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ON A QUEUE WITH CORRELATED
ARRIVALS

ZVI DREZNER

California State University-Fullerton

Abstract. In this note we analyze the performance measures of a one server queue when arrivals
are not independent. The analysis is based on the correlated Poisson distribution for customers
arrival. Service may have any distribution. This type of queue is defined as MC/G/1. The formulas
for the performance measures of the queue are derived without any approximation. Surprisingly,
these formulas are very simple.
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1. Introduction

The standard M/G/1 queue assumes Poisson arrival and general service distribu-
tion. Correlated arrival patterns are analyzed mainly as “batch arrivals” i.e. when
an arrival occurs, there is a finite probability for an arrival of more than one cus-
tomer at the same time. In this note we provide the basic queuing formulas for
dependent arrivals with a given correlation factor θ. Exact formulas are devel-
oped for the performance measures of the queue. They are based on the mean and
variance of the arrival rate. These formulas are simple and easy to use.

2. The GBD and CPD Distributions

The correlated Poisson distribution (CPD)(Drezner and Farnum, 1994) defines the
probability of observing r events during time period t for a given arrival rate λ and
a correlation factor θ. The CPD is the limit of the generalized binomial distribu-
tion(GBD) (Drezner and Farnum, 1993) with n trials, initial probability of success
p, and correlation factor θ as p→ 0 and n→∞ while np remains constant.

We briefly describe these distributions. The GBD is based on a correlated
Bernoulli process. An initial probability of success p is given. The probability
of success changes with each additional trial. Suppose that r successes were ob-
served in k trials. The “rate of success” is

r

k
. The probability of success in trial

k + 1 depends on the rate of success so far and is: (1 − θ)p + θ rk where θ is the
correlation factor. When θ = 0, the probability of success remains at p and thus
the distribution is the standard binomial distribution. The probability of success
changes each trial when θ > 0. For large values of θ the probability distribution
may be bi-modal.
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The limit of the GBD as n→∞ for p = λ
n (λ is the arrival rate), is the CPD. For

θ = 0 the CPD is the standard Poisson distribution. For positive θ it is more likely
that an event occurs right after another event because the recent “rate of success”
is increased. After a dormant period, the recent rate of success is lower and the
likelihood of an event occuring is reduced compared with that of the standard
Poisson distribution. For θ > 0 the distribution has a thicker tail, and a higher
probability of zero events than the standard Poisson distribution. The mean of the
CPD is λ and its variance is λ

1−2θ for θ < 0.5. For θ ≥ 0.5 the variance of the CPD
is infinite (Drezner and Farnum, 1994). The probability of r successes in any time
period t is (Drezner and Farnum, 1994):

P [R(t) = r] = {
r∑

k=0

ark}e−(1−θ)λt (1)

where a00 = 1, ark = 0 if either r = −1 or k = −1 or k > r. ark is calculated by
the following recursive relation:

ark = λt
1− θ
k + rθ

ar−1,k−1 +
(r − 1)θ
k + rθ

ar−1,k (2)

Equation (2) leads to P [R(t) = 0] = e−(1−θ)λt; P [R(t) = 1] = λt 1−θ
1+θ e

−(1−θ)λt,

P [R(t) = 2] = λt θ(1−θ)
(1+θ)(1+2θ)e

−(1−θ)λt + o(t2), and so on. The arrival process
is in batches. The batch arrivals are independent events according to a Poisson
arrival with an arrival rate of (1− θ)λ. While in the standard Poisson distribution,
each batch has a size of one, in the CPD each batch may have one, two, or more
events. The probabilities, pr, for r = 1, 2, . . . of getting a “batch” of r arrivals when
an arrival of at least one customer occurs define a probability distribution. This
probability distribution is termed the Arrival Probability Distribution (APD). In
the next section we develop the properties of the APD.

3. The Arrival Probability Distribution

For the analysis in this section we need the Gamma function (Abramowitz and
Stegun, 1972)

Γ(n) =
∫ ∞

0

tn−1e−tdt (3)

and the Beta Function (Abramowitz and Stegun, 1972)

B(m,n) =
∫ 1

0

tm−1(1− t)n−1dt =
Γ(m)Γ(n)
Γ(m+ n)

(4)

For integer n Γ(n) = (n − 1)!. Also, the recursive relation Γ(n) = nΓ(n − 1) is
useful.
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Consider a short period of time t. We find the probability pr of a batch of r arrival
if an arrival occurs at this time period t. The Arrival Probability Distribution
(APD) defined by pr for r = 1, 2, . . . is the probability distribution of the number
of events in one batch.

Theorem 1 pr =
1
θ
B(r, 1 +

1
θ

)

Proof: First we prove that for r ≥ 1: ar1 = λt 1−θ
θ B(r, 1 + 1

θ ). By equation (2)
ar0 = 0 for r ≥ 1. Also, a11 = λt 1−θ

1+θ . For r > 1, ar1 = (r−1)θ
1+rθ ar−1,1 and therefore

ar1 = λt
(1− θ)(r − 1)!θr−1

r∏
j=1

(1 + jθ)

= λt
(1− θ)Γ(r)

θ
r∏
j=1

(
1
θ

+ j)

= λt
(1− θ)Γ(r)Γ(1 +

1
θ

)

θΓ(r + 1 +
1
θ

)
= λt

1− θ
θ

B(r, 1 +
1
θ

). (5)

By a multiple mathematical induction on k and r it is easy to show that ark consists
of (λt)k multiplied by a function of r and θ. The property is true for k = 1 and every
r by (5). Assume that it is true for k−1 and every r. By equation (2) it is also true
for k and r = 1. Now, holding k constant we prove it for every r by mathematical
induction on r. This is clearly true by equation (2). Since ark consists of (λt)k

multiplied by a function of r and θ, lim
t→0

P [R(t) = r]
t

=
ar1
t

= λ
1− θ
θ

B(r, 1+
1
θ

).
Define:

xr = lim
t→0

P [R(t) = r]
t

(6)

By equation (1) P [R(t) = 0] = 1 − (1 − θ)λt + o(t2). Since P [R(t) =

0] +
∞∑
r=1

P [R(t) = r] = 1 for any t, then for t → 0,
∞∑
r=1

xr = (1 − θ)λ. Now,

since

pr =
xr
∞∑
r=1

xr

. (7)

the Theorem follows. 2

Theorem 2

∞∑
r=1

pr = 1

Proof: By (4):

∞∑
r=1

pr =
1
θ

∞∑
r=1

B(r, 1 +
1
θ

) =
1
θ

∞∑
r=1

1∫
0

tr−1(1− t) 1
θ dt
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=
1
θ

1∫
0

∞∑
r=1

tr−1(1− t) 1
θ dt =

1
θ

1∫
0

1
1− t

(1− t) 1
θ dt

=
1
θ

1∫
0

(1− t) 1
θ−1dt =

1
θ
θ = 1. 2 (8)

We now find the mean and variance of the Arrival Probability Distribution (APD).

Theorem 3 The mean of the APD is p(θ) =
1

1− θ
.

Proof:

∞∑
r=1

rpr =
1
θ

∞∑
r=1

rB(r, 1 +
1
θ

) =
1
θ

∞∑
r=1

r

1∫
0

tr−1(1− t) 1
θ dt

=
1
θ

1∫
0

∞∑
r=1

rtr−1(1− t) 1
θ dt =

1
θ

1∫
0

1
(1− t)2

(1− t) 1
θ dt

=
1
θ

1∫
0

(1− t) 1
θ−2dt =

1
( 1
θ − 1)θ

=
1

1− θ
. 2 (9)

Theorem 4 The variance of the APD is σ2(θ) =
θ

(1− θ)2(1− 2θ)
, for θ < 0.5.

Proof: Similar to the proof of Theorem 3 we get:

∞∑
r=1

r(r + 1)pr =
2

( 1
θ − 2)θ

=
2

1− 2θ

The variance is therefore:

2
1− 2θ

− 1
1− θ

− 1
(1− θ)2

=
θ

(1− θ)2(1− 2θ)
.2

Note that the series converge only for θ < 0.5. The variance of the APD is infinite
for θ ≥ 0.5.

4. Performance Measures of the MC/G/1 Queue

The MC/G/1 queue is defined by a CPD arrival with an average rate of λ and a

correlation factor θ. The service time has a general distribution with mean
1
µ

and

standard deviation σ. The average waiting time in line, Wq, for batch arrivals is
(Cox and Smith, 1961):
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Wq =
1
µ

{
p2(θ)λ(1− θ)

2[µ− p(θ)λ(1− θ)]

[
1 +

σ2µ2

p(θ)
+
σ2(θ)
p2(θ)

]
+
p(θ)

2
(1 +

σ2(θ)
p2(θ)

)− 1
2

}
Substituting the mean and variance of the APD (Theorem 3 and Theorem 4) leads
to:

Wq =
1
µ

 λ

2(1− θ)(µ− λ)

[
1 + (1− θ)σ2µ2 +

θ

1− 2θ

]
+

1 +
θ

1− 2θ
2(1− θ)

− 1
2


(10)

Algebraic manipulations simplify (10) to:

Wq =
λ(µ2σ2 + 1) + 2θ

1−2θµ

2µ(µ− λ)
(11)

Other performance measures of the queue are: Lq = Wqλ; L = Lq +
λ

µ
; W =

Wq +
1
µ
.

5. Implementation

Assume that arrivals are distributed by a correlated Poisson distribution with a
mean of λ and variance of σ2

λ. When arrivals are independent, σ2
λ = λ. However,

if arrivals are not independent, then according to the CPD the probability of zero
events in a given time interval t is greater than in the corresponding Poisson distri-
bution, and so are the probabilities of large number of arrivals (tail probabilities).
Therefore, a correlated arrival process leads to a variance greater than that of the
Poisson distribution, namely, σ2

λ > λ. Note that by assuming a finite variance of
arrivals we implicitly assume that θ < 0.5. Otherwise, the variance of the arrivals
is infinite. Service is distributed according to a general distribution with a mean of
1
µ

and variance of σ2. These four values can be estimated from the data.

By the properties of the CPD (Drezner and Farnum, 1994), σ2
λ =

λ

1− 2θ
. Solving

for θ, substituting in (11), and multiplying by λ to get Lq, yields (note that the
factor of λ is actually a product of the arrival rate of batches λ(1 − θ) and the
average size of batches 1

1−θ ):

Lq =
λ2(µ2σ2 + 1) + µ(σ2

λ − λ)
2µ(µ− λ)

(12)

and the other performance measures L, Wq, and W may be directly calculated.
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The queue performance measures are functions of the four values λ, µ, σ2, σ2
λ.

Note how simple is the change from the M/G/1 formula to the MC/G/1 one: just
adding µ(σ2

λ − λ) in the numerator!

In practical situations, it is recommended that the arrival process be analyzed, and
its mean and variance be estimated. Unless arrivals are independent, the variance
of the arrival process would exceed its mean. The performance measures of the
MC/G/1 queue can be calculated by (12), taking into consideration dependency in
the arrival process.

6. Simulating the Queuing Process

In order to simulate the correlated queue process with exponential service time, we
use small time intervals ∆t and generated the number of arrivals and departures in
that time interval. We keep a running record of L, the total number of customers in
the system. Suppose that there were A arrivals and D departures during ∆t. The
numbers are generated using the correlated Poisson distribution and the Poisson
distribution, respectively. The number of customers, L, should be updated to
max{L + A − D, 0} if the arrivals occurred before the departures, and max{L −
D, 0}+A if the departures occurred prior to the arrivals. In most cases these two
values are identical. It is possible to get any number between these two values if
arrivals and departures are intermingled. If the values are different, we selected one
of these two values with a probability of 0.5 for each.

It should be noted that no batch arrival process is assumed. The number of
arriving customers A is drawn from the correlated Poisson distribution (1) which is
calculated once at the begining of the simulation. This probability is true for any
time period ∆t. The time does not have to be small.

The simulations were performed for µ = 1, 2, . . . , 5 and integer λ < µ leading to
ten different sets of arrival and service rates. For each set we tried θ = 0, which is
M/M/1, and θ = 0.1, 0.2, 0.3, 0.4. We used ∆t = 0.01 and ran the simulation for
10, 000∆t to get to a steady state. The result of the simulation is Lq at the last ∆t.
Each simulation was repeated 10,000 times for a total of 100 million time periods
per case.

This procedure is ideal for a spreadsheet. We first tried the Excel add-on @risk but
found that a simple Fortran program is more than two orders of magnitude faster.
Therefore, we report the results obtained by a Fortran program even though the
same results can be obtained by a standard simulation package such as @risk.

We observed that good results were obtained for θ ≤ 0.3 but the results for θ = 0.4
are too low. We first report in Table 1 results for θ ≤ 0.3 and then analyze in more
detail the case θ = 0.4.

The z-scores reported in Table 1 have a mean of -0.04 and sum of squares 43.94
in perfect correspondence with expected mean of 0 and sum of squares 40.
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Table 1. Simulation Results for θ ≤ 0.3

λ µ θ max{Lq} max{A} † ‡ z- score
1 2 0.0 14 3 0.5000 0.5025(0.0113) 0.22
1 2 0.1 12 10 0.6250 0.6161(0.0132) -0.67
1 2 0.2 19 25 0.8333 0.8145(0.0175) -1.07
1 2 0.3 53 63 1.2500 1.2486(0.0307) -0.05
1 3 0.0 7 3 0.1667 0.1657(0.0054) -0.18
1 3 0.1 10 10 0.2292 0.2198(0.0070) -1.35
1 3 0.2 15 25 0.3333 0.3267(0.0103) -0.64
1 3 0.3 38 63 0.5417 0.4929(0.0171) -2.85
1 4 0.0 7 3 0.0833 0.0846(0.0036) 0.35
1 4 0.1 9 10 0.1250 0.1262(0.0050) 0.24
1 4 0.2 24 25 0.1944 0.2053(0.0080) 1.36
1 4 0.3 43 63 0.3333 0.3321(0.0140) -0.09
1 5 0.0 4 3 0.0500 0.0536(0.0028) 1.27
1 5 0.1 6 10 0.0813 0.0821(0.0037) 0.23
1 5 0.2 16 25 0.1333 0.1328(0.0063) -0.09
1 5 0.3 63 63 0.2375 0.2324(0.0123) -0.42
2 3 0.0 21 3 1.3333 1.3221(0.0218) -0.52
2 3 0.1 23 11 1.5833 1.5629(0.0257) -0.80
2 3 0.2 28 29 2.0000 1.9743(0.0330) -0.78
2 3 0.3 66 78 2.8333 2.7434(0.0503) -1.79
2 4 0.0 11 3 0.5000 0.4909(0.0110) -0.83
2 4 0.1 15 11 0.6250 0.6315(0.0138) 0.47
2 4 0.2 20 29 0.8333 0.8351(0.0182) 0.10
2 4 0.3 77 78 1.2500 1.2837(0.0311) 1.08
2 5 0.0 9 3 0.2667 0.2696(0.0074) 0.40
2 5 0.1 12 11 0.3500 0.3582(0.0095) 0.87
2 5 0.2 26 29 0.4889 0.4946(0.0131) 0.44
2 5 0.3 46 78 0.7667 0.7790(0.0233) 0.53
3 4 0.0 28 3 2.2500 2.2593(0.0322) 0.29
3 4 0.1 36 12 2.6250 2.5841(0.0376) -1.09
3 4 0.2 55 32 3.2500 3.2758(0.0474) 0.54
3 4 0.3 91 88 4.5000 4.4382(0.0704) -0.88
3 5 0.0 19 3 0.9000 0.9318(0.0175) 1.82
3 5 0.1 20 12 1.0875 1.1241(0.0204) 1.79
3 5 0.2 35 32 1.4000 1.4774(0.0268) 2.89
3 5 0.3 65 88 2.0250 2.0390(0.0415) 0.34
4 5 0.0 41 4 3.2000 3.1491(0.0427) -1.19
4 5 0.1 47 12 3.7000 3.6805(0.0492) -0.40
4 5 0.2 56 34 4.5333 4.5081(0.0589) -0.43
4 5 0.3 106 96 6.2000 6.1237(0.0889) -0.86
† The theoretical Lq
† The simulated Lq (with standard error)
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Table 2. Simulation Results for θ = 0.4

λ µ max{Lq} max{A} † ‡ z- score
1 2 150 161 2.5000 2.2011(0.0698) -4.28
1 3 101 161 1.1667 0.9751(0.0420) -4.56
1 4 165 161 0.7500 0.6172(0.0347) -3.83
1 5 143 161 0.5500 0.4370(0.0262) -4.32
2 3 216 213 5.3333 4.5500(0.1070) -7.32
2 4 220 213 2.5000 2.2458(0.0723) -3.52
2 5 204 213 1.6000 1.4594(0.0612) -2.30
3 4 272 250 8.2500 7.2682(0.1412) -6.95
3 5 223 250 3.9000 3.4470(0.0940) -4.82
4 5 291 281 11.2000 9.7506(0.1684) -8.61
† The theoretical Lq
† The simulated Lq (with standard error)

6.1. Simulation for Large θ’s

The results in Table 1 indicate that for θ ≤ 0.3 the simulation confirms the theo-
retical formula (12). However, for θ = 0.4 the same simulation provided Lq values
which are much lower than the theoretical ones. Initially, we truncated the corre-
lated Poisson probabilities to 50. Then, we extended the probabilities list up to
100. This improved the results but still resulted in z-scores between -4 and -12,
which are unacceptable. Even extending the probability list to 1,000 did not resolve
this issue (for results with a list of 1,000 probabilities see Table 2). The maximum
observed number of arrivals throughout the simulations was 281, so increasing the
list of probabilities beyond this number would not improve the results beyond those
reported in Table 2.

It turns out that the correlated Poisson distribution with a large θ has a very
significant tail. This tends to underestimate the number of customers in line because
part of the theoretical Lq originates with a large number of arrivals which are
not encountered in the simulation. When the probability list is truncated (it is
effectively truncated at 281), the remaining probability (for arrivals of more than
281) is not negligible, and the variance of the truncted probability distribution
is significantly lower than its theoretical value without any truncation. See these
values in Table 3

In order to be able to simulate effectively with θ = 0.4 one must increase the
number of simulations to such an extent that arrivals in the thousands will be en-
countered. Also, the random number generator used in our simulation provides for
differences of 2−31 which are not small enough to generate thousands of arrivals.
It is important to note that increasing the number of time periods in each simu-
lation to more than 10, 000∆t did not improve the results. In short, it seems that
simulating large values of θ successfully is intractable using this approach.

Finally, we compared the simulation results in Table 2 with equation (12) using
σλ as the variance calculated for the truncated distribution (truncated at max{A})
which is reported in Table 3. This is not a simulation with correlated Poisson ar-
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Table 3. The Truncated Correlated Poisson Distribution

λ θ Prob ×108 Variance Using
A > 50 A > 100 A > 200 A > 300 A ≤ 50 A ≤ 100 A ≤ 200 A ≤ 300 A ≤ ∞

1 0.2 0.2302 0.0083 0.0003 0.0000 0.0167 0.0167 0.0167 0.0167 0.0167
2 0.2 0.4609 0.0166 0.0006 0.0001 0.0333 0.0333 0.0333 0.0333 0.0333
3 0.2 0.6921 0.0249 0.0008 0.0001 0.0500 0.0500 0.0500 0.0500 0.0500
4 0.2 0.9237 0.0332 0.0011 0.0002 0.0666 0.0667 0.0667 0.0667 0.0667
1 0.3 12.236 1.3009 0.1337 0.0350 0.0242 0.0247 0.0249 0.0249 0.0250
2 0.3 24.489 2.6027 0.2674 0.0700 0.0484 0.0493 0.0497 0.0498 0.0500
3 0.3 36.760 3.9054 0.4012 0.1051 0.0726 0.0740 0.0746 0.0748 0.0750
4 0.3 49.048 5.2090 0.5351 0.1401 0.0968 0.0987 0.0995 0.0997 0.1000
1 0.4 103.58 19.100 3.4495 1.2608 0.0364 0.0402 0.0430 0.0443 0.0500
2 0.4 207.28 38.210 6.8999 2.5218 0.0727 0.0804 0.0860 0.0886 0.1000
3 0.4 311.08 57.330 10.351 3.7831 0.1091 0.1206 0.1290 0.1328 0.1500
4 0.4 415.01 76.460 13.803 5.0445 0.1454 0.1608 0.1720 0.1771 0.2000

Table 4. Simulation Results for θ = 0.4 Using Truncated Distributions

λ µ max{A} σ2
λ † multicolumn1—c——‡ z-score

1 2 161 0.042224 2.1112 2.2011(0.0698) 1.29
1 3 161 0.042224 0.9723 0.9751(0.0420) 0.07
1 4 161 0.042224 0.6204 0.6172(0.0347) -0.09
1 5 161 0.042224 0.4528 0.4370(0.0262) -0.60
2 3 213 0.086445 4.6556 4.5500(0.1070) -0.99
2 4 213 0.086445 2.1611 2.2458(0.0723) 1.17
2 5 213 0.086445 1.3741 1.4594(0.0612) 1.39
3 4 250 0.131210 7.3105 7.2682(0.1412) -0.30
3 5 250 0.131210 3.4303 3.4470(0.0940) 0.18
4 5 281 0.176351 10.0176 9.7506(0.1684) -1.59
† Lq calculated by Equation (12) using σ2

λ from column 4.
† The simulated Lq (with standard error)

rivals. Rather, it is a simulation using the truncated Correlated Poisson arrival.
The results are summarized in Table 4. The results confirm that our process sim-
ulates the truncated distribution arrival process. The sum of the z-scores is 0.05
and their sum of squares is 8.96 as compared with the expected values of 0 and 10.
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