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Abstract. Nagumo’s equation is a third order non-linear ordinary differential equation
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d2u

f,
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cx2 + (u)-x -(b/c) u 0 where ](u) u(1-u)(u- a), 0 < a < 1. In this paper we

have developed a technique to determine those values of the parameters a, b and c which permit
non-constant bounded solutions.

1. INTRODUCTION

Hodgkin and Huxley [11] in their fundamental work on pulses in a squid axon
were the first to give a mathematical description of this process. Their model was

based on a concept derived from ’Kelvin’s Cable Theory’ that the nerve membrane
is effectively an inductance-free line with a constant capacitance and a non-linear
current flow element.
Later a simplified model for the process was proposed by Nagumo, A. Rimoto

and Yoshizawa [16] to obtain the non-constant bounded solutions for the third
order non-linear ordinary differential equation

d3u d2u
f,

du
+ o

where f(u) u(1- u)(u- a), 0 < a < 1, and f is a cubic function of u and b is
a positive constant, c is the speed of the travelling wave u u(x + ct). H. Cohen
[13], J. Cooley and F. Dodge [4, 5], Green [9], Hagstrom [9] and R. Knight [14]
have compiled extensive numerical results for a speed diagram. Many other authors
Rinzel [17], Fitzhugh [6] and McKean [15] reviewed the subject for 0 < a < 1, b < 0
and c > 0.
A natural tool for the mathematical simulation of such processes and phenom-

ena is the theory of impulsive differential equations. At first this theory developed
slowly. In the last decade, however, a considerable increase in the number of publi-
cations has been observed in various branches of the theory of impulsive differential
equations such as Ciment [2].
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THE ORIGIN, DEVELOPMENT AND SIGNIFICANCE OF NAGU:
EQUATION

The nervous system consists of nodal points (cell, soma and dendrites), lines (ax-
ons) and termini (receptors). The best known aspect of the nervous system is the
conduction of the impulse along a single axon. The source of conduction is a pulse
which is either rapidly damped out or is shaped into a characteristic form which
then propagates down the axon without distortion like a traveling wave.

Hodgkin and Huxley [11, 12, 13], in their fundamental work on pulses in a squid
axon were the first to give a successful mathematical description of the process. The
Nagumo model is essentially an initial value problem for the following non-linear
partial differential equation in the quarter plane {u(x, t)lx >_ 0, t _> 0}

Ou Ou /0--- Ox2 + f -b udt where f-u(1-u)(u-a), 0<a< 1, (2.1)

in which u(x,t) is effectively the axon potential and a and b are physiological
parameters.
Further to electronically simulate an animal nerve axon, Nagumo and others [16]

made an active pulse transmission line using tunnel diodes. This line shapes the
signal wave form during transmission, smaller signals are amplified, larger ones are

attenuated, narrower ones are widened and those which are wider are shrunk, all
approaching the above mentioned wave form.
Differentiating (2.1) with respect to t, we obtain the partial differential equation

03u 02
c--- + f’(u)-- (b/c)u O.

Now if we look for traveling wave solutions u = u(x, t), then on substitution in (2.2)
we get the third order O.D.E.

d3Udx3 C-xd2u + f, (u).xdU (b/c)u O. (2.3)

The parameters a, b and c are to be determined which permit non-constant bounded
solutions of (2.3).

3. METHOD OF SOLUTION.

We are dealing with two cases:

(a) When b 0 then (2.3) reduces to the second order differential equation

d2u du
dx: c"x + f- O
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(b) When b > 0, then the differential equation (2.3) is reduced to a system of
simultaneous equations of the first order by introducing the new variables

u du du
= = v and u" = = w.

dx dx2

In vector notations, the system is written as

’ff v and
w

[ v ].,
(b/c)u + (3u2 2(1 + a)u + a) + cw

In solving (3.2) we employed Hamming’s [10] predictor corrector method, with
Runge-Kutta quartic method to obtain three starting values (points) on the solu-
tion curve in addition to the initial point.

4. INITIAL VALUES.

a) For b- 0. The basic requirement now is to obtain initial conditions to get the
numerical procedure started. Near u- 0, the linearized equation is

d2u du
dx c-x au O. (4.1)

The auxiliary equation of (4.1) is

m cm- a 0 (4.2)

and has roots

c + x/c2 + 4a c- x/’C2 + 4a
ml m22a 2a

since parameters a and c are positive, so there is only one positive root ml =
(c+_)2 Therefore, the solution u(x)

_
Aemix and u(x) "-’_ Amlem:

mlu for large negative values of x, u
_

0 and A is constant. Thus the initial
conditions used are u(0) h, v(0) u(0) mlh where h is a small step size
used in the numerical solution and ml is the only positive root of (4.2). We
used the step size h as h 0.001 in our calculations.
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b) Initial Conditions for b > 0. Near u = 0 the linearized equation is

u’" cu" au’ (b/c) O. (4.3)

The auxiliary equation is

m3 cm2 am- (b/c) = O. (4.4)

Now to obtain the desired behavior of the solution u(x) as x -+ -cx, we require
that the roots of the cubic (4.4) should be real. Further we also require that
only one of the three roots should be positive. These considerations imply that
b < a/4 and c exceeds the largest positive root of the equation

(a -4b)c4 + 2a(2a2 9b)c2 27b2 = 0 Burnside [11.

Thus if b and c are chosen satisfying these conditions and ma is the only positive
root of the auxiliary equation (4.4), then for large negative values of x we must
have

u Ae’’ for some constant A
u Amlemix : mlu
utt Arn2a ere’a: m2a u

The initial conditions are

(4.5)

where h is the small step size used in the subsequent computations. The value
of ml was found for the different values of the parameters used by GRAEFFE’s
ROOT SQUARING procedure (see Froberg [7]).

CONCLUSION.

Our method worked very well and our numerical results supported the conjecture
proposed by H.P. McKean [15], that for the value of the parameter ’a’ > 0.5 and
’b’ > 0, no non-constant bounded solution of (4.3) exists.
The underlying idea is that parameter ’a’ plays the role of a doping parameter

and the disappearance of the non-constant bounded solution corresponds to the
physical fact, that if too much of novocaine is injected, the whole nerve goes dead.
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