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Abstract. Recently in New Zealand there have been outbreaks of measles and pertussis every

six and �ve years respectively. A model has been used to compare the dynamics of these diseases,

and to determine the optimum ages at which children should be vaccinated against them. Whereas

measles could be eliminated by giving the second vaccination at �ve years instead of eleven, it

is diÆcult to devise a practical scheme that would eliminate pertussis. It is then necessary to

consider vaccination schemes in the light of the age-structure of future epidemics as well as their
timing.

1. Introduction

The childhood diseases that are controlled by vaccination programmes in New

Zealand include measles, mumps, rubella and pertussis (commonly known as whoop-

ing cough) (Mansoor, 1999). Protection against the �rst three is via MMR vacci-

nation at 15 months and eleven years, whereas four vaccinations against pertussis

are given prior to 15 months. Despite these interventions epidemics of measles and

pertussis still occur.

A quantity that is commonly used as an aid to understanding the population

dynamics of an infectious disease is the basic reproduction ratio (R0) : This is

de�ned as the expected number of secondary cases that would arise from a single

primary case introduced into a fully susceptible population (Diekmann et al., 1990;

Anderson & May, 1991; Roberts & Heesterbeek, 1993). If R0 < 1 the disease cannot

persist in the population and will, over time, be eliminated. If R0 > 1 the disease

persists. Hence the objective of a disease elimination programme is to reduce the

basic reproduction ratio below one. If a fraction q of the population is immunised,

then the basic reproduction ratio e�ectively becomes RV = (1� q)R0; and to

eliminate the disease it is necessary to maintain an immune fraction q > 1� 1=R0;

hence guaranteeing that RV < 1 (Edelstein-Keshet, 1988; Anderson & May, 1991;

Roberts & Heesterbeek, 1993; McLean, 1994). Details of the community structure,

especially patterns of contact between di�erent age groups and at di�erent times

of the year, complicate this argument but do not fundamentally change it.

Until the introduction of measles vaccination in New Zealand in 1970 there was

an epidemic of measles every two years. The e�ect of the vaccination programme

was to increase the inter-epidemic period to six years, the last epidemic occurring

in 1997. A mathematical model developed in 1996 successfully reproduced the
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historical pattern of epidemics and predicted the epidemic of 1997 (Mansoor et al.,

1998; Tobias & Roberts, 1998; Roberts & Tobias, 2000). It was then shown that

to reduce RV below one, and hence to prevent further epidemics, it is necessary

to change the timing of the second vaccination from eleven years to six years or

earlier (Tobias & Roberts, 1998; Roberts & Tobias, 2000). Similar models have

been used to study the dynamics and control of measles in other countries, with

similar results (e.g. Agur et al., 1993; Babad et al., 1995; L�evy-Bruhl et al., 1997;

Gay et al., 1998).

Epidemics of pertussis occurred in New Zealand in 1971, 1974, 1978, 1982, 1986,

1991 and 1996 (Blakely 1999a). In this paper we report on an investigation into

vaccination strategies against pertussis, and compare the results with those from

the previous study for measles.

2. The pertussis model

We proceed by dividing a theoretical population that resembles New Zealand's into

compartments, each of which has a speci�c disease status. Threshold conditions

are then derived for the vaccination coverage that would be required to eliminate

the disease. To demonstrate the method a population without age structure is

considered. We then apply the method to a population where contact patterns

depend on age. The model is similar to that previously used to model measles

(Tobias & Roberts, 1998; Roberts & Tobias, 2000). The major di�erence is that,

in contrast to measles, permanent immunity to pertussis is not conferred upon

recovery or vaccination.

2.1. The simple model

Let the population of N individuals be divided into S susceptible to pertussis; I

infected and infectious; R naturally immune; P susceptible to infection but not

disease (hence partially protected); Q infected and infectious but not diseased;

and V vaccinated and immune. The 
ow rates between the compartments are

shown in Figure 1. We assume a constant net birth rate B; and approximate early

childhood vaccination by allocating a proportion q of new-borns to the vaccinated

compartment. Those vaccinated remain immune for an average period of 1=� years,

after which a proportion r become susceptible to infection but not disease, and the

remainder become susceptible to infection and disease. If a susceptible becomes

infected, they remain infectious for an average period of 1=
 years, then immune

for 1=� years. At the end of the period of immunity a proportion s become partially

protected, the remainder becoming susceptible. If a member of the P compartment

is infected, he becomes infectious but not diseased for a mean time of 1=Æ years,

after which she joins the immune (R) compartment. The force of infection from the

S compartment to the I compartment is � = �I+�Q; and from the P compartment

to the Q compartment � = �I + �Q:
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Figure 1. The structure of the model for the dynamics of pertussis. The model without age

structure is shown, and for simplicity deaths (which a�ect all compartments equally) are not

included on the diagram.

The equations describing the dynamics of the system are

dS

dt
= B (1� q)� (�I + �Q+ d)S + � (1� s)R+ �P + � (1� r) V

dI

dt
= (�I + �Q)S � (
 + d) I

dR

dt
= 
I + ÆQ� (� + d)R

dP

dt
= �sR + �rV � (�I + �Q)P � (� + d)P

dQ

dt
= (�I + �Q)P � (Æ + d)Q

dV

dt
= Bq � (�+ d)V

Choosing N = B=d; births and deaths balance and the population size is constant.

The equations add to dN=dt = 0, hence we can dispense with the need to model

one variable explicitly. When no disease is present the steady state solutions are

I� = Q� = R� = 0 and

S� = N � P � � V � P � =
�r

� + d
V � V � =

Bq

�+ d

In the absence of vaccination S� = N; P � = V � = 0; and it is a trivial matter

to show that the disease cannot maintain itself in the population when the basic

reproduction number R0 = �N= (
 + d) is less than one. Typical values of R0 for

pertussis in developed countries are in the range 16� 18 (Anderson & May, 1991).

For more complex models R0 can be obtained from the next generation matrix,



178 M.G. ROBERTS

which speci�es the expected number of secondary infections in each compartment

due to a single introduction of infection in one compartment in a susceptible pop-

ulation (Diekmann et al., 1990). For example, the next generation matrix derived

from the above model in the presence of vaccination is

M =

 
�S�


+d
�S�

Æ+d
�P�


+d

�P�

Æ+d

!
:

The entry M11 represents the mean number of secondary infections in the I com-

partment due to a primary infection in the I compartment and an otherwise

infection-free population. It is calculated by multiplying the transmission rate �;

the number of susceptibles S�; and the mean period of infectiousness 1= (
 + d) :

Similarly M12; M21 and M22 represent the numbers of secondary infections in the

I; Q and Q compartments respectively due to primary infections in the Q; I and

Q compartments respectively, in an otherwise infection-free population. A vaccina-

tion strategy will achieve elimination of the disease if RV = R(M) < 1; where R
signi�es spectral radius. For the values of R0 quoted above, vaccination coverage

would have to maintain immunity in more than 93% of the population.

2.2. The age-structured model

A subdivision of the population into age groups allows for di�erent inter-group

contact rates, and provides a means by which strategies based on vaccinating chil-

dren at de�ned ages may be modelled. We choose groups 0-9 to represent ages

0{3 months, 3{4 months, 4{5 months, 5{15 months, 1.25{3 years, 3{5 years, 5{11

years, 11{17 years, 17{40 years and >40 years respectively. We assume that group

9 plays no part in the epidemic. Indexing compartments by age group number, our

equations become:

dI0

dt
= �0S0 � (
 + �0) I0

dR0

dt
= 
I0 + ÆQ0 � (� + �0)R0

dP0

dt
= �sR0 � �0P0 � (� + �0)P0

dQ0

dt
= �0P0 � (Æ + �0)Q0
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and V0 = 0; and for i = 1 : : : 8

dIi

dt
= �i�1Ii�1 + �iSi � (
 + �i) Ii

dRi

dt
= �i�1Ri�1 + 
Ii + ÆQi � (� + �i)Ri

dPi

dt
= �i�1Pi�1 + �sRi + �rVi � �iPi � (� + �i)Pi

dQi

dt
= �i�1Qi�1 + �iPi � (Æ + �i)Qi

dVi

dt
= �i�1Vi�1 + qi�i�1Si�1 � (�+ �i)Vi

where

�i = �

8X
j=0

CijIj + �

8X
j=0

CijQj

and

�i = �

8X
j=0

CijIj + �

8X
j=0

CijQj

are the forces of infection on the susceptible and partially protected compartments

respectively, and the terms Cij specify relative rates of contact between di�erent

age groups (see below).

The transition rates between age groups �i are the reciprocals of the age group

width, assuming the death rate is negligible below 40 years of age. Hence the

size of each age group is constant and equal to the group width multiplied by

the birth rate, which was set at B = 57435 person yr.
�1 to equal that of New

Zealand in 1994 (Statistics New Zealand, 1996). The proportion of the population

that is successfully vaccinated on entering group i is qi: Due to the uncertainty of

the timing of interventions in the �rst few weeks of life, the �rst two vaccinations

were approximated by one at 3 months (Blakely et al., 1999b), with subsequent

vaccinations at 5 months and 15 months.

Grenfell & Anderson (1989) used a latent period of 7 days and an infectious period

of 22 days in their model of pertussis, whereas Anderson & May (1991) quote an

incubation period of 6{10 days, latent period of 21{23 days and an infectious period

of 7{10 days. Hence we set 
 = Æ = 12:6 yr.
�1 Other 
ow rates estimated from the

literature were � = � = 0:1 yr.
�1and � = 0 (see e.g. Grenfell & Anderson, 1989;

Hethcote, 1997). The proportions remaining partially protected following loss of

immunity were assumed to be r = s = 0:9, and in the absence of better information

we set �; �; � and � all equal to 4:06� 10�5 person
�1

yr.
�1; to achieve a suitable

value of R0 (see below).

The contact rates Cij are based on those used for measles (Roberts & Tobias,

2000). We de�ne activity levels a1 = 1 for infants (age groups 0-3), a2 = 3 for
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pre-schoolers (groups 4-5), a3 = 6 for primary school children (group 6), and a4 =

a5 = 3 for secondary school children and adults (groups 7&8) respectively. Within

group contact rates are then Cii = ak(i), and inter-group contact rates are Cij =

"
p
ak(i)ak(j) if k(i) 6= k(j); where k(i) = 1 if i 2 [0; 3] ; k(i) = 2 if i 2 [4; 5] ; and

k(i) = i � 3 if i 2 [6; 8] : This process is equivalent to specifying a WAIFW (\who

acquires infection from whom") matrix (Anderson & May, 1991; Hethcote, 1996).

By comparison with the measles model we set " = 0:4 (Roberts & Tobias, 2000).

The next generation matrix in the absence of vaccination is de�ned by

(M0)i+1;j+1 =
�CijNi + �i�1;j�j

�i + 


where �i�1;j = 1 if i� 1 = j and zero otherwise. We then have R0 = R(M0): Using

the parameter values above we obtain R0 = 15:8:

The steady state under vaccination with no disease solves

V �

i =
qi�i�1S

�

i�1 + �i�1V
�

i�1

�+ �i
P �i =

�i�1P
�

i�1 + �rV �

i

� + �i

and S�i = Ni � P �i � V �

i for i = 0 : : : 8, with S�0 = N0 and P �0 = V �

0 = 0: The

next-generation matrix is then

MV =

�
M1 M2

M3 M4

�

whereM1 is equal toM0 withNi replaced by S
�

i ;M2 is equal toM0 withNi replaced

by S�i and � replaced by �; M3 is equal to M0 with Ni replaced by P �i , � replaced

by � and 
 replaced by Æ; andM4 is equal toM0 with Ni replaced by P
�

i , � replaced

by � and 
 replaced by Æ. The basic reproduction ratio under vaccination is then

RV = R(MV ): Estimates of current vaccine coverage in New Zealand are 80-90%

by 3 months and at 5 months, and 80% at 15 months. EÆcacy is estimated at 50-

80% by 3 months and 80-95% at 5 and 15 months. Hence q1 =0.5525, q3 =0.74375,

q4 =0.7, qi = 0 otherwise; leading to RV = 13:33: Further epidemics of pertussis

are therefore inevitable with the present strategy.

3. Optimising vaccination strategies

The model described above is more complex than that used by Roberts & Tobias

(2000) to describe the epidemiology of measles in New Zealand. In fact, the measles

model may be derived from it by deleting the P and Q compartments, and changing

parameter values. In particular, immunity to measles may be regarded as life-long

whether it is acquired through vaccination or infection, hence � = � = 0: For

measles we have R0 = 12:8; which is reduced by the current vaccination programme

to RV = 2:85: The current programme based on vaccinations at 15 months and

eleven years, leaves an interval between treatments suÆcient for the number not

e�ectively vaccinated to accumulate to a critical level. Hence to eradicate measles
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it is necessary to bring forward the timing of the second vaccination, school entry

at �ve years would provide a suitable opportunity.

The results obtained for pertussis vaccination showed that eradication is a long

way from being achieved. The fundamental di�erence between the two diseases

is the lack of permanent immunity conferred by infection or vaccination against

pertussis. It was determined that if a pertussis vaccine were to confer life-long

immunity, the current vaccination schedule would achieve RV = 0:64. These results

are similar to those obtained from a similar study in the USA (Hethcote, 1997).

However, childhood vaccination against pertussis does reduce the number of cases

in early years when the e�ects of the disease are more severe, and is therefore

bene�cial in itself.

The pattern of repeated epidemics is due to seasonal forcing of transmission aris-

ing from closer contact between children during the school year (Grenfell & Bolker,

1994). Numerical solution of the measles model con�rmed this, and established a

relationship between RV for the non-forced model and the inter-epidemic period of

the forced model. Although the values of RV are not equal for the two models, a

lower value of RV calculated from the non-forced model would lead to less frequent

epidemics in the seasonally forced model, and RV � 1 implies elimination of the

disease. It has been found in the UK that regular epidemics of measles, correlated

between major cities, have given way to irregular uncorrelated outbreaks post-

vaccination; whereas pertussis vaccination strategies have synchonised a previously

uncorrelated epidemic pattern (Rohani et al., 1999). It is argued that the longer

infectious period of pertussis makes the dynamics less sensitive to seasonal forcing,

and concluded that pertussis outbreaks can be explained by simple deterministic ar-

guments. The success of our previous investigation into measles provides hope that

this may be the case in New Zealand, and that analytical tools may prove valuable

in optimising vaccination strategies against the common childhood diseases.

Acknowledgments

The author would like to thank Martin Tobias and Osman Mansoor of the New

Zealand Ministry of Health for introducing him to this topic. Some of the material

was prepared under contract for the ministry, but the conclusions do not necessarily

represent the ministry's views. Herbert Hethcote, Angela McLean and Valerie

Isham are also acknowledged for helpful discussions, and Glenn Fulford provided

comments on an earlier draft that improved the presentation.

References

1. Agur Z, Cojocaru L, Mazor G, Anderson RM, Danon YL. 1993. Pulse mass measles vacci-

nation across age cohorts. Proceedings of the National Academy of Sciences USA 90:11698-

11702.

2. Anderson RM, May RM. 1991. Infectious diseases of humans: dynamics and control. Oxford:

Oxford University Press.



182 M.G. ROBERTS

3. Babad HR, Nokes DJ, Gay NJ, Miller E, Morgan-Capner P, Anderson RM. 1995. Predicting

the impact of measles vaccination in England and Wales: model validation and analysis of

policy options. Epidemiology and Infection 114:319-344.

4. Blakely TA, Mansoor O, Baker M. 1999a. The 1996 pertussis epidemic in New Zealand:

descriptive epidemiology. New Zealand Medical Journal 112:30-33.

5. Blakely TA, Mansoor O, Baker M. 1999b. The 1996 pertussis epidemic in New Zealand:
vaccine e�ectiveness. New Zealand Medical Journal 112:118-120.

6. Diekmann O, Heesterbeek JAP, Metz JAJ. 1990. On the de�nition and computation of the

basic reproduction ratio R0 in models for infectious diseases in heterogeneous populations.

Journal of Mathematical Biology 28:365-382.

7. Edelstein-Keshet L. 1988. Mathematical models in biology. New York: Random House.

8. Gay NJ, Pelletier L, Duclos P. 1998. Modelling the incidence of measles in Canada: an

assessment of the options for vaccination policy. Vaccine 16:794-801.

9. Grenfell BT, Anderson RM. 1989. Pertussis in England and Wales: an investigation of trans-

mission dynamics and control by mass vaccination. Proceedings of the Royal Society of

London B 236:213-252.

10. Grenfell BT, Bolker BM. 1994. Population dynamics of measles. In Parasitic and Infectious

Diseases, edited by Scott ME, Smith G. New York, Academic Press:219-233.

11. Hethcote HW. 1996. Modelling heterogeneous mixing in infectious disease dynamics. In Mod-

els for infectious human diseases: their structure and relation to data, edited by Isham VS,

Medley GF. Cambridge, Cambridge University Press:215-238.

12. Hethcote HW. 1997. An age-structured model for pertussis transmission. Mathematical Bio-
sciences 145:89-136.

13. L�evy-Bruhl D, Maccario J, Richardson S, Gu�erin N. 1997. Mod�elisation de la rougeole
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