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Abstract. This paper considers an integrated formulation in selecting the best normal
mean in the case of unequal and unknown variances. The formulation separates the
parameter space into two disjoint parts, the preference zone (PZ) and the indifference
zone (IZ). In the PZ we insist on selecting the best for a correct selection (CS1)
but in the IZ we define any selected subset to be correct (CS2) if it contains the best
population. We find the least favorable configuration (LFC) and the worst configuration
(WC) respectively in PZ and IZ. We derive formulas for P (CS1|LFC), P (CS2|WC)
and the bounds for the expected sample size E(N). We also give tables for the procedure
parameters to implement the proposed procedure. An example is given to illustrate how
to apply the procedure and how to use the table.
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1. Introduction

This paper studies the integrated approach in selecting the best normal
mean among k normal populations with unequal and unknown variances.
Unlike the case of common and unknown variance studied in Chen and
Zhang (1997), we can not use the pooled sample variance to estimate the
unknown variances in this case. One important change, compared to the
case of common and unknown variance, is that in the case of unequal
and unknown variances we use weighted averages as the estimators for the
population means. Such change enables us to effectively evaluate the lower
bounds of the probability of a correct selection.

Historically, many have studied multiple decision procedures in the case
of unequal and unknown variances using the classical approaches. In the
indifference zone approach, Bechhofer, Dunnett, and Sobel (1954) had men-
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tioned the possibility of a two-stage procedure in selecting the best popu-
lation among k normal populations with unknown means and unequal and
unknown variances. Dudewicz (1971) showed that under the indifference
zone approach of Bechhofer (1954), a single-stage procedure is not appro-
priate in the case of unequal and unknown variances. Dudewicz and Dalal
(1975) proposed a generalized Stein-type two-stage procedure using the in-
difference zone approach. In subset selection approach, Gupta and Huang
(1974) have proposed a single-stage procedure based on unequal sample
sizes for selecting a subset which would contain the best population when
the variances are unknown and possibly unequal.

Chen and Sobel (1987) was the first article that proposed the integrated
selection formulation. They studied a single-stage procedure for the com-
mon known variance case. The integrated formulation approach to the
selection problem in the case of unequal and unknown variances has not
been studied. However, such a case is important in applications since vari-
ances are often unknown and unequal in most of the real world problems.
The objective of this paper is to develop a two-stage procedure, using the
integrated approach, to select the best normal mean from k normal popu-
lations with unequal and unknown variances.

In section 2 we state our goal, assumptions and the probability require-
ments. We propose a two-stage procedure in section 3. In section 4 we
derive lower bounds for the probability of a correct selection. These bounds
will enable us to effectively compute the unknown parameters in our se-
lection procedure and to guarantee the procedure to satisfy a given prob-
ability requirement (P ∗1 , P

∗
2 ). The experimenter can allocate sample sizes

according to these parameters. In section 5, we develop bounds for the ex-
pected sample size for the proposed procedure. The integrated formulation
requires our procedure to satisfy two probability requirements simultane-
ously. Therefore, it is reasonable that the expected sample size in our
procedure is larger than the expected sample size in the indifference zone
approach. Section 6 discusses the computation of the tables. Section 7
gives an illustrative example.

2. Assumptions, Goal, and The Probability Requirements

Suppose that we have k normal populations π1, . . . , πk with unknown means
and unequal and unknown variances σ2

1 , σ
2
2 , . . . , σ

2
k. We denote the ordered

means as µ[1] ≤ µ[2] ≤ · · · ≤ µ[k] and denote π(i) as the population which
corresponds to µ[i]. We also define the best population to be π(k), the
population corresponding to the largest population mean µ[k].
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Our goal is to derive a two-stage selection procedure PE which would

select π(k) if µ[k] ≥ µ[k−1] + δ∗,

or, (1)
select a subset containing π(k) if µ[k] < µ[k−1] + δ∗,

where δ∗ > 0 is a specified constant.
We first define the parameter space as follows:

Ω = {(µ, σ2)| −∞ < µi <∞, 0 < σi <∞; i = 1, . . . , k}, (2)

where µ = (µ1, . . . , µk) and σ2 = (σ2
1 , . . . , σ

2
k).

We divide the parameter space into preference zone (PZ) and indifference
zone (IZ), PZ and IZ are defined as follows, respectively.

PZ = {(µ, σ) ∈ Ω|µ[k] − µ[k−1] ≥ δ∗}, (3)
IZ = {(µ, σ) ∈ Ω|µ[k] − µ[k−1] < δ∗}, (4)

where 0 < δ∗ is a prespecified constant.
We define CS1 to be the event that our procedure selects the one best

population when µ ∈ PZ and CS2 to be the event that our procedure
selects a subset that contains the best population when µ ∈ IZ. We require
that our two-stage selection procedure, PE , which will be defined formally
in Section 3, for a given (P ∗1 , P

∗
2 ), would satisfy the following probability

requirements:

P (CS1|PE) ≥ P ∗1 , and (5)
P (CS2|PE) ≥ P ∗2 .

3. Procedure PE

We propose a Dudewicz-Dalal-type two-stage selection procedure.
Procedure PE :

(i) Take an initial sample Xi1, Xi2, . . . , Xin0 of size n0 (≥ 2) from popu-
lation πi I = 1, 2, . . . , k.

Compute:

X̄i(n0) =
n0∑

j=1

Xij

n0
, (6)

S2
i (n0) =

1
n0 − 1

n0∑
j=1

(
Xij − X̄i(n0)

)2
.
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(ii) Define

ni = max

{
n0 + 1,

[(
h∗Si

δ∗ − c

)2
]}

. (7)

[y] denotes the smallest integer greater than or equal to y. Here h∗ =
max {h∗1, h∗2} and h∗1, h

∗
2, h

∗
3, and c are chosen to satisfy the probability

requirement (5). They are the solutions of the following integral equations:
When k = 2, for given n0 and specification (δ∗, P ∗1 , P

∗
2 , a), the h∗1, and h∗2

values simultaneously satisfy:∫ +∞

−∞
G (t+ h∗1) g(t) dt = P ∗1 , and (8)

∫ +∞

−∞
G

(
t+

h∗2
a− 1

)
g(t) dt = P ∗2 (9)

HereG and g are Student’s t-distribution and density function, respectively.
For any k ≥ 3 and any n0 and specification (δ∗, P ∗1 , P

∗
2 , a), the h∗1, h

∗
2 and

h∗3 values simultaneously satisfy:∫ +∞

−∞
Gk−1 (t+ h∗1) g(t) dt = P ∗1 , (10)

and

1
k

+ (k − 1)
∫ +∞

−∞
Gk−2(t)

[
G

(
t+

h∗2
(a− 1)

)
−G (t)

]
g(t) dt

+ (k − 1) (k − 2)
∫ +∞

−∞
Gk−3 (t)

[
G

(
t+

h∗2
(a− 1)

)
−G (t)

]
× [G (t)−G (t− h∗3)] g(t) dt = P ∗2 (11)

Here G and g are Student’s t-distribution and density function, respec-
tively.

(iii) Take ni − n0 additional observations from the ith population. De-
note the observations by Xij , where i = 1, 2, . . . , k and j = 1, 2, . . . , ni.
Compute:

X̃i =
ni∑

j=1

aijXij i = 1, 2, . . . , k, (12)

where aij ’s are to be chosen so that the following conditions are satisfied:
ni∑

j=1

aij = 1, ai1 = ai2 =, . . . ,= ain0 , (13)
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and

S2
i

ni∑
j=1

a2
ij = (

δ∗ − c

h∗
)2, (14)

where i = 1, 2, . . . , k, and we use X̃[1] ≤ X̃[2] ≤, . . . ,≤ X̃[k] to denote the
ranked X̃’s.

(iv) If X̃[k] ≥ X̃[k−1] + c, we select the population associated with X̃[k].
If X̃[k] < X̃[k−1] + c, we select a random sized subset which contains all
populations πi with X̃i ≥ X̃[k−1] − d.

Here δ∗ > c, δ∗ = ac, and a > 1 is given; h∗ = max {h∗1, h∗2}, d =
h∗3

max{h∗1 ,h∗2}
(δ∗−c)X̃i is the weighted average associated with population πi.

The previous procedure would be meaningful only if the aij exist. One
can show the existence of the aij ’s through simple, but extended lines of
algebra. Essentially what is being done on aij ’s here is an adjustment
to allow for the fact that sample size must be a whole number, and that
therefore a standard error estimate based on the preliminary sample takes
only discrete values if all observations are equally weighted. By allocating
unequal weights, the estimated standard error can be equated to a specific
quantity.

Result: There exist aij ’s which satisfy:

ni∑
j=1

aij = 1,

ai1 = ai2 = · · · = ain0 , (15)

S2
i

ni∑
j=1

a2
ij = (

δ∗ − c

h∗
)2,

where i = 1, 2, . . . , k and j = 1, 2, . . . , ni.

4. Lower Bounds for P (CS1) and P (CS2)

To derive lower bounds for the probability of a correct selection, one needs
to find the least favorable configuration as well as the worst configuration.
We first define the least favorable configuration in the PZ and the worst
configuration in the IZ.

Definition 1 For any σ2 = (σ2
1 , σ

2
2 , . . . , σ

2
k), the least favorable configura-

tion in PZ is defined to be:
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LFC|PE =
{

(µ0, σ
2)|P

(
CS1|(µ0, σ

2), PE

)
= inf

µ∈PZ
P
(
CS1|(µ, σ2), PE

)}
.

(16)

Definition 2 For any σ2 = (σ2
1 , σ

2
2 , . . . , σ

2
k), the worst configuration in IZ

is defined to be:

WC|PE =
{

(µ1, σ
2)|P

(
CS2|(µ1, σ

2PE

)
= inf

µ∈IZ
P
(
CS2|(µ, σ2PE

))
}.

(17)

To derive lower bounds for P (CS1) and P (CS2) on the parameter space
Ω we first show that (for any σ2),

LFC|PE = {(µ, σ2)|δki = δ∗ ∀i 6= k}, (18)

where δki = µ[k] − µ[i] and

WC|PE = {(µ, σ2)|δki = 0 ∀i 6= k}.

Lemma 1 Let Ti =
X̃(i) − µ[i]

δ∗−c
h∗

, then Ti’s have independent student’s t-

distribution with n0 − 1 degrees of freedom, i = 1, 2, . . . , k.

Proof: The proof can be found in Stein (1945).
As the denominator (s∗ − c)/h∗ is a constant, this lemma can

only be true because the additional sample sizes ni are random.

Theorem 1 Under procedure PE the LFC for P (CS1|PZ) is given by
the slippage configuration, i.e. by µ[1] = · · · = µ[k−1] = µk − δ∗ and the
WC for P (CS2|IZ) is given by the equal parameter configuration, i.e. by
µ[1] = · · · = µ[k].

Proof: From (18), we find that the random variable Ti(i = 1, 2, . . . , k)
has a t- distribution with n0 − 1 degrees of freedom.
Rewrite X̃I as

X̃(i) =
(
δ∗ − c

n∗

)
Ti + µ[i] (19)

and consider the family of distribution function {(Gn(X|µ))} where Gn is
the distribution of the random variable

(
δ∗−c
n∗

)
· tn−1 + µ where δ∗−c

n∗ is a
constant, µ is the parameter of interest, and tn−1 is the random variable
which has t distribution with n − 1 degrees of freedom. Then it is clear
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that {(Gn(X|µ))} is a stochastically increasing family in µ. We now show
that the LFC for P (CS1|PZ) is given by µ[1] = · · · = µ[k−1] = µ[k] − S∗.
The proof of the WC for P (CS2|IZ) is similar. We start with an arbitrary
configuration in the IZ

µ[1] ≤ µ[1] ≤ · · · ≤ µ[k] with µ[k] − µ[k1]S
∗

Letting X̄(i) denote the sample mean associated with µ[i], we have

P (CS1|PZ) = P (X̃(k) > max
1≤β≤k−1

X̃(β) + C).

Define the function ψ = ψ(y1, y2, . . . , yk) by

ψ =

 1 if Yk > max
l≤β≤k−t

yβ + C

0 otherwise

Then we have P (CS1|PZ) = Eψ
(
X̃(1), X̃(2), . . . , X̃(k)

)
. It is clear that

ψ(y1, y2, . . . , yk) is non-increasing in Yi (for i = 1, . . . , k − 1) when all the
yi for j 6= i are held fixed. Since X̃’s are from a stochastically increasing
family, we use Lemma 5.1 by Chen and Sobel (1987) to conclude that
P (CS1|PZ) is non-increasing in µ[i] for i = 1, 2, . . . , k − 1 and it is non-
decreasing in u[k]. This completes the proof of the Theorem.

Lemma 2 Under procedure PE, the probability of a correct selection in the
PZ and the IZ are, respectively:

P (CS1|PE) = P (X̃(k) ≥ X̃(i) + c; i = 1, 2, . . . , k − 1), (20)
P (CS2|PE) = H0 +H1 +H2, (21)

where

H0 = P
(
X̃(k) ≥M0

)
= P

(
X̃(k) ≥ X̃(i); i = 1, 2, . . . , k − 1

)
; (22)

H1 = P
(
Mi ≤ X̃(k) < X̃(i) < X̃(k) + c, i = 1, 2, . . . , k − 1

)
(23)

=
k−1∑
i=1

P
(
X̃(i) > X̃(k) > X̃(j), X̃(k) + c > X̃(i), j = 1, 2, . . . , k − 1, j 6= i

)
;

H2 = P
(
Mi − d ≤ X̃(k) ≤Mi ≤ X̃(i) ≤Mi + c, i = 1, 2, . . . , k − 1

)
=

k−1∑
i=1

k−1∑
j=1, j 6=i

P (X̃(i) > X̃(j) > X̃(m), m = 1, 2, . . . , k − 1, m 6= i, j;

X̃(j) > X̃(k) > X̃(j) − d; X̃(j) + c > X̃(i)). (24)



30 P. CHEN AND J. ZHANG

and

M0 = max {X̃(α)|α = 1, 2, . . . , k − 1},

Mi = max {X̃(α)|α = 1, 2, . . . , k − 1, α 6= i}. (25)

Proof: The result is clear for P (CS1|PE). For P (CS2|Ps),H0,H1 and
H2 correspond to the cases of X̃(k) being the largest, the second longest,
and neither the largest nor the second largest, respectively.

The following theorems give lower bounds for P (CS1|PE) and
P (CS2|PE).

Theorem 2 When k = 2, for given n0 and specification (δ∗, P ∗1 , P
∗
2 , a),

the h∗1, and h∗2 values which simultaneously satisfy:∫ +∞

−∞
G (t+ h∗1) g(t) dt = P ∗1 , and (26)∫ +∞

−∞
G

(
t+

h∗2
a− 1

)
g(t) dt = P ∗2 (27)

are the values for procedure PE to satisfy the probability requirement (5).
Here G and g are Student’s t-distribution and density function, respectively.

Remark: When k = 2, d > 0 can be arbitrarily chosen since if we did not
select the one best population, we would select two populations regardless
the value of d.

Proof: Denote δ∗−c
h∗ by e∗. By Lemma 2,

P (CS1|PE) = P (X̃(2) ≥ X̃(1) + c)

= P (T1 ≤ T2 +
δ21 − c

e∗
)

≥ P (T1 ≤ T2 + h∗1)

=
∫ ∞

−∞
G(t+ h∗1)g(t)dt = P ∗1 . (28)

By Lemma 2, P (CS2|PE) = H0 +H1 +H2. When k = 2, the term H2

does not exist. Thus

H0 = P (X̃(2) > X̃(1)) = P (T1 ≤ T2 +
δ21
e∗

), (29)

H1 = P (X̃(2) < X̃(1), X̃(1) < X̃(2) + c)

= P (X̃(2) < X̃(1) < X̃(2) + c)

= P (T2 +
δ21
e∗

≤ T1 < T2 +
δ21 + c

e∗
). (30)
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Therefore,

P (CS2|PE) = H0 +H1

= P (T1 < T2 +
δ21
e∗

) + P (T2 +
δ21
e∗

< T1 < T2 +
δ21 + c

e∗
)

= P (T1 < T2 +
δ21 + c

e∗
) (31)

≥
∫ ∞

−∞
G(t+

c

e∗
)g(t)dt

≥
∫ ∞

−∞
G(t+

h∗2
a− 1

)g(t)dt = P ∗2 .

The first inequality follows from the fact that T1 and T2 both have students’
t distributions and δ21 = µ[2] − µ[1]

From Theorem 2, it is clear that as h∗1, h
∗
2 → ∞, the left hand

sides of (26) and (27) approach 1.

Theorem 3 For any k ≥ 3 and any n0 and specification (δ∗, P ∗1 , P
∗
2 , a),

the h∗1, h
∗
2 and h∗3 values which simultaneously satisfy:∫ +∞

−∞
Gk−1 (t+ h∗1) g(t) dt = P ∗1 , and (32)

1
k

+ (k − 1)
∫ +∞

−∞
Gk−2 (t)

[
G

(
t+

h∗2
(a− 1)

)
−G (t)

]
g(t) dt

+ (k − 1) (k − 2)
∫ +∞

−∞
Gk−3 (t)

[
G

(
t+

h∗2
(a− 1)

)
−G (t)

]
× [G (t)−G (t− h∗3)] g(t) dt = P ∗2 (33)

are the values for procedure PE to satisfy the probability requirement (5).
Here G and g are Student’s t-distribution and density function, respectively.

Proof: The proof of Theorem 3 is lengthy. It is omitted here. The
readers may contact the first author for a full version of the manuscript
which contains the proof.

The left hand side of the integral equations in (32) and in (33) in Theorem
3 are increasing in h∗1, h

∗
2 and h∗3. Indeed, when h∗1 approaches infinity, the

left hand side of (32) increases to 1. When h∗2 and h∗3 approach infinity, the
left hand side of (33) also increases to 1. Thus we can always find h∗1, h

∗
2,

and h∗3 that satisfy the probability requirements P ∗1 and P ∗2 .
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One should note that it is necessary to let h∗1, h
∗
2 and h∗3 vary freely so that

our procedure will be applicable for any given probability requirements.
Otherwise, the integral equations in (32) and in (33) might not have a
solution, and in such a case, procedure PE is not applicable. For instance,
if one requires h∗1 = h∗2, then for some (P ∗1 , P

∗
2 ) the integral equations in

(32) and in (33) might not have a solution.
In procedure PE , we let δ∗ = ac, a > 1. Such a requirement has the

advantage that the lower bounds of the probability of a correct selection
do not involve c. Instead of letting δ∗ = ac, a > 1, one can require that
δ∗ = a + c, a > 0. In such a case, (32) in Theorem 3 is unchanged. But
(33) is changed to:

1
k

+ (k − 1)
∫ +∞

−∞
Gk−2 (t)

[
G

(
t+

h∗2c

a

)
−G (t)

]
g(t) dt

+ (k − 1) (k − 2)
∫ +∞

−∞
Gk−3 (t)

[
G

(
t+

h∗2c

a

)
−G (t)

]
× [G (t)−G (t− h∗3)] g(t) dt = P ∗2 .

5. The Expected Sample Sizes and The Expected Subset Size

The total sample size ni from population πi (i = 1, 2, . . . , k) in procedure
PE can be calculated from (7),

ni = max

{
n0 + 1,

[(
Sih

∗

δ∗ − c

)2
]}

.

It is clear that ni, i = 1, 2, . . . , k, are random variables. The expected
values of the sample sizes are often valuable to the experimenter. In our
case, studying the expected sample size is especially important since there
are two unknowns in the integral equation (11) with only one constraint.
Thus we have infinitely many solutions. It is clear that we need some
additional guidelines to choose h∗2 and h∗3. The expected sample size, which
is a function of h∗, will give us some idea about how h∗ relates to E(ni).
It is reasonable to choose h∗2 and h∗3 to minimize the expected sample sizes
in addition to satisfying the probability requirements. To evaluate the
expected sample sizes, we use the method of Stein (1945).
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Theorem 4 For any i ∈ {1, 2, . . . , k}, the expected sample size E(ni) for
procedure PE satisfies the following inequality:

(n0+1)Fn0−1

(
(n2

0 − 1)e∗
2

σ2
i

)
+
σ2

i

e∗2

[
1− Fn0+1

(
(n2

0 − 1)e∗
2

σ2
i

)]
≤ E(ni)

< (n0 + 1)Fn0−1

(
(n2

0 − 1)e∗
2

σ2
i

)
+
σ2

i

e∗2

[
1− Fn0+1

(
(n2

0 − 1)e∗
2

σ2
i

)]

+

[
1− Fn0−1

(
(n2

0 − 1)e∗
2

σ2
i

)]
, (34)

where Fi(x) is a chi-squared probability distribution function with i degrees

of freedom and e∗
2

=
(

δ∗−c
h∗

)2

.

Proof: The proofs follow the ideas of Stein (1945). It is omitted here.
Readers are recommended to contact the first author for a full version of
the transcript which contains the proof.

Corollary 1 For each i, i = 1, 2, . . . , k, the expected sample size E(ni) has
the following properties:

1. For fixed e∗
2
, E(ni) −→∞ as σ2

i −→∞ (the lower bound of E(ni) goes
to +∞).

2. For fixed e∗
2
, E(ni) −→ n0 + 1 as σ2

i −→ 0 (the upper bound of E(ni)
goes to n0 + 1).

3. For fixed σ2
i , E(ni) −→∞ as e∗

2 −→ 0 (the lower bound of E(ni) goes
to +∞).

4. The difference between the upper bounds and the lower bounds of E(ni)

is at most 1 since
[
1− Fn0−1

(
(n2

0−1)e∗
2

σ2
i

)]
is less than 1.

Proof: These properties are immediate by Theorem 4.

6. Tables

To carry out procedure PE , one needs the values of h∗1, h
∗
2, and h∗3. In

Table 1, we provide a table of the h′1 value, for the cases k = 3, 4, which
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satisfies the following integral equation:∫ +∞

−∞
G (t+ h′1) g(t) dt = P ∗, (35)

for P ∗ = .5, .75, .90, .95, .99.
As discussed in section 4, there are infinitely many solutions for the in-

tegral equation (33). Therefore, it is impossible to provide tables which
would cover all the practical situations. A particular solution of the inte-
gral equation (33) might be good for one objective yet might not be suitable
for another goal.

Table 1. This table provides some h′
1 values for procedure

PE .

Number of populations: k = 3
n0 Probability (P)

.50 .75 .90 .95 .99
3 .7620 2.1560 4.0560 5.8750 13.1800
4 .6820 1.8650 3.2110 4.2840 7.4000
5 .6515 1.7390 2.8960 3.7500 5.9330
6 .6312 1.6700 2.7360 3.4810 5.2400
7 .6180 1.6260 2.6340 3.3180 4.8500
8 .6090 1.5960 2.5680 3.2100 4.6330
9 .6022 1.5740 2.5200 3.1340 4.4600
10 .5970 1.5578 2.4850 3.0746 4.3500
11 .5930 1.5445 2.4550 3.0370 4.2580
12 .5890 1.5318 2.4320 3.0060 4.1781
13 .5860 1.5240 2.4160 2.9800 4.1480
14 .5840 1.5180 2.4010 2.9560 4.0800
15 .5820 1.5128 2.3850 2.9360 4.0400
20 .5760 1.4900 2.3440 2.8560 3.8600
25 .5720 1.4770 2.3180 2.8260 3.8000
30 .5690 1.4700 2.3000 2.8000 3.7600
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Table 1. Continuation.
Number of populations: k = 4

n0 Probability (P)
.50 .75 .90 .95 .99

3 1.1860 2.6615 4.7800 6.8200 15.1000
4 1.0540 2.2500 3.6328 4.8000 8.2500
5 .9940 2.0810 3.2630 4.1360 6.0960
6 .9570 1.9880 3.0600 3.8150 5.6400
7 .9390 1.9310 2.9360 3.6160 5.2000
8 .9240 1.8920 2.8560 3.4980 4.9300
9 .9130 1.8630 2.7940 3.4100 4.7310
10 .9040 1.8410 2.7520 3.3450 4.6170
11 .8960 1.8230 2.7200 3.2960 4.5190
12 .8910 1.8100 2.6920 3.2580 4.4400
13 .8860 1.7970 2.6690 3.2280 4.3600
14 .8820 1.7890 2.6500 3.1980 4.3310
15 .8790 1.7820 2.6350 3.1760 4.2760
20 .8680 1.7530 2.5820 3.0880 4.0700
25 .8610 1.7380 2.5560 3.0450 4.0100
30 .8570 1.7280 2.5360 3.0220 3.960

We tabulate in Table 2 the values of h′2 and h′3 for k = 3, 4, P ∗2 =
.50, .75, .90, .99, where h′2 and h′3 satisfy the following integral equation:

1
k

+ (k − 1)
∫ +∞

−∞
Gk−2 (t) [G (t+ h′2)−G (t)] g(t) dt

+ (k − 1) (k − 2)
∫ +∞

−∞
Gk−3 (t) [G (t+ h′2)−G (t)]

× [G (t)−G (t− h′3)] g(t) dt = P ∗2 . (36)

The relationship between h∗2, h
∗
3 and h′2, h

′
3 are as follows:

h∗2 = (a− 1)h′2, h∗3 = h′3. (37)

The computation of Table 2 follows the following assumptions:

1. We take a = 2 (thus, c = 1
2δ
∗).

2. We take h∗1 = h∗2 = h′1 = h′2 where h′1 is the value corresponding to
P ∗1 = P ∗2 = .50, .75, .90, .95, .99 in Table 1, respectively.

3. The probability is accurate to ±.0003.
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Table 2. This table provides some (′h2, ′h3) values for pro-
cedure PE .

Number of populations: k = 3
n0 Probability (P)

.50 .75 .90 .95 .99
3 .7620 2.1560 4.0560 5.8750 13.1800

.3860 1.2180 2.4850 3.8500 9.9600
4 .6820 1.8650 3.2110 4.2840 7.4000

.3550 1.0200 1.9450 2.7160 5.3000
5 .6515 1.7390 2.8960 3.7500 5.9330

.3260 .9580 1.7480 2.3560 3.9100
6 .6312 1.6700 2.7360 3.4810 5.2400

.3210 .9180 1.6380 2.1800 3.5000
7 .6180 1.6260 2.6340 3.3180 4.8500

.3160 .8940 1.5830 2.1000 3.3600
8 .6090 1.5960 2.5680 3.2100 4.6330

.3100 .8745 1.5320 2.0160 3.1300
9 .6022 1.5740 2.5200 3.1340 4.4600

.3060 .8570 1.5030 1.9650 3.0300
10 .5970 1.5578 2.4850 3.0746 4.3500

.3050 .8500 1.4800 1.9460 2.9200
11 .5930 1.5445 2.4550 3.0370 4.2580

.3020 .8420 1.4620 1.9160 2.8800
12 .5890 1.5318 2.4320 3.0060 4.1781

.2990 .8360 1.4500 1.8830 2.7700
13 .5860 1.5240 2.4160 2.9800 4.1480

.2970 .8300 1.4360 1.8680 2.8000
14 .5840 1.5180 2.4010 2.9560 4.0800

.2950 .8260 1.4250 1.8400 2.7600
15 .5820 1.5128 2.3850 2.9360 4.0400

.2930 .8210 1.4180 1.8390 2.7400
20 .5760 1.4900 2.3440 2.8560 3.8600

.2900 .8080 1.3900 1.8060 2.6800
25 .5720 1.4770 2.3180 2.8260 3.8000

.2880 .8030 1.3810 1.7900 2.6150
30 .5690 1.4700 2.3000 2.8000 3.7600

.2879 .8000 1.3660 1.7730 2.6140
Note: Here we let h′2 = h′1.
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Table 2. Continuation.

Number of populations: k = 4
n0 Probability (P)

.50 .75 .90 .95 .99
3 1.1860 2.6615 4.7800 6.8200 15.1000

.6500 1.6220 3.1200 4.5800 12.0000
4 1.0540 2.2500 3.6328 4.8000 8.2500

.5760 1.3620 2.3750 3.2000 12.9000
5 .9940 2.0810 3.2630 4.1360 6.0960

.5410 1.2560 2.1030 2.7720 4.6500
6 .9570 1.9880 3.0600 3.8150 5.6400

.5260 1.1990 1.9920 2.5170 3.9950
7 .9390 1.9310 2.9360 3.6160 5.2000

.5100 1.1658 1.9200 2.4640 3.7960
8 .9240 1.8920 2.8560 3.4980 4.9300

.5000 1.1380 1.8660 2.3780 3.5300
9 .9130 1.8630 2.7940 3.4100 4.7310

.4935 1.1190 1.8260 2.3190 3.4000
10 .9040 1.8410 2.7520 3.3450 4.6170

.4880 1.1050 1.8000 2.2800 3.2900
11 .8960 1.8230 2.7200 3.2960 4.5190

.4810 1.0950 1.7800 2.2480 3.2500
12 .8910 1.8100 2.6920 3.2580 4.4400

.4780 1.0860 1.7560 2.2200 3.2050
13 .8860 1.7970 2.6690 3.2280 4.3600

.4776 1.0780 1.7500 2.1900 3.1450
14 .8820 1.7890 2.6500 3.1980 4.3310

.4760 1.0370 1.7380 2.1860 3.1400
15 .8790 1.7820 2.6350 3.1760 4.2760

.4730 1.0680 1.7300 2.1750 3.1130
20 .8680 1.7530 2.5820 3.0880 4.0700

.4670 1.0520 1.6980 2.1300 3.0330
25 .8610 1.7380 2.5560 3.0450 4.0100

.4660 1.0430 1.6840 2.1030 3.0200
30 .8570 1.7280 2.5360 3.0220 3.9600

.4640 1.0380 1.6720 2.1000 2.9800

We use Fortran77 to program the double integrals. Integration is carried
out by the Romberg numerical method (Burden and Faires (1988)) in which



38 P. CHEN AND J. ZHANG

Neville’s algorithm (Burden and Faires (1988)) is used for extrapolation.
We modified the subroutines provided by Press, Teukolsky, Vetterling, and
Flannery (1992) for our program. The upper limits of the integration for the
student’s t-density functions depend on the degree of freedom of the density
function. All real variables are declared as double precision. Programs are
executed under a UNIX environment using SUN4 600 Series and SUN4
Sparc 2000 machines.

We also provide a table (Table 3) of the approximation for the expected
sample sizes using the h = h′1 value obtained in Table 1 and for r =
(δ∗−c)2

σ2
i

. Mathematica was used to perform the calculation. We compute
the approximation of the expected sample sizes using the lower bound
formula for E(ni) in Theorem 4. The formula is:

(n0 + 1)Fn0−1

(
(n2

0 − 1)r
h2

)
+
h2

r

[
1− Fn0+1

(
(n2

0 − 1)r
h2

)]
. (38)

By (38), it is clear that E(ni) is dominated by h2

r when r is small, h
is large, and n0 is not very large. Indeed, from Table 3 one sees that the
change of E(ni) is proportional to the change of r for a fixed h and when r
is small, h is large, and n0 is not very large. In fact h2

r is a precise estimate
of E(ni) when r is small, h is large, and n0 is not very large.

Table 3. This table provides some approximations of the expected sample sizes for procedure PE .

k = 3, P ∗
1 = .90

n0 r
.05 .10 .30 .45 .60 .75 1.0 1.25 1.5

3 329.047 164.560 54.980 36.769 27.697 22.278 16.900 13.712 11.616

4 206.210 103.105 34.374 22.930 17.222 13.814 10.445 8.472 7.205

6 149.714 74.857 24.961 16.681 12.606 10.252 8.040 7.046 6.514

8 131.892 65.946 22.002 14.794 11.429 9.705 8.493 8.129 8.031

10 123.505 61.760 20.993 14.961 12.610 11.648 11.136 11.027 11.005

15 113.765 56.882 19.474 15.541 15.036 15.001 15.000 15.000 15.000

20 109.887 54.944 21.006 20.010 20.000 20.000 20.000 20.000 20.000

25 107.462 53.732 25.069 25.000 25.000 25.000 25.000 25.000 25.000
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Table 3. Continuation.

k = 3, P ∗
1 = .95

n0 r
.05 .10 .30 .45 .60 .75 1.0 1.25 1.5

3 690.324 345.179 115.121 76.804 57.662 46.190 34.739 27.889 23.339

4 367.053 183.527 61.177 40.787 30.596 24.485 18.384 14.739 12.324

6 242.347 121.174 40.392 26.934 20.217 16.208 12.261 9.990 8.582

8 206.082 103.041 34.349 22.914 17.242 13.922 10.853 9.341 8.606

10 189.113 94.558 31.621 21.397 16.632 14.119 12.169 11.430 11.155

15 172.402 86.201 28.763 19.641 16.249 15.254 15.010 15.000 15.000

20 163.135 81.567 27.456 20.932 20.050 20.001 20.000 20.000 20.000

25 159.726 79.863 28.024 25.060 25.000 25.000 25.000 25.000 25.000

k = 3, P ∗
1 = .99

n0 r
.05 .10 .30 .45 .60 .75 1.0 1.25 1.5

3 3474.250 1737.130 579.055 386.048 289.548 231.651 173.758 143.027 115.877

4 1095.200 547.600 182.533 121.689 91.267 73.014 54.761 43.811 36.512

6 549.152 274.576 91.525 61.017 45.763 36.612 27.464 21.981 18.337

8 429.294 214.647 71.549 47.700 35.776 28.625 21.488 17.240 14.464

10 378.450 189.225 63.083 42.086 31.639 25.446 19.448 16.107 14.124

15 326.432 163.216 54.405 36.274 27.248 21.986 17.425 15.862 15.155

20 297.992 148.996 49.666 33.160 25.349 21.748 20.152 20.007 20.000

25 288.800 144.400 48.138 32.441 26.546 25.178 25.002 25.000 25.000

k = 4, P ∗
1 = .90

n0 r
.05 .10 .30 .45 .60 .75 1.0 1.25 1.5

3 456.985 228.519 76.265 50.928 38.284 30.716 23.179 18.686 15.714

4 263.974 131.987 43.999 29.339 22.017 17.633 13.273 10.686 8.993

6 187.272 93.636 31.216 20.827 15.664 12.615 9.693 8.108 7.206

8 163.135 81.567 27.196 18.179 13.786 11.330 9.287 8.467 8.158

10 151.470 75.739 25.461 17.561 14.130 12.502 11.433 11.120 11.032

15 138.865 69.432 23.292 16.844 15.270 15.027 15.000 15.000 15.000

20 133.334 66.667 23.264 20.143 20.002 20.000 20.000 20.000 20.000

25 130.663 65.331 25.670 25.001 25.000 25.000 25.000 25.000 25.000
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Table 3. Continuation.

k = 4, P ∗
1 = .95

n0 r
.05 .10 .30 .45 .60 .75 1.0 1.25 1.5

3 930.257 465.141 155.092 103.437 77.622 62.143 46.680 37.417 31.256

4 460.800 230.400 76.801 51.202 38.404 30.728 23.057 18.463 15.410

6 291.085 145.542 48.515 32.346 24.267 19.431 14.630 11.808 9.998

8 244.720 122.360 40.787 27.198 20.423 16.401 15.529 10.441 9.288

10 223.781 111.891 37.353 25.091 19.196 15.924 13.250 11.935 11.401

15 201.740 100.870 33.631 22.600 17.771 15.831 15.072 15.004 15.000

20 190.715 95.357 31.858 22.549 20.299 20.020 20.000 20.000 20.000

25 185.441 92.720 31.389 25.386 25.006 25.000 25.000 25.000 25.000

k = 4, P ∗
1 = .99

n0 r
.05 .10 .30 .45 .60 .75 1.0 1.25 1.5

3 4560.200 2280.100 760.044 605.705 380.038 304.040 228.045 182.452 152.059

4 1361.250 680.625 226.875 151.250 113.438 90.750 68.063 54.452 45.378

6 636.192 318.096 106.032 70.688 53.016 42.414 31.813 25.456 21.224

8 486.098 243.049 81.016 54.011 40.509 32.409 24.317 19.482 16.293

10 426.334 213.167 71.606 47.393 35.595 28.568 21.685 17.758 15.348

15 365.684 182.842 60.947 40.633 30.492 24.482 18.911 16.384 15.412

20 331.298 165.649 55.217 36.828 27.845 23.166 20.442 20.035 20.002

25 321.602 160.801 53.601 35.865 28.145 25.577 25.012 25.000 25.000

7. An Illustrative Example

Now we present an example to illustrate the procedure PE .
Example: Suppose that we are given three normal populations with

unequal and unknown variances. Suppose that we wish to use the inte-
grated formulation to select the population having the largest population
mean if µ[3] − µ[2] ≥ 1, and to select a subset that contains the longest
mean if µ[3] − µ[2] < 1.

Suppose that for certain practical reasons, the experimenter decides to
take a initial sample of size n0 = 15. We use Fortran to generate three ran-
dom samples of size 15 from populationN(4, .92), N(4.5, 12), andN(5.5, 1.52).
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We obtain:

15∑
j=1

X1j = 57.4729,
5∑

j=1

X2j = 63.6917,
5∑

j=1

X3j = 89.5628, (39)

S1(15) = .76247, S2(15) = .82931, S3(15) = 1.2974.

Now we suppose that the experimenter has specified P ∗1 = P ∗2 = .95 and
δ∗ = 1. Suppose that the experimenter also specified a = 2 (i.e. c = 1

2 ).
From Table 1 with k = 3, n0 = 15, and P ∗1 = .95, the experimenter
finds h∗1 = 2.9360. From Table 2 with k = 3, n0 = 15 and P ∗2 = .95,
the experimenter finds that h′2 = 2.9360, h′3 = 1.839. Therefore, h∗2 =
(a− 1)h′2 = 2.9360 and h∗3 = h′3 = 1.839. Thus the experimenter finds that
h∗ = max{h∗1, h∗2} = 2.9360 (here h∗1 and h∗2 are the same since we choose
them to be the same (when a = 2) in the calculation of Table 2), and

ni = max

{
16,

[(
Si × 2.9360

1− 1
2

)2
]}

. (40)

We obtain n1 = 21, n2 = 24, and n3 = 59. Hence 6, 9, and 44 addi-
tional observations must be taken from population one, two, and three,
respectively. The experimenter also computes d = 1.839×

1
2

2.9360 = 0.3132.
Therefore, the selection rule is:

select the population associated with X̄[3] if X̄[3] ≥ X̄[2] + .5,
or (41)
select the populations which satisfy X̄(i) ≥ X̄[2] − .3132 if X̄[3] < X̄[2] + .5.

The Fortran program generates the second samples of appropriate size
from populations N(4, .92), N(4.5, 12), and N(5.5, 1.52), respectively. In
order to compute the weighted averages, one needs to specify the weights
aij , i = 1, 2, 3; j = 1, 2, . . . , ni which would satisfy the conditions (13) and
(14). To specify the aij ’s, we first compute:

ci =
(ni − 1) +

√
(ni − 1)

[
(ni − 1)− ni(1− e2

S2
i
)
]

(ni − 1)ni
. (42)

By letting aij = ci, i = 1, 2, 3; j = 1, 2, . . . , ni − 1 and aini
= 1 − ci(ni −

1), i = 1, 2, 3, we are guaranteed that the conditions (13) and (14) are
satisfied. Our program computes c1 = .0499423, c2 = .0426206, and
c3 = .0172361. Therefore, a1j = .0499423, j = 1, 2, . . . , 20, a1,21 = .00154;
a2j = .0426206, j = 1, 2, . . . , 23, a2,24 = .0197262; a3j = .0172361, j =
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1, 2, . . . , 58, a3,59 = .0003062. One can easily check that S2
i

∑ni

j=1 aij =
( 1
2h∗2

)2 = .0290, for i = 1, 2, 3. The weighted averages are:

X̄1 = 3.95310, X̄2 = 4.37875, X̄3 = 5.44820. (43)

Since X̄[2] + .5 = 4.37875 + .5 = 4.87875 and X̄[3] = 5.44820 > 4.87875,
the experimenter will select only the population number three and claim
that its weight is the largest.
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