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Abstract. In this paper we provide a simple proof of the extension theorem for par-
tial orderings due to Suzumura [1983] when the domain of the partial order is finite.
The extension theorem due to Szpilrajn [1930] follows from this theorem. Szpilrajns
extension theorem is used to show that an asymmetric binary relation is contained in
the asymmetric part of a linear order if and only if it is acyclic. This theorem is then
applied to prove three results. Finally we introduce the concept of a threshold choice
function, and our third result says that such choice functions are the only ones to satisfy
a property called functional acyclicity.
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1. Introduction

In this paper we provide a simple proof of the extension theorem for partial
orderings due to Suzumura [1983] when the domain of the partial order
is finite. The extension theorem due to Szpilrajn [1930] follows from this
theorem. Szpilrajn’s extension theorem is used to show that an asymmetric
binary relation is contained in the asymmetric part of a linear order if and
only if it is acyclic. This theorem is then applied to prove three results. The
first result implied by two theorems in Aizerman and Malishevsky [1981],
(see Aizerman and Aleskerov [1995] as well) says that the asymmetric part
of a quasi-transitive binary relation can be expressed as the intersection
of the asymmetric parts of orders. The well known result due to Dushnik
and Miller [1941], which states that any asymmetric and transitive binary
relation is the intersection of linear orders follows as an immediate corollary
of this result. The second result is a theorem in Lahiri [1999], which says
that a choice function is a batch choice function if and only if it satisfies
a property called the choice acyclicity property. We provide a new proof
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of this result. The concept of a batch choice function can be found in
Aizerman and Aleskerov [1995] and in recent times it has been applied in
the study of stable matching problems. Finally we introduce the concept
of a threshold choice function, and our third result says that such choice
functions are the only ones to satisfy a property called functional acyclicity.
This last property can be traced to Aizerman and Aleskerov [1995] as well.

2. The Extension Theorems

Let X be a finite, non-empty set. Given a binary relation R, let P(R) =
{(x,y) eR/ (v, x) ¢ R} and I(R) = {(x, y) € R / (y, x) € R}. P(R) is
called the asymmetric part of R and I(R) is called the symmetric part of R.
A binary relation R on X is said to be (a) reflexive if Vo € X : (z,z) € R;
(b) complete if Vz,y € X with x # y, either (z,y) € Ror (y,z) € R ; (c)
transitive if Va,y,z € X, [(x, y) € R & (v, z) € R implies (x, z) € R]; (d)
asymmetric if Vx, y € X : (x, y) € R implies (y, x) ¢ R; (e) quasi-transitive
itvVx,y,z€X, (x,y) € P(R) and (y, z) € P(R) implies (x, z) € P(R).
Given a binary relation R on X a binary relation Q on X is said to extend
(be an extension of) R if R € Q and P(R) C P(Q).

A binary relation R on X is said to be a partial order if it is reflexive
and transitive. It is said to be an order if it is a complete partial order.
A binary relation R on X is said to be a linear order if it is an order and
further I(R)=Ax ={(x, x)/x € X}.

Given a binary relation R on X and given any non-empty subset S of X,
let M(S, R) denote {x € S/ (y, x) € P(R) implies y ¢ S}.

Given a binary relation R on X define binary relations T'(R)(: T°(R)) on
X as follows: (x,y) € T(R))(: T°(R)) if and only if there exists a positive
integer K and x3, ..., xx in X with (i) x1= x, xxg =y : (i) (z;,@i41) €
Rvie{l,...,K—1} (cand (z;,x;41) € P(R) fori € {1,..., K —1}). T(R)
is called the transitive hull of R. Clearly T(R) is always transitive. Further
T(I(R)) C I(T'(R)). Note that T(R)\T'(I(R)) C T°(R)

A binary relation R on X is said to be acyclic if T(P(R)) is asymmetric.
It is said to be consistent if there does not exist any x in X such that (x,
x) € T°(R).

THEOREM 1 (Suzumura’s Extension Theorem): If R is a reflexive
binary relation on X then it has an extension @ which is an order if and
only if R is consistent.

Proof: Since T(R) is transitive, it is clearly acyclic. Thus whenever S is a
non-empty subset of X, M(S, T(R)) is non-empty. Let A; = M(X,T(R))
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and having defined A,,, let A,,11 = M(X\ U A4;, T(R)). Since X is finite,
i=1

there exists a positive integer r such that A, # ¢ and X = |J A;. Further
i=1

if i # j,thenA; N Aj = ¢. Define f : X — R (the set of real numbers)

as follows : f(x) =r -1 +11if x € A;. Suppose (x, y) € P(T(R)). Then

x € A;, y € A; implies by our method of construction that ¢ < j. Thus

f(z) > f(y). Now suppose (x, y) € T(R) and towards a contradiction

suppose that f(y) > f(z). Hence if y € A; and x € A;, clearly j < 1.

Jj—1 Jj—1
Thus, A; = M(X\ U Ak, T(R)), X\ U A, is finite and T(R) is transitive
k=1 k=1
implies that there exists z € A; such that (z, x) € P(T(R)) since x €
j—1
(X \ U A4x)\A4;). By transitivity of T(R), (z, y) € P(T(R)), contradicting
k=1

y € Aj. Thus, f(x) > f(y). Let (x, y) € P(R). Thus (x, y) € T(R).
If (y, x) € T(R), then along with (x, y) € P(R) it follows that (y,y) €
T°(R) contradicting that R is consistent. Thus (x, y) € P(T(R)). Thus
f(z) > f(y). Now suppose that (x, y) € R and towards a contradiction
suppose that f(y) > f(z). Then as before there exists z€ X such that
f(z) = fly).(z,x) € P(T(R)). Thus (z,y) € T°(R). If (y, z) €T(R) then
(z,2) € T(R) contradicting the requirement that R is consistent. Thus, (z,
y) € P(T(R)). Thus, f(z) > f(y) which contradicts f(z) = f(y). Thus,
(z,9) € R implies f(z) > f(y). Let Q = {(x, y) €XxX/ f(x) > f(y)}.
Thus, Q is an order which extends R. OJ

Corollary 1 (Szpilrajn’s Extension Theorem): If R is a partial order
on X then it has an extension @ which is an order.

Proof: Follows easily from Suzumura’s Extension Theorem by noting that
a partial order is always consistent. OJ
The following lemma proves useful in establishing subsequent results.

LEMMA 1 Let f : X — R (the set of real numbers) be given. Then, there
exists a positive integer n and one to one functions f; : X — N (:the set of

natural numbers), i € {1,...,n} such that {(z,y) € X x X/f(z) > f(y)} =
{(z,y) € X x X/fi(x) > fi(y) for some i€ {1,...,n}}.

Proof: Let {f(x)/ x €X} = {s1, ..., sq } where q is a positive integer and
sj < sj41 V5 € {1,...,¢—1}. Let n; = {x € X/f(x) = s;} and let
n=(ni)!x...x(ng )!

Let g: X —N be defined as follows: g(x) = ny, if f(x) = s;

g(x) = m+...4ny, if f(x) = s;.

Clearly, Vx, yeX : [ f(x) > {(y) if and only if [g(z) > g(y)].
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A function: {1,...,n1+...+n,} — X is called a restricted permutation
iftvke{l,...,ni+...+ng}: (1) [n(k) € {x € X/f(x) = s1} if and only
(1<k<n )& (2) [n(k) e {x e X/f(x)=s;}ifand only (n,_1 <k <mn;
and 1 < i < gq) ]. Let II denote the set of all restricted permutations. Since
X is finite so is II. For = € II, define f;: X— {1, ..., m+ ...4+n,} as
follows: VxeX, f( x) = k if and only if 7 (k) =x. It is now easy to verify
that, { (x, y) € X x X/f(x) > f(y)} = { (x, ) € X x X/g(x) > g(v)} = {
(x,y) € X x X/fr(x) > f;(y) for some 7 € II}. This proves the lemma.

U

The following theorem is rather interesting and to an extent original:

THEOREM 2 Let P be any asymmetric binary relation on X. Then there
exists a linear order Q on X such that P C P(Q) if and only if P is acyclic.

Proof: Suppose P is an asymmetric binary relation on X and suppose there
exists a linear order Q on X such that P C P(Q). Towards a contradiction
suppose P is not acyclic. Then there exists x€ X such that (x, x) € T(P).
Since P C P(Q), (x, x) € T(P(Q)). Since P(Q) is transitive, (x, x) € P(Q),
contradicting the asymmetry of P(Q). Hence P must be acyclic.

Now suppose P is an asymmetric and acyclic binary relation on X. Let
R = T(P UA). Clearly, R is reflexive and transitive. Hence by Szpilrajn’s
Extension Theorem there exists a reflexive, complete and transitive binary
relation L on X such that R C L and P(R) C P(L). Since P is asymmetric
and acyclic P C P(R). Hence P C P(L).

Since L is transitive, it is clearly acyclic. Thus whenever S is a non-empty
subset of X, M(S, L) is non-empty. Let A; = M(X, L) and having defined

n
Ay, let Apps = M(X\ U Ai, L). Since X is finite, there exists a positive
i=1

integer r such that A, # ¢ and X = |J A;. Further if i # j, then A;N
i=1

Aj; = ¢. Define f : X — R (the set of real numbers) as follows : f(x) =1
- i+1if x € A;. Clearly, L={ (x, y) € X x X/f(x) > {(y)}. By Lemma 1,
there exists a positive integer n and one to one functions f;: X —N, i € {1,
..., n} such that { (x,y) € X x X/f(x) > f(y)} ={ (x,¥) € X x X/f;(x) >
fi(y) for some i € {1, ..., n}}. Forie {1, ..,n},let Q;, ={ (x,y) € Xx
X/ti(x) > £;(y)}. Now (x, y) € P(L) implies and is implied by f(z) > f(y)
which is equivalent to f;(z) > f;(y) for alli € {1, ..., n}}. Thus P(L) =N
{P(Q;)/ 1€ {1, ...,n}}. Thus P C P(Qq) where Q; is a linear order on X.
U

The following theorem, is really a consequence of two theorems in Aizer-
man and Malishevsky [1981] and these two theorems have been reproduced
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in Aizerman and Aleskerov [1995]. It is important enough to merit an
independent proof.

THEOREM 3 If R is a quasi-transitive binary relation then P(R) =
N{P(Q)/Q € A} where p # A C {Q C X x X/Q) is a linear order}.

Proof: Let P = P(R). P is asymmetric and transitive. Hence by Theorem
2, there exists a linear order R on X such that P C P(R!). Let A = {Q/Q
is a linear order on X with P € P(Q)}. Thus, P c N {P(Q) / Q € A}.

Now suppose (x,y) € N { P(Q)/ Qe A}. Towards a contradiction suppose
(x,y) ¢ P. Since (y, x) € P C N{ P(Q)/ Q€ A} contradicts [ (x, y) € P(Q)
whenever Qe A], clearly (y, x) ¢ P. Further, (x, y) € N { P(Q)/ Qe A}
implies [(y, x) ¢ P(Q) whenever Q € A].

Let P = P U{ (y, x)}. Clearly, P is asymmetric. Suppose towards a
contradiction that (z, z)€ T(P) for some z €X. Thus there exists a positive
integer m and elements zq, ..., Z,, in X with z = z; = 2, and (z; , z;11) €
PU{(y,x)} Vie{l,...,m-1}. If (2, z;41) € PVie {1, ..., m-1}, then we
get by transitivity of P, that (z1, z,,) € P(R) i.e. (3, z) € P, contradicting
asymmetry of P. Hence (z;, z;41) = (y, x) for some i € {1, ..., m-1}.

Observe that ‘m’ is greater than three, for if m < 3, then (z1, z3) and
(z2, 71) belong to P U{ (y, x)} which is not possible since by hypothesis x
# vy and (x, y) does not belong to P(R).

Case 1: Cardinality of {i € {1, ..., m-1}/(z;, zi+1)} = (v, X)} is one.

If ( 21, z2) = (y, x), then z,, = y implies by transitivity of P that (x, y)
€ P which is a contradiction.

If i>1, then (z1, y) € P and (x, z1) € P by transitivity of P, so that (x,
y) € P by transitivity of P which is a contradiction.

Case 2: Cardinality of {i € {1, ..., m-1}/(z;, ;1) = (¥, X) is greater than
one.

Let j=min {i € {1, ..., m-1}/(2;, zi1+1) = (y, x)} and k = min {i € { j+1,
oy m-1}/(24, 2i41) = (v, x)}. Thus z;41 = x, z;, = y and by transitivity of
P, (x, y) € P which is a contradiction.

Thus (z, z) ¢ T(P) whenever z €X. Thus, P is acyclic. By Theorem 2,
there exists a linear order R * such that P ¢ P(R"). Thus P ¢ P ¢ P(R")
and hence R° € A. However, (y, x) € P implies (y, x) € P(R"). This
contradicts (x, y) € N {P(Q)/Qe€ A}. Thus (x, y) € P. Hence the proof is
complete. O

The following well known theorem due to Dushnik and Miller [1941] fol-
lows as an immediate corollary of Theorem 3:

THEOREM 4 Let P be any asymmetric and transitive binary relation on X.
Then P=n{ P(Q)/ Q € B}, where, p # B C { Q € X x X/Qis a linear

order}.
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3. Batch Choice Functions

Given any non-empty subset S of X, let [S] denote the set of all non-empty
subsets of S. Hence in particular, [X] denotes the set of all non-empty
subsets of X. A choice function C on X is a function C' : [X] — [X] such
that C(S) C S VS € [X].

A choice function C on X is said to satisfy the Choice Acyclicity Property
(CAP) if there does not exist a positive integer K and sets Sy, ..., Sk €
[X] such that : (i) Vi€ {1, .., K-1} : C(S;) € [Si=1]\{C(Si+1)} ; and (ii)
C(Sx) € [$i\C(S1)}-

A choice function C on X is said to be a batch choice function if there
exists a linear order Q on [X] such that V S € [X], C(S) = {A €[S]/ VB[]

. (A, B)eQ).

THEOREM 5 (Lahiri [1999]) C is a batch choice function if and only if
C satisfies CAP.

Proof: If C is a batch choice function it clearly satisfies CAP. Hence sup-
pose C satisfies CAP. If X has just one element then C is obviously a
batch choice function. Hence suppose that X has atleast two elements.
Let P = { (C(S), A) / A € [S]\ } C(S)}, S € [X] and S has atleast two
elements}. Clearly P is asymmetric. Further, since C satisfies CAP, P
is acyclic. By Theorem 2, there exists a linear order Q on [X] such that
P C P(Q). Given S € [X], since (C(S), A) € PV A € [S\{C(S)}, C(9)
= {A €[S]/ VB€[S] : (A, B)eQ}. Thus, C is a batch choice function.
UJ

Remark 1 : It is worth observing that there exists a choice function C on
X which does not satisfy the CAP and yet there does not exist sets S1, So €
[X] such that : (1)C(S1) € [S2]\{C(S2)} and (ii) C(Sz2) € [S1]\{C(S1)}.

Example: Let X = {z,y,z}. Let C({z,y}) = {y}, C{y,z}) = {z},
C({z,z}) = {z}, C(A) = A, otherwise. Clearly, there does not exist sets
S, So € [X] such that : (1) O(Sl) € [SQ]\{O(SQ)} and (11) C(Sg) C
[S1\{C(51)}-

However C does not satisfy CAP: C({z,y}) € [{y, 2}]\{C{y, z})}, C{y, z}) €
{z, z}]\{C({z,2})} and C({z,2}) € [{z,y}]\{C({z,y})}. Towards a con-
tradiction suppose there exists an order Q on [X] such that VS € [X],
C(S) = {A € [S]/VB € [S] : (A,B) € Q}. Then, ({y}{z}) € P(Q),
({z}, {z}) € P(Q) and ({z},{y}) € P(Q) contradicting the assumption
that Q is an order on [X]. Thus C is not a batch choice function.
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4. Functional Acyclicity

The following property in Aizerman and Aleskerov [1995] known as func-
tional acyclicity implies CAP:

A choice function C on X is said to satisfy Functional Acyclicity (FA) if
there does not exist a positive integer K and sets Si,...,Sk € [X] such
that : (1) Vi € {1,,K — ].} : C(SZ) n (Sl-‘rl\C(Sl—‘rl)) 7é (;5 X and (11)
C(Sk) N (S1\C(S1)) # ¢. However the following example reveals that the
converse need not be true:

Example: Let X = {x,y,2z}. Let C(X) = {z,y}, C({z,z}) = {2z} and
C(A) = A otherwise. Clearly, C satisfies CAP. However, (X\C(X))N{x,
z}# ¢ and ({z,z}\C({z, z})) N X # ¢ contradicting FA.

A choice function C is said to be a threshold choice function if there
exists a function V : [X] — X and a linear order Q such that : (i)vSg[X]:
V(S)es;(ii) C(S) = {z € S/(z,V(9)) € Q}.

The following theorem is equivalent to Theorem 3.15 in Aizerman and
Aleskerov [1995] but unlike others we prove it here by appealing to Theo-
rem 2.

THEOREM 6 A choice correspondence C is a threshold choice function if
and only if it satisfies FA.

Proof: Let C be a threshold choice function. Thus, there exists a function
V : [X] — X and a linear order Q such that : (1)VS€[X]: V(S)eS;(ii) C(S) =
{zx € S/(x,V(S)) € Q}. Towards a contradiction suppose that there exists
a positive integer K and sets S, ..., Sk € [X] such that : (i) Vi € {1,
ey K-1F 0 C(S3)N(Si41\C(Si41)) # ¢ 5 and (ii) C(Sk)N(S1\C(S1)) # ¢
Let Xt EC(St)O (St+1\ C(St+1)), for t = ]., ceey K-1 and let XK € C(SK)ﬂ
(S1\ C(S1)). Thus (x¢, V(Sy)) €Q, for t = 1, ..., K, (V(S¢+1), x¢) €P(Q)
for t =1, ..., K-1, and (V(S1), xx) €P(Q). Since Q is transitive we get
(xk, xi) €P(Q), contradicting the asymmetry of P(Q). This contradiction
implies that C must satisfy FA.

Now suppose that C satisfies FA. Let P = {C(S)x(S\C(S)/S €[X]}. P
is asymmetric and by Functional Acyclicity P is acyclic. By Theorem 2,
there exists a linear order Q on X such that P C P(Q).

Given S €[X], let {V(S)} = {xe C(S) / Vy € C(S):(y, x)€Q}.

Clearly, if xe C(S) then (x, V(S)) €Q. Now, suppose x € S and (x,
V(S))eQ and towards a contradiction suppose x ¢C(S). Thus, (V(S), x) €
P. Thus by the above (V(S), x) €P(Q)which contradicts(x, V(S))€Q. Thus
x € S, (x, V(S))eQ implies x € C(S). O
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