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Hedging Entry and Exit Decisions:
Activating and Deactivating Barrier Options
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Abstract. Investment projects and businesses can be entered or exited at a cost,
and the theory of real option teaches us how to find optimal activity levels that should
trigger entry or exit. However, in practice, different managers or owners operate under
different constraints and might apply different thresholds to the same business. We are
interested in the hedging of the risk related to the cost of sub-optimal entry or exit.
We introduce a new class of derivative products that can hedge this risk. The pricing
of these derivatives involves the joint law of a Brownian excursion and its supremum,
which is calculated thanks to Bessel processes-related distribution laws.
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1. Introduction

Real option theory establishes an analogy between monopolistic investment
projects and financial options. An investment project, indeed, contains an
option to wait for a better time to invest, depending on the evolution of the
random variables that condition the project’s profitability (such as market
share, commodity prices or labor costs). The classical Net Present Value
rule, which prescribes investment as soon as a positive value is generated
today, does not take into account the value contained in the option to
wait. The option to exit an investment that has proven unattractive also
possesses a value. Entry or exit are in most cases costly; there is an often
important fixed cost in stopping a manufacturing plant, or restarting it.

Under these conditions, it is well known that the optimal strategy, in
terms of the entry or exit from a perpetual investment opportunity, is
composed of two levels that will respectively trigger investment and dis-
investment, when hit by the relevant variable. Dixit and Pindyck (1994)
have presented an extensive survey of real option models, and of the en-
try/exit decision in particular. The value of an investment, as far as its
management follows this rational decision behavior, is a function of the
index level (the level of the relevant variables), and depends on whether

† Requests for reprints should be sent to L. Gauthier, 15 W 73rd St, Apt 2, New York,
NY 10023, USA.
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the project is activated or not. If the underlying variable upon which the
future cashflows of the project depend is traded in the marketplace, the
value of the option can be determined thanks to a no arbitrage principle1.
If it is not traded, one can resort to assuming investors are risk-neutral,
and the actual calculation of the project value remains the same, with only
a difference in the drift of the underlying variable. This risk-neutral as-
sumption, and how some aversion of risk can be factored into the risk-free
rate, is discussed in Trigeorgis (1996).

In practice, the levels at which a firm will enter of exit an investment are
not necessarily optimal. McDonald (1999) has shown that there are ”rules
of thumb” used by corporations managers that allow them to implicitly
proxy real options, such as hurdle rates or profitability requirements. This
does not mean that many firms are poorly run, but rather that these proxy
strategies do a good job of improving the straight Net Present Value rule.
One consequence of this observation is that different investors might want
to apply different entry and exit levels to the same project, even though
they have the same entry costs and assumed underlying dynamics. Differ-
ent managers may also be able to lower entry or exit costs, or to change
the dynamics of the project’s stream of cashflows, which would result in
different entry and exit levels.

Our goal in this paper is to see how the buyers of a business could ”hedge”
the difference between their own preferred ”optimal” levels and the ones
actually in place (whether the difference in the levels comes from a better
strategy or from different costs). In our analysis, we introduce a new kind
of derivatives, which we call Switch options, and show that they are a well-
adapted instrument to hedge the risk related to business entry and exit
decisions. We will see how Switch options allow the buyer of a business
to cancel the risk that, when he implements his new entry/exit strategy
(as opposed to the prior strategy followed by the previous owner), he may
have to pay immediate entry or exit costs. Since these entry or exit costs
depend on whether the firm is active or not when he implements the new
strategy, the buyer incurs a random cost. The larger the delay between the
buying of the business and when the buyer is actually able to implement
his new strategy, the greater the potential discrepancy between the actual
activity level of the firm and the optimal activity level.

We define Switch options as path-dependent derivatives written on a sin-
gle underlying that are activated every time the underlying hits a barrier
and deactivated every time it hits another barrier. At maturity, if the
option is activated, the holder receives a payoff that is a function of the
underlying at that time; if it is not activated, the payoff is a different and
lower function of the underlying’s price. The number of times such an op-
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tion can be activated and deactivated is not bounded. Unlike a standard
barrier option, the Switch option is never totally cancelled when the un-
derlying hits the barrier, as there is always a chance it will go back and hit
the other barrier. To our knowledge, such options are not currently traded
with significant volume in financial markets.

The second section of the paper focuses on a simple probabilistic approach
to calculate the value of an investment with given entry and exit thresholds.
In the third section, we give a general pricing formula for Switch options
and compare them with standard barrier options. In the fourth section,
we analyze the relationship between real options and Switch options, and
show how the latter can help hedge the former. The fifth section contains
a proof for a central theorem in the third section’s approach. This proof
makes use of the Brownian Meander. Finally, the sixth section concludes
the paper.

2. Real Options: Entry and Exit Decisions

The optimal barriers that determine entry or exit decision can be found,
and are thoroughly studied in Dixit and Pindyck’s book, as well as in the
important academic literature on the subject2. We propose here a simple
probabilistic approach to derive a closed-form solution for the value of an
investment with entry and exit. Brennan and Schwartz (1985) proposed
a numerical method to calculate the value of an investment project with
entry and exit, when the entry and exit levels are determined optimally.
Our goal here is to write the value of the investment project as a function
of the entry and exit barriers.

If we derive the value of an investment, dependent on the entry and
exit levels a and d, then, the optimal value of this investment will be its
maximum with respect to both a and d.

We assume that there is an underlying economic variable S, driven by
the following process:

dSt

St
= µdt + σdBt, S0 = x

where B is a Brownian Motion on the measured space (Ω,F , P), and (Ft)t≥0

is the natural filtration of B. S represents the future stream of cash-flows
generated by the investment project, and could therefore be dependent on
oil prices (if the project is a refinery), gold prices (in the case of a gold
mine), or even on the market share in a given product. As in most of the
real-option theory, let us consider that the underlying variable, or one of
its derivatives, is traded.
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Since there is only one source of noise, the market is complete. µ is
assumed to be smaller than the risk-free rate r used for discounting the
cashflows. Equivalently, we can assume that µ = r − δ, where δ is the
convenience yield (a continuous dividend paid by the project), and reflects
a degree of risk aversion of investors. We suppose there is a running cost of
c, so that the stream of cashflows generated by the project may sometimes
becomes negative. For example, this constant running cost could be the
recurrent expenses the firm has to pay to maintain the activity, which are
not proportional to profits, such as payroll expenses.

In this case, we derive easily that the value of a perpetual project at time
0 is

ES0

[∫ ∞

0

dse−rs (Ss − c)
]

=
S0

δ
− c

r

= F∞ (S0)−
c

r

where F∞ represents the gross revenue from the project.

Lemma 1 The value F of a perpetual investment project that can be entered
at level a and exited at level d, for the respective costs of Ce and Cx verifies:
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.



HEDGING ENTRY AND EXIT DECISIONS 55

Proof: We write the value of the investment opportunity just when it has
been deactivated as a function of its value just when it has been activated,
and reciprocally. Naturally, the value of the investment does not depend on
time, only on the level of the underlying variable and whether it is active
or not. Consequently, the optimal strategy is time-invariant, meaning that
it can be represented by the constant levels a and d. Using the strong
Markov property of the Brownian Motion, which ensures that Brownian
increments before and after a stopping time are independent, gives us:

F (d) = Ed

[
e−rTa(S)

]
(F (a)− Ce)

F (a) = Ea

[∫ Td(S)

0
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]
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By solving for F (a) and F (d) we get
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and

F (a) =
F∞ (a)− c
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We write for a ≥ S0
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Now, we use the well-known fact that for a Brownian Motion, E
[
e−λTh

]
=
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√

2λ, combined with Girsanov’s theorem, and we get:
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These calculations allow us to write
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which is the result from the lemma.
We now have the following

Proposition 1 The value of an investment project verifies
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Proof: If the project is not activated, then its value is the present value
of its value when it is activated, minus the cost of activation:

Fdeact (S0) = ES0

[
e−rTa(S)

]
(F (a)− Ce) .

If the project is activated, then its value is the present value of the cashflows
it will generate until it is stopped, plus its present value deactivated, minus
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the cost of deactivation:

Fact (S0) = ES0

[∫ Td(S)

0
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]
+ES0

[
e−rTd(S)

]
(F (d)− Cx)

= ES0

[
e−rTd(S)

]
(F (d)− Cx)

+F∞ (S0)−
c

r

−ES0

[
e−rTd(S)

] (
F∞ (d)− c

r

)
.

We obtain the result by replacing in the above expressions the value for 2
and 3.

The value of an investment project can be maximized with respect to the
entry and exit levels a and d. Let us look at an example, where we make
the following assumptions:

Ce = 500, Cx = 50, c = 93.3
r = 8%, µ = 2%, σ = 20% and S0 = 100.

In these conditions, the value of the project if it is started right away is
about 0 (after entry costs). If the project is running and if it is never
deactivated, its value is about 500. The following tables show the project’s
value, depending on the entry levels a and d. Note that apart from the case
where a or d are very close to S0, the project value is not very sensitive
to the specific choice of barriers. This would seem to confirm the opinion
developed in MacDonald (1999). It appears that as far as the exit level is
below 70, the value of the active project is greater by following an entry/exit
strategy than by just leaving the project in place (the values in the table
are above 500).

Table 1 shows the active value; the different columns represent various
inputs for a (above the current index level of 100), while the rows represent
various inputs for d (below 100).
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Table 1: Value of an Active Project as a Function of a and d

a, d 100 110 120 130 140 150 160 170 180
100 NA -288 -84 53 147 212 257 288 309
90 -14 141 243 312 360 392 415 430 440
80 305 379 429 463 486 502 513 520 525
70 470 505 529 545 556 564 569 572 574
60 548 564 575 583 588 591 594 596 597
50 576 583 588 591 594 595 596 597 597
40 574 577 579 581 582 582 583 583 583
30 556 557 558 558 559 559 559 559 559
20 532 532 532 532 532 532 532 532 532

Table 2 shows the value for an inactive project.

Table 2: Value of an Inactive Project as a Function of a and d

a, d 100 110 120 130 140 150 160 170 180
100 NA -520 -201 0 131 218 277 317 345
90 -638 -259 -28 119 216 280 324 353 372
80 -343 -72 96 205 277 325 357 379 392
70 -144 53 180 263 318 355 380 396 406
60 -23 130 230 297 343 373 393 406 414
50 40 169 255 314 355 382 400 411 420
40 60 180 262 319 357 384 401 412 421
30 52 174 257 315 354 381 399 410 420
20 31 159 247 307 348 377 396 408 418

3. The Pricing of Switch Options

Switch options cannot be made out of finite combinations of single or
double barrier options. A Switch option cannot either be valued using
a two-dimensional partial differential equation, since the value at a barrier
depends on whether it has been activated or deactivated, and therefore
depends on its value at the preceding barrier hitting time.

The payoff of a Switch option is a function of

• the underlying value at maturity,

• whether or not the option is active at maturity, which depends on
whether the underlying value has crossed an activating or deactivating
barrier.
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The latter feature can be summarized as: whether the underlying value
has crossed a deactivating barrier since it last crossed an activating barrier,
or since it was first activated.

So as to price options, the Black-Scholes model standardly assumes,
among other things, that it is possible to perfectly replicate the payoff
of a derivative product with a self-financing portfolio. If there is only one
source of risk, it implies that all the derivatives that can be written on an
underlying financial asset are redundant. It makes it possible to hedge any
derivative with the underlying. We therefore assume that for the purpose of
pricing the Switch options, we are in a ”risk-neutral” world, the underlying
variable value follows the same process as earlier:

dSt

St
= (r − δ) dt + σdBt, S0 = x.

Let us now define the following path functionals

ga
t (X) = sup {0 ≤ s ≤ t : Xs = a}

m (t, T ) (X) = inf
u∈[t,T ]

Xu

Ta (X) = inf {s ≥ 0 : Xs = a} .

Respectively, they are the last time the process crossed level a, the mini-
mum, the maximum, and the hitting time of a. In the following, we will
consider two barriers a and d (activating and deactivating), and we will
assume that a ≥ d, since this is the usual situation in the real option ap-
proach. The method to derive the results in the opposite case is the same,
and in view of our application to real option theory, it does not serve any
purpose

A Switch option can start its life being already activated, or deactivated.
A particular case of Switch option would be a special ”second chance”
knock-out call, that could be reactivated any time after it has been knocked
out, just by hitting another level. Such an option would have a zero payoff
if it is not activated at maturity.

These options are clearly distinct from classical barrier options

• Even if the ”inactivated” payoff is zero, they are never worth zero unless
at maturity they are not exercised

• The reactivation feature provides the holder with a sort of insurance
against a worst-case scenario.

• In a situation of high volatility, a barrier option would have more
chances to be cancelled, whereas if it is also true for the Switch op-
tion, it has also more chances of being reactivated.
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We can consider two cases, that is whether the option starts as being
active, or inactive. If the option is inactive, then its payoff will be, for a
maturity T

p (ST )
(
ITa≤T Im(ga

T ,T)≥d

)
+q (ST )

(
1− ITa≤T Im(ga

T ,T)≥d

)
.

This expressions means that if the option starts as inactive, it will pay p
if it is activated, and does not hit the deactivating barrier after its latest
activation, and q in the other case. The value of an option that starts by
being active can be derived from the value of the inactive option. Indeed,
the active option will pay: either if it is never deactivated, or if it is deac-
tivated; it will become an option that starts by being inactive at the time
it is deactivated.

We can write, thanks to the classical option pricing theory, the price of
an inactive option at time 0 and maturity T :

Vd (x, T ) = e−rT Ex
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.

We have the following

Proposition 2 The price of the inactive switch option is
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with

f (y) = eξy (p (xeσy)− q (xeσy))

b =
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ln
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c =
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2

)
As in the preceding section, we can chose simplified parameters, so as

to make the results clearer. We assume µ = σ2

2 so that ξ = 0. Also, we
are interested in a simple payoff function: p = 1 and q = 0 ; then f = 1.
This option pays 1 if it is activated at maturity, and nothing otherwise. Its
value in this case is

1
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By comparison, the value of a knock-in option that pays 1 if it has been
activated (knocked-in) would be:

e−rT P (Tb ≤ T ) = e−rT

∫ T

0

dt
|b|√
2πt3

e−
b2
2t ,

so the difference between the two is
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The proof of the Proposition follows.
Proof: We write ξ = 1

σ

(
r − δ − σ2

2

)
, and we get
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Thanks to Girsanov’s theorem, we have
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We will focus on the first term in the above sum. It is natural then to
study an expression of the following form, for a Brownian Motion B,

E
[
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gb
T

,T
(B)≥c

]
=
∫ T

0

P (Tb ∈ dt) E
[
f (BT ) Im(gb

T ,T)≥c

∣∣∣Tb = t
]

=
∫ T

0

P (Tb ∈ dt) Eb

[
f (BT−t) Im(gb

T ,T)≥c

]
thanks to the independence of the Brownian paths (Bt, t ≤ Tb) and (Bt+Tb

− b, t ≥ 0).
Now we can write

Eb

[
f (BT−t) Im

gb
T−t

,T−t
≥c

]
= E

[
f (BT−t + b) Im(gT−t,T−t)≥c−b

]
=
∫ T−t

0

P (gT−t ∈ dv)

E
[
f (BT−t + b) Im(v,T−t)≥c−b

∣∣ gT−t = v
]
.
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Thus, we have to use the law of the last Brownian excursion away from b
before T − t. We can write this using the Brownian Meander3 and condi-
tioning by whether the excursion straddling T − t is above or under 0.

E
[
f (BT−t + b) Im(v,T−t)≥c−b

∣∣ gT−t = v
]

=
1
2

E
[
f
(
−
√

T − t− vm1 + b
)]

+
1
2

E
[
f
(√

T − t− vm1 − b
)

Isupu≤1 mu≤ b−c√
T−t−v

]
.

Where m is a Meander (do not confuse with the minimum functional that
we have noted m (a, b)). We have used the scaling property to simplify the
expression. Now, we have

E
[
f
(
−
√

T − t− vm1 + b
)]

=
∫ +∞

0

dxf
(
b−

√
T − t− vx

)
xe−

x2
2

using the well-known law (cf Revuz and Yor (1991) or Yor (1995)). Now,
using theorem 1 shown in section 5, we can write

E
[
f (m1) Isupu≤1 mu≤y

]
=
∫ y

0

dzf (z) (z + 2ky)
∑
k∈Z

e−
(z+2ky)2

2

which gives, after simplifications:

E
[
f (BT ) ITb(B)≤T Im(gb

T ,T)(B)≥c

]
=

1
2

∫ T

0

P (Tb ∈ dt)
∫ T−t

0

P (gT−t ∈ dv){∫ +∞

0

dxf
(
b−

√
T − t− vx

)
xe−

x2
2

+
∫ b−c√

T−t−v

0

dzf
(√

T − t− vz − b
)

∑
k∈Z

(
z + 2k

b− c√
T − t− v

)
e−

(
z+2k b−c√

T−t−v

)2

2

}
.
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In this expression, the laws of Tb and gT−t are known. We have

P (Tb ∈ dt) = dt
|b|√
2πt3

e−
b2
2t and

P (gT−t ∈ dv) =
dv

π
√

T − t− v
.

So we can finally write the result and complete the proof.
The price of the active option can also be obtained. As we discussed

above, the active option becomes an inactive option when it is deactivated,
or just pays at maturity if it is never deactivated. Its price is therefore

Va (x, T ) = Ex

[
e−rTdVd (d, T − Td) ITd≤T

]
+e−rT Ex [p (ST ) ITd>T ] .

It is very clear in this expression that such a price is decomposed into
the price of a classical down and out option e−rT Ex [p (ST ) ITd>T ] (as it
pays only if the cancelling barrier is not hit) and the price of this ”second
renewable chance” Ex

[
e−rTdVd (d, T − Td) ITd≤T

]
, itself matching the value

of a Switch option starting deactivated.
Let us write the price of the down and out option as Bdo (x, T ). We

obtain the price of the deactivated Switch option by writing the law of the
first hitting time, which is well known. Indeed, we have

P (Td ∈ dt) =
1
σ ln

(
S0
d

)
√

2πt3
exp

(
− 1

2t

(
1
σ

ln
(

S0

d

)
− ξt

))
and it allows us to write

Va (x, T ) =
∫ T

0

e−rt
1
σ ln

(
S0
d

)
√

2πt3

exp
(
− 1

2t

(
1
σ

ln
(

S0

d

)
− ξt

))
Vd (d, T − t) dt

+Bdo (x, T ) .

4. Relationship Between Switch Options and Real Options.

4.1. Switch Options as a Replication Tool

Let us consider a switch option, the payoff of which at maturity is set to
equal the value at that time of an investment project with possible entry
and exit. The underlying variable is supposed to be a commodity, traded
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on a market, so that no-arbitrage arguments are valid for pricing purposes.
The barriers of the option are chosen so that they are equal to the thresholds
of the investment project in question. Therefore, at maturity, whether the
investment is active or not, the switch option replicates the project’s value.
In other words,

Value of investment project today
= Value of Switch option today

whose payoff equals the value
of the investment project at time T .

This means that the switch option also replicates the value of the invest-
ment at any time since its inception. Hence, buying the switch option is
equivalent, in terms of cashflows, to investing and following the optimal
entry/exit decision rule. Equivalently, anyone possessing shares in the in-
vestment can perfectly hedge them thanks to the switch option. The switch
option therefore also constitutes an option to enter into a project, by pro-
viding the holder with exactly the necessary amount of cash at maturity
to buy the project. It is a financial option written on a real option.

An investment decision typically generates a continuous stream of cash-
flows, when it is active, and nothing when an exit decision has just been
made. If instead the investor buys a switch option, aiming at ”exercizing”
it at maturity and then buying into the project, he will pay the premium,
and then receive nothing. In fact, it is the appreciation in value of the
option which compensates for the missing stream of cashflows.

4.2. Switch Options to Hedge Entry and Exit Costs

In our analysis, we are more interested in Switch options as a way to hedge
the future cost of entering or exiting a business, rather than as replication
tools. When a project or a firm changes hands, the new management
typically will need to implement new strategies, so that they can extract
more value from the business. This could be because the firm was badly
run, or because of a special know-how that allows them to reduce current
costs. In any case, it is fair to assume that the new management, within
the framework of entry/exit decisions and real options, will set up different
thresholds from the ones in place.

We believe that in most cases, there is a significant delay between the
buying of a business (in fact, that is the instant when the buyer decides to
buy the business) and the time when the buyer is able to implement his
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strategy. This delay comes from the time it takes to close the acquisition
and restructure the reporting lines in the firm4.

Switch options provide a hedging vehicle during this delay. Let us write
a′ and d′ the activating and deactivating levels following the new strategy,
associated with entry and exit costs of C ′e and C ′x (which may be different
from the costs incurred by the previous owners/managers). Note that if
the costs are lower for the buyer, we would expect a′ ≤ a and d′ ≥ d. If
however the firm was not optimally run, the new optimal barriers could be
anywhere with respect to the previous ones.

At time 0, the buyer has decided to acquire the business and possesses a
majority of its shares (acquired at the market price, and therefore pricing in
the previous strategy). The buyer reckons that he will be able to implement
his new strategy only at time T . The buyer incurs the risk that, at time
T , the new optimal strategy will require an immediate change in the firm’s
activity level:

• if a′ ≤ a then the buyer will need to activate the business and pay C ′e
if a′ ≤ ST ≤ a and the business is not active at time T

• if a′ ≥ a then the buyer will need to deactivate the business and pay
C ′x if a′ ≤ ST ≤ a and the business is active at time T

• if d′ ≥ d then the buyer will need to deactivate the business and pay
C ′x if d′ ≤ ST ≤ d and the business is active at time T

• f d′ ≤ d then the buyer will need to activate the business and pay C ′e if
d′ ≤ ST ≤ d and the business is not active at time T

A simple Switch option allows us to hedge these risks. For example, if
a′ ≥ a and d′ ≤ d, then the buyer would need to be long one Switch option
that pays

• C ′e if deactivated with levels a and d and if d′ ≤ ST ≤ d

• C ′x if activated with levels a and d and if a′ ≤ ST ≤ a.

The value of the option at time zero would therefore be given by Propo-
sition 2 , with

p (z) = C ′xIa′≥z≥a

q (z) = C ′eId′≥z≥d

To illustrate this calculation, let us price one leg of this Switch option.
We are interested in the part of the option that pays C ′e if the project is
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not activated at time T and d′ ≤ ST ≤ d. Let us see what happens if the
new owner wants to lower the exit threshold significantly. This would make
sense if the business was previously run with an excessively high exit level:
in this case, exiting often costs a lot, based on the example numbers we
showed in the first section. Let us assume that µ = σ2

2 so as to simplify
the calculations.

If we use the same parameters as in the numerical examples of the first
section, with a = 120 and d = 80, and d′ = 40 (so the inactive project has
a value of about 96 today), we find that the option is worth about 15% of
C ′e. Therefore, if C ′e is the same as Cx (say 500), then the new owner could
pay 75 for the Switch option. This option will pay the new owner the entry
cost of 500 in a year, if and only if the business is not active while it should
be active. Since the value of the project with the new barriers of 120 and
40 is 262, that is 166 over its current cost with the sub-optimal barriers of
120 and 80, the cost of buying the Switch option is well compensated for.

5. The Joint Law of the Brownian Meander and Its Running
Supremum

We have the following:

Theorem 1 For any measurable positive or bounded function f we have

E
[
f (m1) Isupu≤1 mu≤y

]
=
∫ y

0

dzf (z)
∑
k∈Z

(z + 2ky) e−
(z+2ky)2

2

where m is a Brownian meander
(
mu = 1√

t−gt

∣∣Bgt+u(t−gt)

∣∣ , 0 ≤ u ≤ 1
)

for any positive t.

As could be expected, we can check that

lim
y→∞

E
[
f (m1) Isupu≤1 mu≤y

]
=
∫ ∞

0

dzf (z) ze−
z2
2 = E [f (m1)] and

lim
y→0

E
[
f (m1) Isupu≤1 mu≤y

]
= 0.

Proof: The proof relies on Imhof’s theorem and on the explicit expression
of running supremum densities for Bessel-3 processes. These densities are
known and can be directly obtained from Borodin and Salminen(1996).
They give the joint law of a Bessel-3 process starting from x > 0 and its
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running maximum (formula 1.1.8, p. 317):

Px

(
Rt ∈ dz, sup

s≤t
Rs ≤ y

)
=

z

x
√

2πt

∑
k∈Z

(
e−

(z−x+2ky)2

2t − e−
(z+x+2ky)2

2t

)
dz.

A limit calculation gives the law for a Bessel-3 process starting from 0.

P0

(
R1 ∈ dz, sup

s≤1
Rs ≤ y

)
= Iz≤y

z
√

2√
π

∑
k∈Z

(z + 2ky) e−
(z+2ky)2

2 dz.

Thanks to Imhof’s theorem (see Yor (1997) or Imhof (1984)), we have a re-
lationship between the Brownian meander and a Bessel-3 process. Namely,
we have

M |F1
=
(√

π

2
1

X1

)
R

(3)
0

∣∣∣
F1

where M is the law of the meander between 0 and 1 and R is the law of a
Bessel-3 process starting from zero up to 1. Applying this result gives

E
[
f (m1) Isupu≤1 mu≤y

]
= E0

[
f (R1)

√
π

2
1

R1
Isupu≤1 Ru≤y

]
=
∫ y

0

dzf (z)
∑
k∈Z

(z + 2ky) e−
(z+2ky)2

2

which can also be written
=

√
2π
∑
k∈Z

E
[
f (N − 2ky) NI(2k+1)y≥N≥2ky

]
for N a normal Gaussian.

This ends the proof.

6. Concluding Remarks

We have proposed a new class of barrier derivatives, Switch options, that
allow to mitigate the losses due to the ”knock-out” effect of classical barrier
options. These derivative products also constitute a hedging tool of the
business risk linked to entry or exit decisions. Switch options can replicate
the exit or entry costs that a buyer of a business might have to pay so as
to implement his optimal entry and exit strategy.
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We required that the underlying business variable be traded, which would
restraint the use of these derivatives mostly to commodities firms, unless
investors are assumed to be risk-neutral. As a tool to price Switch options,
we have derived the joint law of the Brownian Meander and its running
maximum.

Notes

1. As in the case of financial options, any future stream of cashflows that can be repli-
cated can be priced, and its value equals the expectation of these cashflows under
the risk-neutral probability. See Dixit and Pindyck (1994) or Trigeorgis (1996) for
an exposition of these principles applied to real options.

2. Dixit and Pindyck’s book contains an extensive review of the literature.

3. For a precise definition and some comments, refer to the book by Revuz and Yor
(1991), Chapter XII, p. 454, Exercise 3.8

4. Recent examples, such as the buying of JP Morgan by Chase, or DLJ by CSFB,
illutrate the delay can easily be of 6 months.
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