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Abstract. Analytic bootstrap estimators for the moments of survival quantities are
derived. By using these expressions recommendations can be made as to the appropri-
ateness of bootstrap estimation under censored data conditions.
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1. Introduction

It is well known that in the i.i.d. continuous univariate sample setting
nonparametric bootstrapping consists of “plugging in” the empirical distri-
bution function, F̂n(x) =

∑n
i=1 I[xi≤x]/n, into some functional of interest,

α(F ), in order to obtain the corresponding bootstrap estimate α(F̂n). A
simple example of this is the bootstrap estimate of E(X), which is given by
the sample mean X̄ obtained by plugging in F̂n for F into α(F ) =

∫
xdF .

However, it is much more difficult, yet not impossible, to directly obtain
bootstrap estimates of quantities such as Var(X̄2). In practice, the stan-
dard approach to bootstrapping has been to estimate the quantity α(F̂n)

with a Monte Carlo estimate α̂(F̂n) even if α(F̂n) is readily available. This
is due in large part to the relative ease of programming the Monte Carlo
method as compared to calculating α(F̂n). Therefore, most textbooks start
with the Monte Carlo approach, oftentimes to the exclusion of the “exact”
approach, e.g. see such popular bootstrapping texts as Efron and Tibshi-
rani (1993), Shao and Tu (1995), and Davison and Hinckley (1997).

The classical Monte Carlo procedure involves resampling B times from
the data X = (X1, X2, · · · , Xn) with replacement and then obtaining B

bootstrap replications, ultimately yielding the estimate α̂(F̂n) of the boot-
strap estimator α(F̂n), a cruder estimate of α(F ) due to simulation error

on top of sampling error. For a proper bootstrap procedure the limit α̂(F̂n)
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should converge to α(F̂n), as the number of resamples, B, goes to infinity.
Booth and Sarkar (1998) make a global recommendation for the choice of
B of around 800 replications. However, there are many components that
factor into the convergence rates, such as the smoothness α(F̂n). In the
age of high-speed computers B can be taken much larger than 800 in the
small to moderate sample size cases. Therefore, the question is why use
the Monte Carlo approach when “exact” estimators such as those outlined
in Hutson and Ernst (2000) and Huang (1991) are becoming more readily
available and easily programmed. Some justifications are as follows:

1. Reproducibility. The value of α(F̂n) is “fixed” given the data.

2. Zero simulation error.

3. Mathematically attractive. The statistical properties of α(F̂n) are much

easier to verify and study than those α̂(F̂n).

4. Contrary to popular belief there are occasions where the analytical
approach is easier, e.g. see Hutson(1999) and Hutson(2001) for two
meaningful examples.

5. The classical Monte Carlo approach may not provide a proper bootstrap

procedure given censored data, i.e. in certain situations lim α̂(F̂n) 6=
α(F̂n), as B →∞.

Following from the last point given above we provide some useful and
“exact” one and two-sample bootstrap quantities useful in survival analysis
by making use of the well known product-limit estimator introduced by
Kaplan and Meier (1958), with the empirical survival function estimator
defined as

Ŝn(t) =

{ ∏
T(j)≤t

(
n−j

n−j+1

)δ(j)

, T < T(n),

0, t ≥ T(n),
(1)

where T(1) ≤ T(2) ≤ · · · ≤ T(n) are the order statistics corresponding
to the i.i.d. sample of n failure or censoring times T1, T2, · · · , Tn, and
δ(1), δ(2), · · · , δ(n) are censoring indicators corresponding to the ordered
Ti’s, respectively. A value of δ(i) = 1 indicates that T(i) is uncensored,
while a value of δ(i) = 0 indicates that T(i) is censored. To the best of
our knowledge no analytical nonparametric bootstrap estimators for α(F )
have been developed based upon the Kaplan-Meier estimator or any other
nonparametric estimator, accounting for censored data.

The typical Monte Carlo approach for censored data is similar to the clas-
sical approach described above where the pairs (T(i), δ(i)), i = 1, 2, · · · , n
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are sampled with replacement with probability 1/n assigned to each pair.
The bootstrap quantities of interest are then obtained via information sum-
marized over recalculations of the Kaplan-Meier estimator (or other similar
estimators) given by each bootstrap replication, e.g. see Barber and Jen-
nison (1999) and the references therein. This approach of resampling has
some undesirable properties, which can be avoided through the “exact”
approach. It should be clear that even though by definition Ŝn(t) from
equation (1) is defined to be a proper estimator of the survivor function
problems can arise when a given bootstrap resample has large proportion of
censored observations. Should that particular bootstrap resample be used
in the calculations or should it be tossed out?

2. Moment Estimators of Survival Quantities

The general approach for estimating the “exact” bootstrap moments of the
functional E(g(T )), given censored data, is straightforward. We develop
the expressions for important survival quantities such E(T k), E(Ŝ(t0)k),
E([F̂−1(u)]k) and E(F̂−1(u)F̂−1(v)), corresponding to the lifetime central
moments, the survival fraction, the survival quantile moments, and the
covariance between survival quantile moments, respectively. In addition, a
kernel-quantile estimator of survival times falls out as a by-product, which
corresponds to the kernel quantile estimator of Harrell and Davis (1982)
when all observations are uncensored.

For an independent and identically distributed (i.i.d.) continuous sample
of size n from a distribution having positive support let Ti = min(Xi, Ci),
where Xi denotes a failure time and Ci denotes a right censoring time. The
value of Xi is known only if Xi ≤ Ci. In addition, let the indicator variable
δ(i) = 1 if Xi ≤ Ci, and 0 otherwise, and let X(1) ≤ X(2) ≤ · · · ≤ X(m)

denote the ordered observed failure times, m ≤ n. Then we have the
following:

Theorem 2.1. The exact kth bootstrap moment about the origin for
the random variable T is given by

EŜn(T )(T
k) =


∑m

i=1 Xk
(i)

(
Ŝn(X(i−1))− Ŝn(X(i))

)
, δ(n) = 1,∑m

i=1 Xk
(i)

(
Ŝn(X(i−1))− Ŝn(X(i))

)
+T k

(n)Ŝn(X(i)), δ(n) = 0,

(1)

where Ŝn(T ) is the Kaplan-Meier estimator defined at equation (1) and by
definition X(0) = 0 implies Ŝn(X(0)) = 1.
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Proof. For the case δ(n) = 1, the expectation of T k is given by

E(T k) =
∫ ∞

0

tkdF =
∫ 1

0

[F−1(u)]kdu, (2)

=
m∑

i=1

∫ 1−Ŝn(X(i))

1−Ŝn(X(i−1))

[F−1(u)]kdu. (3)

Then the bootstrap estimator follows by substituting F̂n = 1 − Ŝn from
equation (1) for F−1(u) into equation (3), where F̂−1

n (u) is constant in the
half-closed interval,(
1− Ŝn(X(i−1)), 1− Ŝn(X(i))

]
and is equal to X(i). The case δ(n) = 0

follows after slight modification. 2

It follows that the bootstrap mean and variance of T are given by µŜn(T ) =
EŜn(T )(T ) and σ2

Ŝn(T )
= EŜn(T )(T

2) − [EŜn(T )(T )]2, respectively. There-
fore a naive two-sided bootstrap-t confidence interval for expected lifetime,
E(T ), is given by

µŜn(T ) ± tn−1,α/2σŜn(T ), (4)

where tn−1,α/2 denotes the upper α/2th percentile from a Student-t distri-
bution.

Define the quantile function estimator F̂−1(u) = X(i), such that Ŝn(X(i)) ≤
1− u < Ŝn(X(i−1)), i = 1, 2, · · · ,m(≤ n). Then we have the following:

Theorem 2.2. The exact kth bootstrap moment estimator for F̂−1(u)
for the case δ(n) = 1 is given by

EŜn(T )

[
(F̂−1(u))k

]
=

m∑
j=1

Xk
(j) w(j)p,q, (5)

where

w(j)p,q = βp,q(1− Ŝn(X(j)))− βp,q(1− Ŝn(X(j−1))),

βp,q(·) denotes the cumulative beta distribution with parameters p = [nu]+
1 and q = n − [nu] + 2, and [·] denotes the floor function. For the case
δ(n) = 0 add the term T k

(n)βp,q(1− Ŝn(X(j))) to equation (5).
Proof. The proof follows similarly to Theorem 2.1 with a simple substi-

tution of Ŝn for S into E
[
(F̂−1(u))k

]
, where F̂−1(u) = Y([nu]+1) denotes

the ([nu] + 1)st, possibly unobserved, order statistic from a sample of size
n. 2
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A naive two-sided bootstrap-t confidence interval for expected uth sur-
vival quantile, EŜn(T )

[
F̂−1(u)

]
, is given by

µF̂−1(u) ± tn−1,α/2σF̂−1(u), (6)

where the parameters σ2
F̂−1(u)

= EŜn(T )

[
(F̂−1(u))2

]
−

[
EŜn(T )

(
F̂−1(u)

)]2

and
µF̂−1(u) = EŜn(T )

(
F̂−1(u)

)
. A more accurate confidence interval based

upon exact bootstrap percentile distribution for F̂−1(u) is provided in the
next section.

As a by-product of Theorem 2.2, equation (5) can be modified to provide
a kernel quantile function estimator, which reduces to the kernel quan-
tile function estimator of Harrell and Davis (1982) when all observations
are uncensored. Unlike the more traditional kernel quantile function es-
timators with symmetric kernel functions and having the form F̂−1

k (u) =
h−1

n

∫ 1

0
F−1

n (t)K((t−u)/hn)dt, the extension of the Harrell-Davis estimator
has an asymmetric kernel, e.g. see Sheather and Marron (1990) for a gen-
eral study of kernel quantile function estimators based upon uncensored
observations and Padgett (1986) for the development of kernel quantile
function estimators for censored data. The extension of the Harrell-Davis
kernel quantile function estimator for censored observations is defined as

F̂−1
k (u) =

m∑
j=1

X(j)

[
βp,q(1− Ŝn(X(j)))− βp,q(1− Ŝn(X(j−1)))

]
, (7)

where βp,q(·) denotes the cumulative beta distribution with parameters
p = n u and q = n(1− u), 0 < u < 1. Xiang (1995) provides a theoretical
examination of the strengths and weakness of these types of estimators.

Theorem 2.3. The exact bootstrap estimator of Cov(F̂−1(u), F̂−1(v)),
u < v, r = [nu] + 1, s = [nv] + 1, for the case δ(n) = 1 is given by

CovŜn(T )

(
F̂−1(u), F̂−1(v)

)
= Cov(u, v), such that

Cov(u, v) =
m∑

j=2

j−1∑
i=1

wij(rs)

(
X(i) − µF̂−1(u)

) (
X(j) − µF̂−1(v)

)
+

m∑
j=1

vj(rs)

(
X(j) − µF̂−1(u)

) (
X(j) − µF̂−1(v)

)
, (8)
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where µ̂(u) is defined above, the weights are given by

wij(rs) = nCrs

s−r−1∑
k=0

(
s−r−1

k

) (−1)s−r−1−k

s− k − 1

×
[
F̂ s−k−1

i − F̂ s−k−1
i−1

] [
B

(
F̂j ; k + 1, n− s + 1

)
− B

(
F̂j−1; k + 1, n− s + 1

)]
, (9)

vj(rs) = nCrs

s−r−1∑
k=0

(
s−r−1

k

) (−1)s−r−1−k

s− k − 1

×
{

B
(
F̂j ; s, n− s + 1

)
−B

(
F̂j−1; s, n− s + 1

)
(10)

−
(
F̂j−1

)s−k−1 [
B

(
F̂j ; k + 1, n− s + 1

)
− B

(
F̂j−1; k + 1, n− s + 1

)]}
,

F̂i = 1 − Ŝn(X(i)), B(x; a, b) =
∫ x

0
ta−1(1 − t)b−1 dt, and nCrs = n!/[(r −

1)!(s− r− 1)!(g− s)!]. If δ(n) = 0 equation (8) can be modified similarly to
the previous results by adding the terms in the summands corresponding
to T(n)(> X(m)).

Proof. Hutson and Ernst (2000) prove the specific case m = n. The
results above follow similarly by replacing F̂n(x) =

∑n
i=1 I[xi≤x]/n with

F̂n(x) = 1− Ŝn(x), based upon the Kaplan-Meier estimator defined at (1),
into equation (8). 2

If we let Y(1) ≤ Y(2) ≤ · · · ≤ Y(n) denote the order statistics of a sample of
size n, possibly unobserved, we can modify equations (5) and (8) in order to
obtain exact bootstrap mean and variance expressions for Ŝn(t0). Towards
that end first define the bootstrap moment estimators corresponding to the
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indicator function I[Y(r)]≤t0 and given by

p1,r = EŜn(T )

(
I[Y(r)≤t0]

)
=

m∑
j=1

I[X(j)≤t0]

[
βp,q(1− Ŝn(X(j)))− βp,q(1− Ŝn(X(j−1)))

]
,(11)

p2,r = EŜn(T )

(
I2
[X(r)≤t0]

)
=

m∑
j=1

I[X(j)≤t0]

[
βp,q(1− Ŝn(X(j)))− βp,q(1− Ŝn(X(j−1)))

]
,(12)

pr,s = EŜn(T )

(
I[X(r)≤t0]I[X(s)≤t0]

)
=

m∑
j=2

j−1∑
i=1

wij(rs)I[X(i)≤t0]I[X(j)≤t0] +
m∑

j=1

vj(rs)I[X(j)≤t0], (13)

βp,q(·) denotes the cumulative beta distribution with parameters p = r and
q = n− r + 1, and the weights wij(rs) and vj(rs) are given by equations (9)
and (10), respectively. Then we have the following:

Theorem 2.4. The first two exact bootstrap moment estimators of the
random variable Ŝn(t0) for δ(n) = 1 are given by

EŜn(T )

[
Ŝn(t0)

]
= 1−

m∑
r=1

p1,r (14)

EŜn(T )

[
Ŝn(t0)2

]
= 1− 2

m∑
r=1

p1,r +
m∑

r=1

p2,r + 2
m∑

r=1

m∑
s=1

I[r 6=s]pr,s,(15)

where p1,r, p2,r and pr,s are given above by equations (11), (12) and (13),
respectively. It then follows that

VarŜn(T )

[
Ŝn(t0)

]
= EŜn(T )

[
Ŝn(t0)2

]
− EŜn(T )

[
Ŝn(t0)

]2

. (16)

Higher moments are possible, but are analytically difficult. If δ(n) = 0
additional terms in the summands of equations (11), (12) and (13) corre-
sponding to T(n)(> X(m)) are needed.

Proof. The proof follows the same line of reasoning as the earlier proofs
by noting that if we re-express the Kaplan-Meier estimator in the form∑n

i=1 I[Y(i)]≤t0 then its moments are just weighted functions of the ordered
failure times and is a constant function in the interval

(
X(i−1), X(i)

]
. The

integrations of the components then reduce to equations (11), (12) and
(13). 2
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Similar to above, a naive two-sided bootstrap-t confidence interval for
expected survival probability, E(Ŝ(t0)), is given by

EŜn(T )

[
Ŝn(t0)

]
± tn−1,α/2

√
VarŜn(T )

[
Ŝn(t0)

]
, (17)

where tn−1,α/2 denotes the upper α/2th percentile from a Student-t distri-
bution.

3. One-sample and Two-sample Percentile Confidence Intervals
for Survival Quantiles

The classical approach for calculating nonparametric confidence intervals
for α(F ) in the univariate setting consists of drawing samples of size n
from the empirical distribution function F̂n(x) and then calculating α(F̂n)
B times. The values of α(F̂n) are then ordered. The corresponding boot-
strap (1−α)×100% percentile confidence interval for α(F ) is then given by
the interval corresponding to the [Bα/2] and [B(1− α/2)] ordered values,
where [·] denotes the floor function, e.g. see Diciccio and Efron (1996) for
a discussion of this method. Recently, Polansky (1999) has studied the
undercoverage of this method for small samples and provides bounds on
the true coverage of the interval. Again, note that the Monte Carlo re-
sampling approach to this problem is an approximation to the bootstrap
estimated confidence interval and hence may add to the problem of under-
coverage. Hutson and Ernst (1998) have shown that percentile intervals
for L-estimators can be calculated directly by considering the functional

inf
θ∈R

E

{
|Tn − θ|+ (2α− 1)(Tn − θ)

2
− |Tn|+ (2α− 1)Tn

2

}
, (1)

thus eliminating the simulation error and improving upon the coverage.
The properties of (1) are outlined in Abdous and Theodorescu (1992) who
generalize the definition of the α-quantile to Rk space, k ≥ 1.

In this section we illustrate how equation (1) can be modified in order
to derive confidence intervals for a single quantile or differences between
quantiles from two groups. The primary purpose is to develop a confidence
interval for median differences in the presence of censored observations. As
above, define the quantile function estimator F̂−1(u) = X(i), such that
Ŝn(X(i)) ≤ 1−u < Ŝn(X(i−1)), i = 1, 2, · · · ,m(≤ n), then for δ(n) = 1, the
exact (1−α)× 100% percentile confidence interval for the quantile F−1(u)
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is given by the values satisfying

inf
θ∈R


m∑

j=1

[
|X(j) − θ|+ (2α′ − 1)(X(j) − θ)

]
×

[
βp,q

(
1− Ŝn(X(j))

)
− βp,q

(
1− Ŝn(X(j−1))

)]}
,

for α′ = α/2 and α′ = 1 − α/2, where µF̂−1(u) = EŜn(T )

(
F̂−1(u)

)
is

defined at equation (5), βp,q(·) denotes the cumulative beta distribution
with parameters p = i and q = m − i + 1. The proof follows the lines of
Theorem 2.2. For the case δ(n) = 0 we need the additional term [|T(n) −
θ|+ (2α′ − 1)(T(n) − θ)]βp,q

(
1− Ŝn(X(j))

)
in the summands above.

Alternative approaches for calculating nonparametric confidence intervals
for quantiles, and more specifically the median, are proposed by Thomas
and Grunkemeier (1975), Brookmeyer and Crowley (1982), Emerson (1982),
Simon and Lee (1982), Wang and Hettmansperger (1990), Efron (1981) and
Reid (1981). However, none of these approachs generalizes easily to the
two-sample case. Kim (1993) has published a Monte Carlo algorithm for
the two-sample case and examined the theoretical properties. Alternatively,
equation (1) can be easily modified to provide nonparametric bootstrap for
the quantities F−1(u)−G−1(v), where F−1(u) and G−1(v) correspond to
the quantiles from two independent populations, respectively.

Let X(1) ≤ X(2) ≤ · · · ≤ X(m1) and Y(1) ≤ Y(2) ≤ · · · ≤ Y(m2) denote
the ordered observed failure times, with corresponding quantile function
estimators F̂−1(u) = X(i), Ŝm1(X(i)) ≤ 1−u < Ŝm1(X(i−1)), and Ĝ−1(v) =
Y(j), Ŝm2(Y(j)) ≤ 1 − v < Ŝm2(Y(j−1)), with m1 ≤ n1 and m2 ≤ n2, with
the total sample size N = n1+n2. Then the exact (1−α)×100% percentile
confidence interval for the quantile difference F−1(u)−G−1(v) is given by
the values satisfying

inf
θ∈R

{
m1∑
k=1

m2∑
l=1

[
|X(k) − Y(l) − θ|+ (2α′ − 1)(X(k) − Y(l) − θ)

]
×

[
βpi,qi

(
1− Ŝm1(X(k))

)
− βpi,qi

(
1− Ŝm1(X(k−1))

)]
×

[
βpj ,qj

(
1− Ŝm2(Y(l))

)
− βpj ,qj

(
1− Ŝm2(Y(l−1))

)]}
,

for α′ = α/2 and α′ = 1−α/2, where µF̂−1(u) and µĜ−1(v) are defined for X

and Y by equation (5), βpi,qi
(·) denotes the cumulative beta distribution

with parameters pi = i and qi = m1 − i + 1, and βpj ,qj
(·) denotes the

cumulative beta distribution with parameters pj = j and qj = m2 − j + 1.
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Similar to the one-sample case, one or two additional terms need to be
added to the summands above corresponding to whether or not the last
observation in either or both samples is censored, respectively. Note that
higher order contrasts from k-samples can be examined similarly.

4. Simulation Study

We reran the simulation experiment published in Brookmeyer and Crow-
ley (1982) in order to compare median confidence intervals obtained by
their method implemented in SAS Version 6.08 and higher with the new
nonparametric method obtained as a minimization problem defined in the
previous section, as well as with the new parametric method based on a
Weibull model, labelled “NM” and “PM”, respectively. The Brookmeyer
and Crowley method is labelled “BC.” The calculations of the new intervals
are straightforward using software that currently exists. For this simulation
study we employed the Weibull distribution given by the quantile function
Q(u) = (− log(1− u))θ for arbitrary values of θ = 1/2, 1, 5. The censoring
distribution was assumed to be uniform(0,T ). Each simulation consisted
of 1000 replications of size n = 25 at level α = 0.01, 0.05, 0.10 and values
of T = 2, 5, 10. The values of T = 2, 5, 10 correspond to heavy, medium
and light censoring, respectively. Table 4.1 contains the estimated cover-
age probabilities for the three methods. It is apparent from Table 4.1 that
the new nonparametric (NM) based confidence intervals is comparable to
the BC method. What is surprising however is that both nonparametric
methods outperform the parametric intervals (PM) in the case of heavy
censoring. The results given in Table 4.1 hold across a variety of distribu-
tions, samples sizes and censoring proportions.
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Table 4.1. Observed coverage probabilities(n = 25)
θ = 1 θ = 1/2 θ = 5

α-level
Method T 0.01 0.05 0.10 0.01 0.05 0.10 0.01 0.05 0.10

2 .96 .89 .80 .89 .80 .67 .99 .96 .89
NM 5 .97 .95 .87 .97 .93 .84 .99 .95 .89

10 .98 .96 .90 .98 .95 .88 .99 .96 .89
2 .94 .79 .68 .90 .73 .61 .97 .88 .79

PM 5 .99 .96 .91 .99 .95 .90 .99 .93 .87
10 .99 .97 .93 .99 .96 .93 .99 .94 .91
2 .95 .89 .82 .90 .79 .70 .98 .94 .88

BC 5 .98 .94 .87 .97 .92 .85 .98 .94 .88
10 .98 .95 .89 .98 .94 .88 .98 .94 .87

The same simulation experiment was repeated for the two-sample case.
The results in Table 4.2 look promising in terms of coverage probabili-
ties. The utility of this method will be towards comparing two or more
samples with respect to their given quantiles, e.g. no generally accepted
nonparametric method currently exists for carrying out a comparison of the
difference between medians given randomly right-censored observations.

Table 4.2. Observed two-sample coverage probabilities(n = 25 per group)
θ = 1 θ = 1/2 θ = 5

α-level
Method T 0.01 0.05 0.10 0.01 0.05 0.10 0.01 0.05 0.10

2 .99 .97 .91 .99 .96 .93 .99 .98 .93
NM 5 .99 .98 .93 .99 .97 .93 .99 .98 .92

10 .99 .97 .94 .99 .96 .94 .99 .96 .93
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