where the values Sτ respectively s(τ) in [−T0; 0] are given by historical data. Given
a certain strike K the payout profile Φ0 of an α-quantile (call) option is described
by

Φ0(S) = (M (α, T0 + T ) (S)−K)+

= (S0 exp {σM (α, T0 + T ) (s)} −K)+ (12)

using the identity

M (α, T0 + T ) (S) = S0 exp {σM (α, T0 + T ) (s)} .

For pricing an option dependent on the future time-interval [0;T ] in the Black &
Scholes model we use the process X and define Xτ = Sτ for all τ ∈ [−T0; 0]. Then
the price of this α-quantile option is computed by

πBS (Φ0) = r−TE (S0 exp {σM (α, T0 + T ) (Z)} −K)+ (13)

with Z defined by s on [−T0; 0] and by Zτ = Wτ +
µBS
σ

τ for all τ ∈ [0;T ]. By the
evident relation

[M (α, T0 + T ) (Z) ≤ k] =

[∫ T

τ=−T0

1 [Zτ > k] dτ ≤ (1− α) (T0 + T )

]
(14)

we obtain the connection between α-quantiles and occupation times. Furthermore

the function γ+(T0, k) :=
∫ 0

τ=−T0

1 [Zτ > k] dτ is a deterministic function in k.

Since Z is considered to be a continuous function γ+(T0, k) is strictly decreasing on
the closed interval range(Z) = {Zτ |−T0 ≤ τ ≤ 0}. For all values k < min

−T0≤τ≤0
{Zτ}

we have γ+(T0, k) = T0 and for all values k ≥ max
−T0≤τ≤0

{Zτ} we have γ+(T0, k) = 0.

Finally γ+(T0, k) is right-continuous in k with left limits.
Defining t(T0, k) by

t(T0, k) = (1− α) (T0 + T )− γ+(T0, k) (15)

we have the property

[M (α, T0 + T ) (Z) ≤ k] = [Γ+(T, k)(Z) ≤ t(T0, k)] . (16)

Then we obtain the distribution of M (α, T0 + T ) (Z),

Fα(k) : = P [M (α, T0 + T ) (Z) ≤ k] = P [Γ+(T, k)(Z) ≤ t(T0, k)] , (17)

and by integration by parts we arrive at the integral version of the option’s price,

πBS(Φ0) = r−TS0σ

∫
k> 1

σ log K
S0

(1− Fα(k)) exp {σk} dk. (18)
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Since Fα depends on the arbitrary character of the historical function t(T0, k)
the further computation of the α-quantile option’s price will be in general a ques-
tion of numerical calculus. Nevertheless some properties of the option’s price shall
be discussed. To do so we introduce the following boundaries for Fα, namely
k(T0) = sup {k ∈ gR |t(T0, k) < 0} and k(T0) = inf {k ∈ gR |t(T0, k) > T }, such that
Fα is concentrated on

[
k(T0); k(T0)

]
.

Then we have for
1
σ

log
K

S0
≤ k(T0) ≤ k(T0)

πBS (Φ0) = r−TS0σ

∫ k(T0)

k= 1
σ log K

S0

(1− Fα(k)) exp {σk} dk (19)

= r−T (S0 exp {σk(T0)} −K) +

r−TS0σ

∫
k∈[k(T0);k(T0)]

(1− Fα(k)) exp {σk} dk, (20)

respectively for k(T0) <
1
σ

log
K

S0
< k(T0)

πBS (Φ0) = r−TS0σ

∫
k∈
(

1
σ log K

S0
;k(T0)

] (1− Fα(k)) exp {σk} dk. (21)

It is evident that for k(T0) ≤ 1
σ

log
K

S0
the option ceases to exist.

Remark 4.1. It can be further proved that k(T0) > −∞ is equivalent to the

condition T <
α

1− α
T0 and k(T0) <∞ is equivalent to T <

1− α
α

T0 respectively.

To describe the behaviour of the option’s price let us denote for a moment the
starting point of the option by t0 and its total lifetime by T1 = T0 + T . Then
t(T0, k) can be rewritten by

t(T0, k) = (1− α)T1 −
∫ t0+T0

τ=t0

1 [Zτ > k] dτ.

Then t(T0, k) is decreasing for T0 → T1, i.e. T → 0. Thus k(T0) is increasing in T0

and k(T0) decreases since t(T0, k) > T is equivalent to

T0 −
∫ t0+T0

τ=t0

1 [Zτ > k] dτ > αT1.

Obviously for T0 = T1 we have k(T1) = k(T1) and Fα is concentrated at this point,
the α-quantile of Z in the time-period [t0; t0 + T1].

Remark 4.2. For T0 = 0 we have k(0) = −∞ and k(0) =∞. Thus the option’s
price is
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πBS = r−TS0σ

∫
k> 1

σ log K
S0

(1− Fα(k)) exp {σk} dk (22)

with

Fα(k) = P [Γ+(T, k)(Z) ≤ (1− α)T ] (23)

=

 1− F
(
T, αT,−k;−µBS

σ

)
, k ≥ 0;

F
(
T, (1− α)T, k;

µBS
σ

)
, k < 0.

Now for values κ < 0 we introduce the function I by

I (τ, θ, κ; ν, σ) =
∫ κ

s=−∞
F (τ, θ, s;µ) exp {σs} ds.

Using Lemma A.3 I can be calculated explicitly. We obtain the following represen-
tation,

I (τ, θ, κ;µ, σ) ={
2µκ+ 2µ2τ + 3

2µ+ σ
− 2µ

(2µ+ σ)2

}
exp {(2µ+ σ)κ}N

(
κ√
τ

+ µ
√
τ ,−µ

√
τ − θ;−

√
1− θ

τ

)

− 4 (µ+ σ)2

σ (2µ+ σ)2
exp
{

(2µ+ σ)
σ

2
τ
}
N

(
κ√
τ
− (µ+ σ)

√
τ , (µ+ σ)

√
τ − θ;−

√
1− θ

τ

)

− 4µ (µ+ σ)

σ (2µ+ σ)2
exp
{

(2µ+ σ)
σ

2
θ
}
N
(
κ√
θ
− (µ+ σ)

√
θ

)
N
(
−µ
√
τ − θ

)
−
{

2µκ+ 2µ2θ

2µ+ σ
+

σ

(2µ+ σ)2

}
exp {(2µ+ σ)κ}N

(
κ√
θ

+ µ
√
θ

)
N
(
−µ
√
τ − θ

)
− 2µ

2µ+ σ

√
θ

2π
exp
{

(2µ+ σ)
σ

2
θ
}

exp

{
−1

2

(
κ√
θ
− (µ+ σ)

√
θ

)2
}
N
(
−µ
√
τ − θ

)
+

2µ

2µ+ σ

√
τ

2π
exp
{

(2µ+ σ)
σ

2
τ
}

exp

{
−1

2

(
κ√
τ
− (µ+ σ)

√
τ

)2
}
N

(
κ

√
1

θ
− 1

τ

)

+
1

σ
exp {σκ}N

(
κ√
τ
− µ
√
τ , µ
√
τ − θ;−

√
1− θ

τ

)

+
1

σ
exp {σκ}N

(
κ√
θ
− µ
√
θ

)
N
(
−µ
√
τ − θ

)
− 2µ

2µ+ σ

√
τ − θ

2π
exp

{
−µ

2

2
(τ − θ)

}
exp {(2µ+ σ)κ}N

(
κ√
θ

+ µ
√
θ

)
.
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Then for S0 ≤ K the Black & Scholes price of the option is determined by

πBS (Φ0) = r−TS0σI

(
T, αT,

1
σ

log
S0

K
;−µBS

σ
,−σ

)
, (24)

and for S0 > K by

πBS (Φ0) = r−T (S0 −K) + r−TS0σI

(
T, (1− α)T,

1
σ

log
K

S0
;
µBS
σ

, σ

)
+r−TS0σ

{
I
(
T, αT, 0;−µBS

σ
,−σ

)
− I

(
T, (1− α)T, 0;

µBS
σ

, σ
)}

. (25)

Remark 4.3. Though Akahori (1995) and Dassios (1995) consider the Black &
Scholes price of an α-quantile option they do not provide an explicit solution which
can be exploited successfully for option pricing in practice. Especially when dealing
with path-dependent options well-known approximative methods, e.g. numerical
integration, Monte Carlo simulation or lattice approximation, often consume enor-
mous resources with respect to accuracy and computation time whereas explicit
formulae – if available – provide reliable prices nearly real time.

6. CONCLUSION

The main results of this paper are explicit representations for the density and the
distribution of occupation times of Brownian motion with drift. By application of
these distribution formulae to types of derivative securities where the payout de-
pends on a certain amount of time-units exceeding a given boundary – e.g. quantile
options are in this class of derivative securities – closed form solutions for the cor-
responding Black & Scholes prices can be obtained which are appropriate for direct
implementation in daily option trading.

Remark 5.1. The author of this paper was motivated to his investigations in
1994 by the problem of an explicit pricing formula for a median option, i.e. a

quantile option with quantile α =
1
2

, independently from the research of Akahori
and Dassios. He presented his results, i.e. Theorem 1.1 and Theorem 3.1 of this
paper, at the conference “Derivatives ’96”, produced by RISK Publications, Geneva,
25 and 26 January, 1996.

Appendix

A.1. Auxiliary Results

In this appendix we provide some integration details for certain relations in the
previous sections and auxiliary results used in this paper.
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A.1. Miscellaneous comments to Section 1

In the following some additional information concerning the results of Akahori
(1995) is presented.

Remark A.1. A straightforward derivation of Akahori’s Theorem 1.1(i), i.e. eq.
(3), is pointed out in detail. Using eq. (2) and Girsanov’s theorem we obtain by
Fubini’s theorem

P

[
Γ+(T, 0)(Z) ∈ du

]
= exp

{
−
ν2

2
T

}∫
x∈gR

exp {νx}P
[

Γ+(T, 0)(W ) ∈ du;WT ∈ dx
]

=
1
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2
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}{∫ T
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3
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1
2
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By integration by parts we obtain small
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and the property

ν3

√
2π

∫ T

t=0

exp
{
−ν

2

2
t

}
N
(
ν
√
T − t

) dt
t

1
2

= ν2N
(
ν
√
T
)
− ν2

2
exp

{
−ν

2

2
T

}
to conclude the final expression

P

[
Γ+(T, 0)(Z) ∈ du

]
=

{
1

π
exp
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−
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2
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1√

u (T − u)
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π
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exp
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−ν
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)}
du.

Remark A.2. It can be shown that the representation of F (τ, θ, κ;µ) for κ < 0
in Theorem 1.1 holds for κ > 0, respectively.

A.2. Miscellaneous comments to Sections 3 and 4

In Section 3 we omitted the technical proof of Theorem 3.1. In the following
we provide the ideas behind the explicit computations of all partial derivatives of
the function D introduced by eq. (9). As mentioned before the distribution of
occupation times can be represented completely by a linear combination of those
partial derivatives.

Proof of Theorem 3.1. For κ < 0 we know the following representation for F by
Theorem 1.1,

F (τ, θ, κ;µ) = −2µ2 exp {2κµ}D (τ, θ, κ;µ)− 2µ exp {2κµ} ∂

∂κ
D (τ, θ, κ;µ)

−4 exp {2κµ} ∂
∂τ
D (τ, θ, κ;µ)− 4

µ
exp {2κµ} ∂2

∂τ∂κ
D (τ, θ, κ;µ) .

Furthermore the corresponding partial derivatives of d (τ, θ, κ;µ) =
∂

∂θ
D (τ, θ, κ;µ)

are known by Remark 1.3. We start with the evaluation of
∂2

∂τ∂κ
D (τ, θ, κ;µ) and

calculate the integral
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By differentiation of this integral representation to κ we obtain
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2
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)
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and by Lemma A.3, eq. (A9), H (κ) = 4N

(
κ√
τ
, 0;−

√
1− θ

τ

)
. Thus we have

∂2
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2

2
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(
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τ
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)
.

In the next step we calculate
∂

∂τ
D (τ, θ, κ;µ) by integration with respect to κ ap-

plying Lemma A.3, eq. (A4). We obtain explicitly

∂
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2
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.

Similarly to the crucial idea in our proof of Dassios’ identity in law we use in-

tegration by parts for the computation of
∂

∂κ
D (τ, θ, κ;µ) to avoid integration

with respect to τ which appears to be somewhat complicated. We obtain the

following relation which shows the interesting relation between
∂

∂κ
D (τ, θ, κ;µ) and

∂

∂τ
D (τ, θ, κ;µ),
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.

By Lemma A.3, eq. (A4),
∂

∂τ
D (τ, θ,−κ;µ) can be calculated analogously to
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Now we summarize all explicit terms of
∂

∂κ
D (τ, θ, κ;µ) for the following explicit

representation,
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and by integration to κ using Lemma A.3, eqs. (A1), (A3), (A4), we have
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exp

{
−1

2

(
κ√
θ

+ µ
√
θ

)2
}
N
(
−µ
√
τ − θ

)
− 1
µ

√
τ

2π
exp

{
−1

2

(
κ√
τ

+ µ
√
τ

)2
}
N

(
κ

√
1
θ
− 1
τ

)

+
1
µ

√
τ − θ

2π
exp

{
−µ

2

2
(τ − θ)

}
N
(
κ√
θ

+ µ
√
θ

)
.

Finally we summarize those results and calculate F (τ, θ, κ;µ) explicitly.
For the explicit calculation of integrals related to the normal distribution in Sec-

tion 3 and Section 4 we referred essentially to the following lemma.
Lemma A.3. The following integral relations hold.
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(A1)
∫
N (ax+ b) dx =(
x+

b

a

)
N (ax+ b) +

1
a
√

2π
exp

{
−1

2
(ax+ b)2

}
.

(A2)
∫

exp {cx}N (ax+ b) dx =

1
c

exp {cx}N (ax+ b)− 1
c

exp
{
c2

2a2
− bc

a

}
N
(
ax+ b− c

a

)
.

(A3)
∫
N (ax+ b, y; ρ) dx =(
x+

b

a

)
N (ax+ b, y; ρ)

+
1

a
√

2π
exp

{
−1

2
(ax+ b)2

}
N

(
y − ρ (ax+ b)√

1− ρ2

)

+
ρ

a
√

2π
exp

{
−y

2

2

}
N

(
(ax+ b)− ρy√

1− ρ2

)
.

(A4)
∫

exp {cx}N (ax+ b, y; ρ) dx =
1
c

exp {cx}N (ax+ b, y; ρ)

−1
c

exp
{
c2

2a2
− bc

a

}
N
(
ax+ b− c

a
, y − cρ

a
; ρ
)
.

(A5)
∫
xN (ax+ b) dx =(
x2

2
− b2 + 1

2a2

)
N (ax+ b) +

ax− b
2a2
√

2π
exp

{
−1

2
(ax+ b)2

}
.

(A6)
∫
x exp {cx}N (ax+ b) dx =

cx− 1
c2

exp {cx}N (ax+ b)

+
a2 + abc− c2

a2c2
exp

{
c2

2a2
− bc

a

}
N
(
ax+ b− c

a

)
+

1
ac
√

2π
exp

{
c2

2a2
− bc

a

}
exp

{
−1

2

(
ax+ b− c

a

)2
}
.
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(A7)
∫
xN (ax+ b, y; ρ) dx =(
x2

2
− b2 + 1

2a2

)
N (ax+ b, y; ρ)

+
ax− b

2a2
√

2π
exp

{
−1

2
(ax+ b)2

}
N

(
y − ρ (ax+ b)√

1− ρ2

)

−ρ (2b− ρy)
2a2
√

2π
exp

{
−y

2

2

}
N

(
(ax+ b)− ρy√

1− ρ2

)

−ρ
√

1− ρ2

4a2π
exp

{
−y

2

2

}
exp

{
− (ax+ b− ρy)2

2 (1− ρ2)

}
.

(A8)
∫
x exp {cx}N (ax+ b, y; ρ) dx =(
x

c
− 1
c2

)
exp {cx}N (ax+ b, y; ρ)

+
a2 + abc− c2

a2c2
exp

{
c2

2a2
− bc

a

}
N
(
ax+ b− c

a
, y − c

a
ρ; ρ
)

+
1

ac
√

2π
exp {cx} exp

{
−1

2
(ax+ b)2

}
N

(
y − ρ (ax+ b)√

1− ρ2

)

+
ρ

ac
√

2π
exp

{
c2 − 2abc− (ay − cρ)2

2a2

}

×N

(
ax+ b− ρy√

1− ρ2
− c

a

√
1− ρ2

)
.

With respect to bivariate normal distribution functions the following relation may
be sometimes helpful. For all x, y, p ∈ gR we have

(A9) N

(
x,

y√
1 + p2

;− p√
1 + p2

)
=

1√
2π

∫ x

t=−∞
exp

{
− t

2

2

}
N (y + pt) dt.

Proof. Lemma A.3 can be easily proved by differentiation with respect to x.
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