@© Journal of Applied Mathematics & Decision Sciences, 3(2), 171-187 (1999)
Reprints Available directly from the Editor. Printed in New Zealand.

ON THE HEAT IMPULSE METHOD FOR
DEDUCING SAP FLOW

RON GRIBBEN

Department of Mathematics, Universiti Brune: Darussalam

Abstract. Speed of sap flow in plants and trees is of interest to botanists and environmentalists
because of its connection with the rate of utilisation of nutrients in the soil. An established method
uses the transport of heat where an impulsive heat source is introduced along a radial line by a
probe in the trunk sapwood. The temperature is monitored, upstream and downstream, and, by
solving the heat flow equation in the moving fluid, the sap velocity may be deduced indirectly
under some simplifying assumptions which chiefly render the method most useful when applied to
trees of relatively large diameter. Transform methods are used to obtain the appropriate three-
dimensional time-dependent solution in explicit form and values for the resulting sap velocity are
compared with the existing two-dimensional theory.

1. Introduction

Botanists and others concerned with forest management are interested in know-
ing the speed at which sap rises in trees, since it is directly related to the rate at
which nutrients in the soil can be utilised. Its variation can give valuable infor-
mation about the health of tree species. Various methods of finding the sap speed
are needed in practice including introduction of dyes, for example, but a common
easily-applicable one in the field employs a probe which can introduce an impulsive
heat source at time ¢ = 0 into the sapwood of the trunk and then monitor the
temperature 1 cm or so above and below its location. Information about the speed
of flow, u, of sap in the tree trunk (see Edwards, et. al. (1996) for a proposed stan-
dard nomenclature) can then be deduced. The method is therefore indirect and a
satisfactory prediction of the speed relies on an accurate mathematical model for
determining the temperature field and its dependence on u. Various assumptions
have been made in the modelling process in order to simplify the mathematical so-
lution of the problem and thereby render the determination of u as straightforward
as possible.

If no account is taken of the curvature of the tree trunk, fully two-dimensional
treatments are possible of which the simplest is that of Marshall (1958). In that
work a solution for the temperature is used in which it is assumed that the heat
source Is an instantaneous line source along the whole z-axis directed normally to
the trunk surface, which is itself assumed to be the zy plane in this approximation.
Heat is thus convected by the sap and is conducted in the z direction, parallel to
the trunk, and in the y direction. Clearly, in the Marshall model, there is no flow
of heat in the z direction.
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In order to take some account of variations, including heat flow, in the z direction,
we here assume the thickness L of the xylem is finite with an instantaneous line
source placed along the z-axis in 0 < z < L. A Newton’s Law of Cooling condition
is then taken to hold at the xylem-hardwood boundary. However,the assumption
of a rectangular geometry is retained so the model would apply best to trees with
trunks of relatively large radius.

2. The Marshall Model

In order to describe the mathematical techniques employed in a simple special case
we here derive the solution of the Marshall problem. In mathematical terms, the
problem is described by the partial differential equation,

oT oT o*T 8T
¥l +u— (_3? + 3_yQ> + Qé(z)d(y)é (1),

oz &

in —0o < z,y,z < 00, t> 0, coupled with the conditions,

T—Ty as x> — 00, +00, ¥y = —00, + 00,
T=Tyat t=0.

Here « is the thermal diffusivity of the xylem and Ty is the constant ambient
temperature. () represents the heat source term whose dimensions are temperature
x (length)?.

It is convenient to use the temperature rise 7' — Tp = W as a new dependent
variable. Then W satisfies

2 2
60—1:1--{-11%—1/::(1 (%I—VZ+ 6(,9:2‘/) + Q 5(2)d(y)d(¢), (1)

and

()

W —0 asz > —00, +00, y = —00, +00,
W =0 att=0.

We shall use transform methods to solve the initial-boundary value problems
in this paper (see for example Duffy (1994)). In this case we take the Laplace
Transform of Equation (1) with respect to the time variable. Thus,

sWE4u

ow’L 32wt  g*wtl

where

o0
WL(x,y,s)z/ W(z,y,t)e " dt.
0

(From (2), WX =0 as ¢ = —00, + 00, y — — 00, + 0o0.
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Now take the Fourier Transform in z so that

oo
WLF(w,y, s) = \/—;__;/ WL(x,y, s)e"“‘””da:

Then Equation (3) becomes

G2WLF ( s iwu
«a aV2r

g = (2 ) wir = 5y ()

On integrating this equation from y = 0_ to y = 0,4, we obtain the jump condition,

awLF _ Q
A( 5 )—'m &)

The solution of Equation (4) which satisfies Equation (5), is continuous at y = 0
and which tends to zero at infinity, is

WLF = @ -8l
26\ 27
where
g = Z + u + w?
a a

and we take Re(8) > 0.
Consider WLF for y > 0. The inverse Laplace Transform is

1 c+i00
wFf = — 92 _
2mi Je_ico 208V2m

in the usual notation for the Bromwich integral. If we replace s formally by a new
variable of integration v, defined by,

e PYestds, (6)

Equation (6) becomes

F_ Q exp(—aw’t —iwut) !

w Wor , (7N

where

c1+i00 _
1 exp(-yv/D) explavt)

- 2mi c1—100 \/'l_)
In order to evaluate I we cut the complex v plane along the negative real axis
as shown in Figure 1. The integrals round the curved paths can be shown to
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D CTo| < Re(v)

Figure 1. Contour in complex v plane for evaluating I in (7)

vanish in the limit as the radii of the large and small circular arcs tend to co and

0 respectively, so that
e[ ] o
AB JcbD

On AB put v = A%e™,0 < X < 0o; hence

1 [e ]
/ = —;r-/ exp(— idy — ar’t) d)
AB 0

Similarly, by setting v = A\2e~™,

/ =_%/ exp(ity — aA?t) dA
CcD 0

Hence, from Equation (7),

[e e}
wF = exp(—aw?t — iwut)/ cos(Ay) exp(—aA?t) dA
0

T2

and the inverse Fourier Transform can be obtained by standard methods to give

_ Q exp[-(z - ut)?/4at]

o0
w A —aA?t) dA
on/nat -/C; cos(Ay) exp(—aA’t)
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The integral here may be evaluated as

Re {/oo exp(idy — aA’t) dz\} = exp(—y®/4at) x
0
Re {/000 exp[—at(\ — iy/2at)?] d/\}
= 3 V/r/al exp(~y? /4a)

Hence,
_ Q exp{—[(z — ut)® + y°]/4at}
- drat

The same result holds for y < 0, since the whole solution is even in y, and
hence the result quoted by Marshall (1958) for this problem is verified. Although

the result is standard the method used will now be adapted to the more general
problem discussed in Section 3.

w

, y>0,t>0.

3. Finite xylem thickness

Here, as mentioned earlier, we take account of the finite width of the sap region
but, for simplicity, we retain a two-dimensional geometry, the boundaries of the
xylem being represented by the planes z = 0 and z = L. However, we consider
the heat flow produced when an instantaneous point source of strength @ dzo/L,
where dzg is an element of length, is placed at z = zg, say, along the line z = y =
0 (see Figure 2).

The solution for the temperature, therefore, is three-dimensional in nature and is
obtained by solving the mathematical problem for the temperature rise W(z, y, z,1):

ow ow 3w W 0w Q dzg

halA = = 8(z)é -

o +u ot =a (S0 + S8+ S0 + L2 s(@stwiste - =) 500,
(8)

In —o0o < ¢,y < +00, 0< z< L, t >0, subject to the conditions

W —0 asz,y—> —00, + 00, (9)

ow

E-Oonz-O, (10)

ow o

E‘i’]\W—O onz—L, (11)

W =0 att=0.
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Figure 2. Geometry of the xylem region, 0 < z < L, assumed for the model, with heat source at
(z,v,2) = (0,0, 20).

Thus, it is assumed that there is no flow of heat across the boundary at z = 0
(the bark) but that at z = L, the boundary between sap wood and dry wood, the
temperature satisfies Newton’s Law of Cooling. The parameter K is not expected
to be known.

The method follows that of the previous section. The Laplace Transform in the
t variable, WL satisfies,

sWEtu Wt =a(Wh+ Wh+Wh) + L2 56)wi — ) (12)

and the same boundary conditions (9), (10) and (11). On now taking the double
Fourier Transform of (12) in the = and y variables we obtain, after some rearrange-
ment,

; d
WEFFy — (2 + 2—%2 +w?+ 0'2> WLF:Fy — -—% 6 (z — 20), (13)

where

o0 00
WLF=Fy (w,0,2,8) = zi / / WL(z, Y,2,5) exp(—iwz — ioy) dzedy
T Jeoo Jooo

The boundary conditions on P = WLF=Fy are (10) and (11).
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As in Section 2 the discontinuity in the derivative of P at z = zp can be obtained
from Equation (13) by integration to yield,
Q dzo

AP,z = —5—7 (14)

Then continuous solutions of (13) satisfying (10), (11) and (14) are readily found
as

Q dzo } 15)

P= {QM,BL[ﬁ sinh(BL) + K cosh(BL)]
y { {B cosh[B(L — 20)] + K sinh[B(L — 20)]} cosh(Bz), for z < z,,
cosh(Bz0){Bcosh[B(L — z)] + K sinh[B(L — 2)]}, for z > zo,

where
B2 = s/a+iwu/a+w? + 0%, withRe(8) > 0.
Taking first the region z < zp, the inverse Laplace Transform is
1 c+ioc0

WhFy = — Pe*t ds

2m c—i00

= %:zo {—% exp[(—aw? — ac? — iwu)t]}

1+ (/5 cosh[y/B(L — z0)] + K sinh[\/5(L = zo)]}
o AR D T R T o) e
(16)

where the variable of integration v is here defined by

s wu 5 2
v=—+—+4w +o0o
a a
Although the integrand contains v'/2 it is actually a meromorphic function as an

expansion in powers of v demonstrates. We find such an expansion to have the
form

1+ K(L — z)
———f{—o {1+ O(v)},

so there is no pole at v = 0, but poles of the integrand occur at values of v given
by

Vv sinh(v/v L) + K cosh(y/v L) = 0, (17)

in the complex v plane in which no cut is required.
On writing \/v = a + ib, the real quantities a and b satisfy
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sinh(2aL) ___a (18)
cosh(2al) +cos(2bL) = a2 + b2
sin(2bL) Kb

cosh(2aL) + cos(2bL) a2 + b2 (19)

The assumption that @ > 0, K > 0, L > 0 implies that the two sides of (18) have
opposite sign since each denominator is positive, and a similar conclusion follows if
a < 0. Hence a = 0 and the required solutions of Equation (19) correspond to pure
imaginary values of \/v. Equation (17) becomes

tan(bL) = K /b (20)

A sketch showing typical solutions is given in Figure 3. We see that solutions occur
at b=by,, (n=1,2,3,...), the intersections of y = tan(bL) and y = K/b, where

(n—1)7/L < b, < (2n—1)7/2L

YA

by by

Figure 3. Sketches of y = tan(z) and y = const/z, whose intersections give the solutions r =
by,b2,b3,....

Hence the singularities in the integrand of (16) occur at an infinite set of negative
real values v, = —b2 and are, in fact, simple poles (justified a posteriori). The
residue of the singularity at the nth such pole is
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({\/Ecosh[\/ﬁ(L — 20)] + K sinh[\/v, (L — z0)]} cosh(y/vy 2) exp(avnt)>
Jon

x lim (v = vn) (21)
voum | /o sinh(x/o L) + K cosh(v/v L)
The limit in (21), by L’Hopital’s rule, is found to be
2\/vn
(14 K L)sinh(,/v, L) 4+ L./vy cosh(\/v, L)’

the finiteness of which justifies the simple pole assumption.
Hence, combining (16) with (22), we find the Fourier transform W¥=Fv is

= Q dzo exp[—(aw? + ao? + iwu)t] i fa
nL =

(22)

WFIFy

where
_ A{bn cos[bn (L — 20)] + K sin[bn (L — z0)]} cos(bnz) exp(—ab3t)
= (1+ KL)sin(bnL) + bnL cos(bnl)

The inversion of WF=Fv gives the same standard result as before so we obtain the
temperature rise,

fn

%2 exp{~[(z ~ ut)?’ +¥°)/4et} Y _ fu(z,t;bn, K, L)

n=1

W=T-Ty=

for z < z9. An analogous analysis can be carried out for the region zp < z < L
using Equation (15) and we obtain

_ Q dzg
T-T= 2w Lat

exp{—[(z — ut)? + y*]/4at} i gn(2, b5, K, L)

n=1

for zg < z < L, where

_ c08(bn20){bn cos[bn (L — z)] + K sin[bs (L — 2)]} exp(—abZt)
- (14 KL) sin(bpL) + b, L cos(b,L)

(23)

n

These expressions for f, and g, can be simplified using the relation
bptan(bpL) = K, n =1,2,3,.... Thus, for example, f, can be written as

{b,, cos[b, (L — 20)] + bn tan(by L) sinfb,(L — z0)]} cos(bnz) exp(—ab2t)
sin(b, L) + L[b, tan(b, L) sin(b, L) + by, cos(b, L)]
2b,, cos(bnzg) cos(bnz) exp(—abit)
2b, L + sin(2b,, L) ’

fa =
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and a similar analysis on (23) shows that g, = f,,. Hence, we may write the solution
in the form,

_ Qdz 2
T-Tp, = 1rLat exp{—[(z — ut)? + y*]/4at}
y Z by, cos(by, 20) cos(bn z) exp(—ab2t)
%L + sin(2bnL)

U(t), (24)
n=1
valid in 0 < z < L, where U(t) is the unit step function.

The expression (24) is the temperature rise at any point (z,y, z) and time t, due
to a point source of strength Qdzo/L situated at the point (0,0, zp). On summing
the temperature rises from all such sources placed continuously along the z axis
between z = 0 and z = L, for the case where @ is constant, we integrate with
respect to z, and obtain the result for a uniform line source as,

L
T—-Ty= /‘; W dzg = Lfat exp{—[(z — ut)? + y*]/4at}

N sin(bn L) cos(bpz)
X —abt) U(t 2
:4_:1 2b, L + sin(2b, L) exp(—abnt) U(1) (25)
This solution is the basis for determining the sap velocity as described in Section
5. Tts general behaviour is given in the next section and some properties and
implications are discussed in Section 6.

4. Behaviour of the solution

The temperature rise is obtained by summing the series in Equation (25) for spec-
ified values of the parameters a, K, L and u and at any point (z,y, z) at time ¢. In
order to carry this out it is convenient to transform the problem to dimensionless
variables:

t=z/L, y=y/L, z=z/L, t=1t/t"

where t* is a suitable time scale whose order of magnitude is that used in the probe.
Then we can write (25) as

Eex{ [(3—ad)?+ Efi sin(by, ) cos(by, 2)e=38at U@ (26)
wal P oyt 26 + sin(2b,,)
in 0 <z<1, where
b, = Lb,, w=at*"/L, a=at*/L? Q=Q/L>
Note that b,, is a function of ¢ = K L from (20), which becomes
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tan(b) = /b (27)
with solutions b,, n =1,2,3,..., satisfying

(n—1)r < by, < (2n — 1)m/2.

In summing the series in (26) the quantities b, must first be calculated by solving
Equation (27). The convergence properties of the series are good because of the

exponential decay with Ei, but at small values of @, many terms may contribute to
the sum. An important property in the present application is the near-independence
of the sum on the parameter ¢, at least at values of at typical of sap flows.

The behaviour of the solution (26) for the temperature rise is, in general terms,
similar to that used by Marshall (1958). Thus, the heat pulse is convected with the
sap velocity and simultaneously diffuses in the z, y and z directions. In the Marshall
model there is no diffusion in the z direction because 8T/0z = 0 identically. As an
example of the present model we choose L = 10 cm, a = .0025 cm?/sec, ¢ = 1 (so
that K = 0.1 cm™?).

Figure 4 shows the temperature rise at the point £=1.5 cm, y=0 cm, z=5 cm,
plotted as a function of time at various sap velocities u (in the range 0 to 60 cm/hr).
Similarly, for the same parameter values the temperature rise is plotted against x
in Figure 5 for different times (in seconds) when u = 30 cm/hr.

u =60 cm/hr

08r

06|

Temperature rise (LmaW/Q)

o4

0.2

0 50 100 150 200 250 300 350 400
t (secs)

Figure 4. Variation of temperature rise with time at £ = 1.5 cm, y = 0, z = 5 cm for
different sap velocities.

These diagrams correspond to Figures 2 and 1 respectively presented by Marshall
(1958) and are similar in shape. Thus, along the centre line y = 0, z = 5 cm of the



182 R.J.GRIBBEN

xylem, the heat transfer behaves qualitatively the same as in the Marshall model.
In order to see the effect of the finite width of xylem, assumed in the present study,
we present Figure 6, which shows the temperature rise distribution across the xylem
for u = 30 cm/hr at different times along the line z = 1.5 cm, y = 0. As expected
on physical grounds, the solution yields a temperature rise which is uniform across
most of the z-range, but which shows a fall-off to accommodate the new boundary
condition at z = 10 cm. Thus, some of the heat generated by the line source will
be transported into the hard wood and the question is how significant this is.

08| 4
S)
=
d
g 06F J
b t =200 sec
2
2
g-
S o4
o
[
02} 4
o . . : A
-2 -1 0 1 2 3 4 3 6

x (cm)

Figure 5. Variation of temperature rise W with z coordinate at y =0, z = 5 cm, u = 30
cm/hr at different times.

5. Determination of u from the solution

We assume that temperature measurements can be taken at y = 0, z = L/2 and
z = +h at various times and that the thickness L of the zylem is known. Thus, if
the instantaneous heat source @ is applied at ¢ = 0, we measure the temperature
rises W; and W_; at = h and £ = —h, respectively, at t =t;.

iFrom (24), we obtain, on reintroducing the dimensionless variables defined in
Section 4,

V—gf:l—{ = exp{—[(il - 6{1)2 —_ (—]—’L _ ﬁt—l)z]/‘l&{l}

where h = h/L, since all other terms in (25) are independent of x. Hence,
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In(Wy/W_,) =u h/a, (28)

relating the two unknown parameters @ and @. Note that @ = 0 in Equation (28)
corresponds to Wi = W_;. The remaining unknown parameter in the problem is
€.

We also measure temperature rises Wo and W3 at times { = 5,1 =13 at = h,
y = 0 and, say, z = 0.5 as a suitable point in the sapwood. It is convenient to
choose 1 = 2t; and t3 = 3t; so that {; —; = t3 — 5. Then, again using Equation
(26) and eliminating Q we obtain,

Wo _ 0 oxp{—(h — ha)2/45Es + (h — ai1)? /440 )
W1 12
[e 0] _ o0 _ _
x Y k(bn)exp(—a b2 1) / D k(bn) exp(—a b2 §y)
n=1 n=1

where

k(w) = sin(w) cos(w/2)/[2w + sin(2w)],

from which we deduce that

e o]
_ k(b,) exp(—a b2 ;) o _
Wots nzz:l " _(Ba=t) (R,
In{ 224 et t) (A g2 (29)
Wity & _ o - 4a t1to
D" k(ba) exp(—a b2 f)
n=1
Similarly,
_ k(b,) exp(—a b2 1) o ~
Wits nzz:l _(s—=t) (R*
ln = = — -_— U . (30)
Wots o _ o - 4a iot3
S k(be) exp(-a 2 7)
n=1

The equations (28), (29) and (30) are to be solved for %, & and .

At small or moderate values of at, such as arise in the area of application of the
sap velocity problem, it turns out that the sum of the series in (26) is very insensitive
to changes in the parameter €. Very large variations in € can be substituted into the
series without affecting the temperatures obtained on the centre line § = 0, z = 0.5.
This reflects the independence of these temperatures on the thermal properties of
the hardwood since € is a dimensionless form of A" in Equation (11). Consequently,
we eliminate & between (29) and (30) by subtraction to obtain

21 { 4W2 [T k(by) exp(—ab2th)][Z k(bn) exp(—ab2is)) h?
R ETTATA [Sk(bn) exp(—ab2i)]2 }" 12t

0;
(31)
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as the equation to solve for & for a given ¢, say € = 1 (see also Section 6). In fact this
equation can be readily solved by root search and bisection and the resulting value
of & can be used to find % from Equation (28). The consistency can be checked by
verifying that Equation (29), for example, is satisfied to a good approximation for
the corresponding values of @ and €.

1

-
0.9
0.8} 1
& o7F
=] t= 100 sec
g
0.6
S
g
2 t =200 sec
= 0.5k
g
2
I 04p ﬁ
3
&
5 o3}
- =300 sec
0.2t
o1 B
o " o ) . . . . , "
o 0.1 0.2 03 0.4 0.5 0.6 0.7 08 0.9 1

o~

Figure 6. Variation of temperature rise W with z at £ = 1.5 cm, y = 0 when u = 30
cm/hr at different times.

6. Discussion

It is of interest to determine whether results for the estimation of the sap velocity
differ in the present method from those obtained using the earlier model of Mar-
shall. Direct observational data is difficult to obtain so, as a test of the algorithm
suggested in Section 5, the temperature rises W_,, Wy, Wy, W3 were computed for
certain values of the parameters, viz. € = 1, @ = .0025, @ = .08333333 at the points
corresponding to 2 = h = 0.15, y =0, z = 0.5, at {; = 1, {» = 2, I3 = 3. (These
dimensionless values correspond to a length scale L = 10 cm = thickness of the
xylem and t* = 100 secs, so a = 0.0025 cm?/sec and u = 0.008333 cm/sec = 30
cm/hr.) The following temperature rises were calculated:

W_y = 0.00432024 Q/~
Wi = 0.64118037 Q/~ (32)
Wy = 0.49310355 Q/m
Ws = 0.23884349 Q/ =
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(Since only ratios of W’s are used the constant factor Q/= is not significant.)

Eight decimal places, obtained with double precision calculations on the com-
puter, are retained in (32) so as to provide adequately for loss of significance in the
inverse calculation, in which these values of the W’s are substituted into Equation
(31) and the equation solved as described in Section 5. With @ = 0 as initial guess,
the values of @ and u are readily recovered; these solutions are unchanged to 6
decimal places over a wide range of e. However, it turns out that the Marshall
model gives the same values of o and u for the temperature rises quoted in (32).
This prompted a closer look at the relationship between the two solutions. We can
write our solution (25) for the temperature rise as

W= Lfat exp{—[(x — ut)? + y?)/4at} S, (33)

where

o a2
= Z sin(b, L) cos(b,z) exp(—abit ),
2b, L + sin(2b, L)

n=1
and depends on z and t as well as the parameters o and ¢. The method used
for finding o from this expression involves only ratios of W values, for example as
quoted in (31). Now, if the series S in (33), over the relevant range of parameters,
is essentially constant (i.e. independent of z or ¢ or €), then the ratio of W values
at different times reduces to the values which would be obtained from the Marshall
model.

Thus we are led to consider in more detail the series,

i sin(bn) cos(b,z) exp(—cb?)
2bn + sin(2by,) ’

n=1

where ¢ = at and b, tan(l;n) =e,n=1,2,3,.... It is shown in the Appendix that

S(z,€,0) = 1/4,

for all z, 0 < z < 1, and ¢ > 0, although the rate of convergence of the series is
slow. Hence, if ¢ is small and positive we would expect that

S(z,¢6,¢) = 1/4,

with an increased rate of convergence (since for sufficiently large ¢, S is essentially
determined by its first term). It follows that, for small ¢, the ratio of two such
series is unity to a good approximation so that the Marshall solution applies. In
the observations, if we assume typical maximum values of ¢ are about 5 and of &
about 0.0025, we see that c is indeed small; Table 1 gives values of S(z,¢,c¢) for
different ¢ and € at three values of z.

For the biological application, with ¢ having a maximum value of about 0.01,
the relevant part of the table is towards the top row. There the temperature rise
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Table 1. Values of S(z, €, ¢). The three entries in each
position of the table refer to z = 0.2,0.5,0.8 from top to
bottom respectively.

€
0.01 1 100
0.25000000 | 0.25000000 | 0.25000000
0.0025 | 0.25000000 | 0.25000000 | 0.25000000
0.24999976 | 0.24997602 | 0.24919596
0.24999995 | 0.24999545 | 0.24992609
c | 0.025 | 0.24999508 | 0.24954018 | 0.24432776
0.24988668 | 0.23973985 | 0.16296577
0.24970778 | 0.22752293 | 0.16523701
0.25 0.24948095 | 0.21162058 | 0.12420147
0.24903032 | 0.18144291 | 0.05615735

is almost independent of ¢ and z and the general conclusion seems to be that
the Marshall theory gives an accurate prediction of W except possibly near the
xylem-hardwood boundary. Situations where the fall-off calculated for W near this
boundary might play a more important role could arise in investigations into effects
of possible non-uniformities in sap velocity. There is evidence of a reduction in sap
velocity near the internal xylem-boundary but to study this would require a more
detailed investigation of the heat flow in the vicinity of this boundary.
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Appendix

It is of interest and also satisfying to verify that the solution (25) does indeed satisfy
the original initial and boundary value problem. By inspection, (9), (10), and (11),
the initial and boundary conditions, are seen to be satisfied. Further, substitution
of (25) into the original partial differential equation (8), after some tedious partial
differentiation, leads to a cancellation of all terms except

by, cos(bn z0) cos(bp z)
2b, L + sin(2b, L)

xp(-—abit) 4(t)

exp{~[(z — ut)’ + y’]/4at} Z

_Q ZZO 8§(2)8(y)8(z — 20)5(1).

Integration of this expression with respect to z and y from —oco to +oo gives

Qdz | > by, cos(bn zp) cos(by, 2) 2
= {4 > %L 1 sia(25.1) exp(—abZt) — 6(z — zo)} 5(t).

Next, integrating with respect to z from z = 0 to z = L yields

Q dz >, cos(by, 20) sin(b, L) 2
7 {4 26,1+ sin(2b, L) exp(—abit) — 1 5 4(t).

Finally, an integration with respect to ¢ from ¢ = 0 to oo gives

Q dzo 4 2. cos(bnzo)sin(b, L) .
L ‘ 2b, L + sin(2b, L)

(34)

It is well-known that the functions cos(b,z), with the b, satisfying (20), are
orthogonal on the interval 0 < z < L, and it can be verified that the series in (34)
is the expansion, Y o, v, cos(b, z), of the constant function 1/4 in terms of these
orthogonal functions with the v, = sin(b,L)/[2b, L + sin(2b,L)]. It follows that,
in this weak sense, the solution (25) does indeed satisfy the required equation and
supplementary conditions.

In dimensionless form we have the result, then, that

i sin(by,) cos(by, Zo)
2b,, + sin(2b,,)

1
=-, 0<z, <1,
4
n=1
and this is true for all ¢, since different ¢’s merely correspond to different sets of
orthogonal functions, cos(b,Zp). Hence, if the influence of the exponential term in
the series in (25) is small, i.e. if atf is small, the sum of the series, and therefore
the solution, will be almost independent of ¢. In that case the boundary condition
at Z = 1 is unimportant and the Marshall model will apply.



