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Abstract. Under traditional cointegration tests, some eligible I(1) time series systems
Xt, that are not cointegrated over a given time period, say (0, T1], sometimes test as
cointegrated over sub-periods. That is, the system appears to have a stationary linear
structure ξ′Xt for certain vector ξ in the period 0 < t ≤ T1. Understanding the dynamics
between cointegration test power and restricted sample size that causes this inversion
of results is a crucial issue when forecasting over extended future time periods. In this
paper, we consider non-cointegrated systems that are closely related to collinear systems.
We apply a residual based procedure to such systems and establish a criterion for making
the decision whether or not Xt can be continuously accepted as I(0) for t > T1 when
Xt was accepted as I(0) for t ≤ T1.
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1. Introduction

Cointegration testing of pre-suppositions of long run equilibrium behaviour
within financial and economic time series vectors is usually based on sample
data drawn from a selected period at a given frequency (eg. daily, monthly,
annually). Forecasts are then made on the assumption that the test results
are invariant to either data frequency over a given period or to extensions
of the sample horizon – subject to constant system dynamics.

However, several studies cast doubt upon this assumption. A system
with no long run equilibrium tendency over a given time period may test
as cointegrated over sub-periods within the sample period (see Shiller and
Perron [11]; Perron [10]; Otero and Smith [9]). The false acceptance of
cointegration is attributed to the low discriminatory power of cointegration
tests due to small sample sizes over restricted time periods or low frequency
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data. Data set expansion may then invert results as increased test power
detects the true lack of cointegration.

The effect of sample size on the discriminatory power of cointegration
tests is well documented. See, for example, Kwiatkowski, et al. [6]. But,
to our knowledge, the dynamics of the relationship are not well understood.
The aim of this paper is to explore these dynamics, suggest a theoretical
basis for their operation and develop criteria about minimum sample size
for detection of the true non-cointegration situation.

This article will focus on non-cointegrated systems Xt that are closely
related to collinear systems (for detailed explanations, see Section 2). For
data given for the time period (0, T1], if Xt is accepted as a cointegrated
system, this means that there is a vector ξ such that ξ′Xt can be accepted
as I(0) for t ∈ (0, T1]. Since the system Xt is essentially non cointegrated,
it is not necessary that ξ′Xt can be continuously accepted as I(0) as the
time period (0, T1] is extended to (0, T ]. To detect the smallest T such
that ξ′Xt can be continuously accepted as I(0) in (0, T ] this paper uses
a residual based (RB) procedure (see Section 2) to decompose time series
ξ′Xt into two independent time series such that one is I(0) and the other is
I(1). Then a criterion for determining the smallest T based on the impact
of I(1) to the system can be established.

This paper is organized into five sections. The procedure for identifying
stationary and non-stationary components is explained in Section Two. A
simulation approach is used in Section Three to show that the significance
of the I(1) component determines the power of a DF test (Dickey and Fuller
[2]) applied to the system. Test power increases in direct relation to the
significance of the I(1) component as time horizons are expanded. Section
Four describes a method for measuring this impact of the non-stationary
component within the system over expanded sample horizons. The method
is used for calculating the ratio of the variances of the non-stationary and
stationary components of ξ′Xt. This method enables us to plot differences
in the minimum number of data points necessary to reverse a cointegration
result (span of observation period) against changes in the variance ratio
values for each system. Section 5 contains a discussion on a special case.

2. Residual Based Procedure

This section briefly describes the RB procedure approach (Lin and McCrae
[7], [8]) and its association with traditional cointegration tests. We start
with the definition of I(1) time series and cointegration.
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Definition 1 A time series Xt is called an I(d), d > 0, time series iff

(1 − B)dXt is stationary and has an ARIMA form, where B is the back

shift operator.

A certain form of linear combination of I(d) series may become an I(d′)
series with d′ < d. If d′ = 0, then the linear combination of these non-
stationary time series is a stationary series. Thus, these non-stationary time
series form a cointegrated system. The coefficients of the linear combination
form a cointegral vector. Here, we give the cointegration definition based
on a I(1) series.

Definition 2 Let X1,t, · · · , Xp,t be I(1) time series. If there is a non zero

vector ξ
′

= (ξ1, · · · , ξp) such that ξ1X1,t + · · · + ξpXp,t is an I(0) series,

then, X1,t, · · · , Xp,t are said to be cointegrated and ξ is called a cointegral

vector for Xt = (X1,t, · · · , Xp,t)
′.

Remark: Given an I(1) system Xt, if cov((1−B)Xt) = cov(Xt−Xt−1) is
not full rank, then there is a vector ξ such that ξ′Xt is stationary. Therefore
the system Xt is cointegrated. This system is sometimes defined as a
collinear system. Dhrymes [3] claimed that a collinear system does not
indicate any “long-run equilibrium” relation. In practice, given the system
information within finite time period, a non collinear system might be
accepted as collinear; for example, some spot and future price systems
show this outcome (see Biondini, Lin and McCrae [1]). Such systems are
of interest for the study carried out in this paper and these systems have
a close relationship with colliner systems.

For cointegrated systems, several techniques for estimating cointegral vec-
tors are available. These include the univariate two-step Engle-Granger
procedure [4], Johansen’s [5] multivariate maximum likelihood method and,
more recently, the RB procedure, developed by Lin and McCrae [7], [8]. The
procedure for determining linearly independent cointegrating vectors intro-
duced by Lin and McCrae [7], [8] is based on the residual error processes
from fitting ARIMA models to individual time series. As it will be shown
below, this procedure is suitable for systems which are closely related to
collinearity.

Consider Xt, a p × 1 I(1) time series vector. To simplify the following
discussion, assume that each component of Xt has the following expression:

Φi(B)(1 − B)Xit = Θi(B)εit, t > 0, (1)

where, both Φi(B) and Θi(B) are finite-order polynomial functions of B
that have roots outside the unit circle, i = 1, 2, · · · , p; εit are white noise
residuals and εt = (ε1,t, · · · , εp,t)

′ is stationary. Furthermore, the εt are
assumed to be multi-normally distributed.
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Assume that var(εt) = Σ has eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λp−r ≥
λp−r+1 ≥ · · · ≥ λp. If the last r eigenvalues are equal to 0, i.e. λp−r+1 =
· · · = λp = 0, and λ1 ≥ λ2 ≥ · · · ≥ λp−r > 0 then the system Xt is collinear
and cointegrated (see Lin and McCrae, [7] and [8]). This is not what we
are interested in this paper. In the following discussion, we assume that
λp−r+1, · · · , λp are not equal to zero but are close to zero. Thus, the RB
procedure can be used to determine cointegral vector of Xt if Xt is accepted
as cointegrated based on the given sample.

The procedure involves three steps.
Step 1: Since cov(εt) = Σ has eigenvalues λ1, λ2, · · · , λp, a matrix A∗ will

be determined such that εt = A∗v∗
t = A∗

1v
∗
(1),t + A∗

2v
∗
(2),t, where v∗

(1),t =

(v∗
1,t, · · · , v∗

p−r,t)
′, v(2),t = (v∗

p−r+1,t, · · · , v∗
p,t)

′ and var(v∗
t ) = diag(λ1, λ2,

· · · , λp) is a diagonal matrix, i.e. the components of v∗
t are uncorrelated.

Step 2: Express (1 − B)Xt in the following way

(1 − B)Xt = Φ(B)−1Θ(B)εt = C(B)v∗
(1),t + C1(B)v∗

(2),t

= [C(B) − C(1)]v∗
(1),t + C(1)v∗

(1),t + C1(B)v∗
(2),t (2)

where Φ(B) and Θ(B) are diagonal matrices with element φ1(B), · · · ,
φp(B) and θ1(B), · · · , θp(B) respectively; C(1) = C(B) with B = 1.

Step 3: As the rank of C(1) is less than or equal to p − r, r linearly
independent vectors ξ can be determined by solving ξ′C(1) = 0. Therefore,

from (1), ξ′(1 − B)Xt = (1 − B)ξ′ C(B)−C(1)
1−B v∗

(1),t + ξ′C1(B)v∗
(2),t, that is,

ξ′Xt = ξ′(X0 − W0) + ξ′Wt + ξ′C1(B)

t
∑

i=1

v∗
(2),i (3)

with Wt = C(B)−C(1)
1−B v∗

(1),t.

The above three steps, allow ξ′Xt to be expressed as a sum of two in-
dependent time series. In general, the series ξ′Xt is not an I(0) series, as
ξ′C1(B)

∑t
i=1 v∗

(2),i is not equal to zero. However, ξ′(X0 − W0) + ξ′Wt is

stationary. The difference between ξ′Xt and ξ′(X0 − W0) + ξ′Wt is given
by

ξ′C1(B)
t

∑

i=1

v∗
(2),i. (4)

Thus, whether ξ′Xt can be accepted as I(0) will depend on whether we
can ignore the effect of the I(1) series (4).

If the last r eigenvalues of Σ are zero, (4) will disappear and the system Xt

will be classified as a cointegrating collinear system with cointegral vector
ξ. In practice, given a sample from a finite time period [0, T1], sometimes
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ξ′Xt can be accepted as I(0) even though ξ′C1(B)
∑t

i=1 v∗
(2),i is not strictly

equal to zero. In this situation, ξ can be interpreted as an estimate of the
cointegral vector for the system {Xt, 0 < t ≤ T1}.

In this paper, we always assume that: (i) ξ′C1(B)
∑t

i=1 v∗
(2),i are not all

equal to zero, for all 0 < t ≤ T1; (ii) for 0 < t ≤ T1, the system {Xt} is
accepted as cointegrated .

If the system {Xt}t>0 is essential non-cointegrated, then a crucial ques-
tion for forecasting is to identify the maximum period over which a spurious
cointegration result from a restricted sample period {Xt}0<t≤T will persist
as (0, T1] extends out to (0, T ] with T > T1, where all t > T1 represent (un-
observable) future times not amenable to direct testing (assuming constant
system dynamics).

We can now give a more precise description on the relationship between
cointegrating test power and sample size. The question of whether ξ ′X
remains spuriously cointegrated as the sample period expands is equiva-
lent to determing whether the impact of the term ξ′C1(B)

∑t
i=1 v∗

(2),i on
the cointegrating structure remains sufficiently insignificant. In the next
section, we use simulated data to show how the I(1) time series in (3) im-
pacts on the stationary analysis of ξ′X. The simulation results suggest a
practical method for measuring the impact of the I(1) series on ξ ′X.

3. Simulations

In this section, we use the following model to show the impact of the I(1)
series

yt = εt +

t
∑

k=1

uk, 0 < t ≤ T, (5)

where {εi} and {ui} are i.i.d. respectively. In this model, εt is stationary,
but yt is not. The difference between these two series is

∑t
k=1 uk, an I(1)

series.
By using simulated data, we show how T and the ratio of the variance εt

and ut impact on the stationality conclusion of yt. For related references
see Kwiatkowski and et al. [6].

Let λ(t) = var(
∑t

k=1 uk)/var(εt) = tσ2
u1

/σ2
ε1

. In the following study, we
set σ2

ε1
= 1 and σ2

u1
= 0.1, 0.01 and 0.001 respectively. Thus, for each case,

max0<t≤T λ(t) = λ(T ) = Tσ2
u1

/σ2
ε1

= 0.1T , 0.01T and 0.001T respectively.
In the simulation, we let T = 1000. Thus, there are 1000 data points for

each case. The time series plots for yt and εt are given in Figure 1.
The plot in Figure 1 suggests that (i) for σu1

= 0.001, yt is likely to be
accepted as a stationary series for t up to t = 1000, where λ(1000) = 1; (ii)
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Figure 1. The plots of yt and εt.

for σu1
= 0.01, yt could be accepted to be stationary for t ≤ 200, where

λ(200) = 2; (iii) for σu1
= 0.1, yt is definitely not acceptable as stationary,

even for t < 150, where λ(150) = 15. The above conclusions are confirmed
by applying DF test (Dickey and Fuller [2]) to each set of data. The DF
test outcomes are given by Table 1.

Table 1: DF test results for simulated data.
σu Size DF Value 5 % 1 %
0.1 1000 -1.324 -2.865 -3.44

500 -0.6023 -2.865 -3.446
200 -2.703 -2.877 -3.466

0.01 1000 -2.236 -2.865 -3.44
500 -1.227 -2.865 -3.446
200 -4.281* -2.877 -3.466

0.001 1000 -5.8211* -2.865 -3.04
500 -4.203* -2.865 -3.446
200 -6.023* -2.877 -3.466

These results show that the likelihood of accepting {yt}0≤t≤T as station-

ary is small when the maximum ratio of var(
∑t

k=1 uk) to var(εt) is large
for t ∈ [0, T ]. This suggests that the value of λ(t) maybe useful for identi-
fying the size of the impact of the I(1) series on the system of yt. Thus, if
yt is accepted as stationary for 0 < t ≤ T1 and if, for T > T1, the value of
λ(T ) can be estimated through the information of yt given up to “present
time” T1, then it is possible to predict if yt can be continuously accepted
as stationary for 0 < t < T . Therefore, to answer the questions addressed
in Section 1, we need a quantity which can play the same role as λ(T ) for
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predicting the future behaviour the system. Such a quantity will be studied
in the next session.

4. The Relationship Between σu/σε and Stationarity

The example in Section 3 shows that whenever a linear structure of a
system can be expressed as a sum of two independent parts - stationary
and non-stationary, the behaviour of the non-stationary part will have a
direct impact on the power of testing the null hypothesis of stationarity of
the linear structure of the system against non-stationarity. The lower the
significance of the non-stationary part is, the more likely yt in (5) is to be
accepted as stationary, i.e. the power of testing stationarity is lower. The
example also indicates that the size of the impact of the non stationary
component in the linear structure of yt could be measured by the ratio of
variances given by non stationary and stationary parts.

In this section, we introduce a method of measuring the size of impact of
the non-stationary time series in model (5). The measurement relates to
the span of the sample and the ratio of the variances.

As described in Section 2, given a system Xt with components satisfying
(1), there is a vector ξ such that

ξ′Xt = ξ′(X0 − W0) + ξ′Wt + ξ′C1(B)
t

∑

i=1

v∗
(2),i, (6)

where ξ′(X0 − W0) + ξ′Wt is I(0). If the v∗
(2),i are not zero vectors, then,

ξ′C1(B)
∑t

i=1 v∗
(2),i is I(1). Whether or not Xt can be accepted as cointe-

grated (associated with the vector ξ) will depend upon the significance of
the impact of ξ′C1(B)

∑t
i=1 v∗

(2),i on the system.

In general, ξ′C1(B)
∑t

i=1 v∗
(2),i can be expressed as

∑t
i=1 f1(B)vp−r+1,i+

∑t
i=1 f2(B)vp−r+2,i + · · · +

∑t
i=1 fp(B)vp,i = I1,t + I2,t + · · · + Ir,t, where

I1,t, I2,t, · · · , Ir,t are independent I(1) series, r < p. Thus, the impact

of ξ′C1(B)
∑t

i=1 v∗
(2),i on the system Xt is the aggregate impact of these

independent I(1) series.
Model (6) can be written as

yt = zt + ht, (7)

where zt is I(0) and ht is I(1). Whether yt can be accepted as I(0) at
a given level of significance will depend upon whether the impact of ht is
significant at that level. The following lemma gives a general conclusion
on this issue.
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Proposition 1 Assume that process yt, 0 < t ≤ T , satisfies the model

yt = zt + ht, where {zt} are i.i.d. and independent of {ht}; zt and ht are

normally distributed with mean 0. Let σ1 = var(z1), Σh,T be the covariance

matrix given by h1, h2, · · · , hT and A be an orthogonal matrix such that

AΣh,T A′ = σ2
2diag(λ1, · · · , λT ), where σ2

2λ1 ≥ σ2
2λ2 ≥ · · · ≥ σ2

2λT are the

eigenvalues of Σh,T . Let

F =

∑m
i=1

x2
i

m
∑T

i=m+1
x2

i

(T−m)

and F ∗ =

∑m
i=1

x2
i

σ2
1+σ2

2λi

/m
∑T

i=m+1
x2

i

σ2
1+σ2

2λi

/(T − m)
,

where X = (x1, x2, · · · , xT )′ = A(y1, y2, · · · , yT )′. Then, F ∗ has the F -

distribution with degrees of freedom m and T − m, and

σ2
1

σ2
1 + σ2

2λ1
≤

F

F ∗
≤

σ2
1 + σ2

2λ1

σ2
1

. (8)

The proof of Proposition 1 is straightforward and is omitted.
Assuming that the difference between λ1 and λT is large (compared with

σ2
2), then, the necessary condition for accepting {Yt}0<t≤T as an I(0) time

series (that is, accept σ2
2 = 0 ) at the level of significance α is that the value

of F should fall within the interval (Fm−1,T−m−1,α/2,Fm−1,T−m−1,1−α/2),
denoted (F1, F2).

Since (8) holds, the values of F and F ∗ will be very close if σ2
2λ1/σ

2
1

is small. Since F ∗ has the F -distribution with degrees of freedom m and
T − m, with (1 − α)100% chance, the value of F ∗ will be in the interval
(F1, F2).

Therefore, when both m and T − m are large, say greater than 100,
and if σ2

2λ1/σ
2
1 < 0.01, then, for α ≤ 0.05, F1 ≈ σ2

1/(σ2
1 + σ2

2λ1)F1 and
F2 ≈ (σ2

1 + σ2
2λ1)/σ

2
1F2. That is, with (1 − α)100% chance F will fall in

the interval (F1, F2). Then, when testing if H0: {yt}0<t≤T is stationary
against H1: {yt}0<t≤T is I(1), we will accept H0. That is, the size of the
impact of ht on yt is not significant.

Based on the above discussion, we suggest that, for the model (7), if
σ2

2λ1/σ
2
1 < 0.01, we should be able to say the impact due to ht is not

significant and yt can be accepted as I(0).
In Section 5 we give a detailed discussion of a special case of model (6).

5. Special Discussion

In Section 4, we have shown how to test whether the I(1) term in (7) is
significant or not. Now we apply the method to (6). As an example, we
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show how to test for the significance of ξ′C1(B)
∑t

i=1 v∗
(2),i for t ≤ T1 when

r = 1. In this case, ξ′C1(B)
∑t

i=1 v∗
(2),i =

∑t
i=1 fp(B)vp,i, t ≤ T1, where

the variance of vp,t is estimated by λp, the smallest eigenvalue of Σ. (See

Section 2. In practice, Σ is estimated through sample covariance Σ̂T1
.)

In (6), denote ξ′Xt, ξ′(X0 − W0) + ξ′Wt and ξ′C1(B)v∗
(2),i by yt, zt and

ui respectively, so that

yt = zt +

t
∑

i=1

ui, t ≤ T1. (9)

In (9) zt is stationary and can be expressed as f(B)εt with i.i.d. εt ∼
N(0, σ2

1); ut = fp(B)v∗
p,t with i.i.d. v∗

p,t ∼ N(0, σ2
2) (as mentioned before,

σ2
2 is estimated by λp); {εi} are independent of {v∗

p,t}; and f(B) and fp(B)
are polynomial functions of the backward shift operator B. Thus we have
yt = f(B)εt + fp(B)

∑t
i=1 v∗

p,i = f(B)BT1−tεT1
+ fp(B)(

∑t
i=1 BT1−i)v∗

p,t,

t = 1, 2, · · · , T1. Let y= (y1, y2, · · · , yT1
)′. Then, y ∼ N(0, σ2

1ΣT1,1 +
σ2

2ΣT1,2), where ΣT1,1 = (< f(B)BT1−i, f(B)BT1−j >)T1×T1
and ΣT1,2 =

(< fp(B)
∑i

k=1 BT1−k, fp(B)
∑j

k=1 BT1−k >)T1×T1
. The inner product of

f(B) =
∑

ϕf,jB
j and g(B) =

∑

ϕg,jB
j is defined by < f(B), g(B) >=

∑

j ϕf,jϕg,j .
According to the definitions of ΣT1,1 and ΣT1,2, we can see that, once

the functions f(B) and fp(B) are given, ΣT1,1 and ΣT1,2 will be functions
of T1 only.

For ΣT1,1 there is a matrix AT1
such that AT1

ΣT1,1A
′
T1

= I. Thus,
AT1

y ∼ N(0, σ2
1I + σ2

2AT1
ΣT1,2A

′
T1

). For σ2
2(AT1

ΣT1,2A
′
T1

), there is an
orthogonal matrix DT1

such that DT1
D′

T1
= I and

DT1
AT1

ΣT1,2A
′
T1

D′
T1

= diag(λ
(T1)
1 , · · · , λ

(T1)
T1

). (10)

We now impose a condition:

Condition 1: The eigenvalues λ
(T1)
1 ≥ · · · ≥ λ

(T1)
T1

≥ 0 in (10) are not all

equal and the difference between λ
(T1)
1 and λ

(T1)
T1

is large (compared with

σ2
2).

The restriction on λ
(T1)
1 , · · · , λ

(T1)
T1

given by Condition 1 is very weak
(see the examples below). We always assume Condition 1 in the following
discussion.

For any 0 < m < T1, DT1
AT1

y can be expressed as

DT1
AT1

y =

(

MT1,1

MT1,2

)

y,
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with MT1,1y = (x1, x2, · · · , xm)′ ∼ N(0, σ1I + σ2diag(λ
(T1)
1 , · · · , λ

(T1)
m )),

and MT1,2y = (xm+1, xm+2, · · · , xT1
)′ ∼ N(0, σ1I+σ2diag(λ

(T1)
m+1, · · · , λ

(T1)
T1

)).
Thus

∑m
i=1

x2
i

σ2
1+σ2

2λ
(T1)
i

/m

∑T1

i=m+1
x2

i

σ2
1+σ2

2λ
(T1)
i

/(T − m)
∼ Fm−1,T−m−1.

Under Condition 1, the λ
(T1)
i are not all equal. Thus, as discussed in the

previous section, if (σ2
2λ

(T1)
1 )/σ2

1) < 0.01, we will almost always accept

H0 : σ2 = 0 at the level α ≤ 0.05. This means that if (σ2
2λ

(T1)
1 )/(σ2

1) < 0.01
is true, we can accept that yt is I(0) at the significance level α ≤ 0.05.

As mentioned in Section 1, for the study carried out in this paper, we
always assume that ξ′Xt = yt has been accepted as I(0) for t ≤ T1. In
order to understand if {yt}t≤T can be continuously accepted as I(0) over
an extended interval (0, T ] with T > T1, what we need to check is whether
σ2
2λ

(T )
1

σ2
1

< 0.01.

For T > T1, the value of λ
(T )
1 can be determined by matrices ΣT,1 and

ΣT,2, free from the knowledge of yt and Xt for t > T1.
Summary: For the above example, two steps have to be followed if we

wish to check whether Xt can be continuously accepted as cointegrated in
the extended time period [0, T ] with T > T1.

Step 1: For given observations {Xt}0<t≤T1
, (i) express Xt in the form (1);

(ii) use RB procedure to identify ξ; (iii) express zt = ξ′(X0 − W0)+ξ′Wt =
f(B)εt and ut = ξ′C1(B)vp,t = fp(B)vp,t; (iv) estimate σ2

1 = var(ε1) and
σ2

2 = var(vp,1) based on the information updated to T1.
Step 2: (i) identify matrices ΣT,1 and ΣT,2 based on f(B) and fp(B) given

in Step 1; (ii) evaluate λ
(T )
1 from ΣT,1 and ΣT,2; (iii) compare σ2

2λ
(T )
1 /σ2

1

with 0.01.
In the following, a simulation study is carried out. For simplicity, we

ignore Step 1 and assume that, based on the information of {Xt}0<t≤T1
,

we have already obtained f(B), fp(B), σ2
1 and σ2

2 in (9). We assume that
after Step 1, ξ′Xt = yt is expressed as

yt = εt +

t
∑

k=1

(φ0 + φ1B + φ2B
2)δk, 0 < t ≤ T1, (11)

in which φ0 = 0.1, φ1 = 0.01 and φ2 = 0.001, εt are i.i.d. normally
distributed with zero mean and variance σ2

ε1
= σ2

1 = 1, δt are i.i.d. normal
distributed with mean 0 and variance σ2

δ = σ2
2 . Given T1, since f(B) = 1
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and fp(B) = φ0 + φ1B + φ2B
2 are known, it is easy to evaluate λ

(T1)
1 from

ΣT1,1 and ΣT1,2.
In the following study, we use time series plots of simulation data to

show how yt changes as t increased for different values of σ2
2λ

(T1)
1 /σ2

1 . We
put T1 = 100 and consider two cases corresponding to σ2

2 = 0.00019 and
σ2

2 = 0.19.
Based on Model (11), the minimum and maximum eigenvalues of (10)

are 0.00207 and 50.33686 respectively when T = 100. Therefore, if σ2
2 =

0.00019, the ratio (σ2
2λ

(T )
1 )/σ2

1 = 0.0095; if σ2
2 = 0.19, the ratio (σ2

2λ
(T )
1 )/σ2

1 =
9.5. With these ratios we expect that, during 0 < t ≤ 100, the impact of
∑t

k=1(φ0+φ1B+φ2B
2)δk on yt given σ2

2 = 0.00019 will be more significant
than that given σ2

2 = 0.19. This fact can be seen in Figures 2. Since given

any T we can easily obtain λ
(T )
1 base on ΣT,1 and ΣT,2, we can conclude

that yt should be able to be continuously accepted as a stationary time
series given σ2

2 = 0.00019 if the time period is extended to [0, 120] because

λ
(T )
1 = λ

(120)
1 = 72.37 and (σ2

2λ
(120)
1 )/σ2

1 ≈ 0.01.
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Figure 2. The plots of yt and εt, for σ2
δ

= 0.19 and σ2
δ

= 0.00019 respectively.

Remark: The criterion (σ2
2λ

(T )
1 )/σ2

1 < 0.01 is not a necessary condition
for ensuring yt be accepted as I(0). Compared to the power of the DF test,

the criterion (σ2
2λ

(T )
1 )/σ2

1 < 0.01 is rather conservative. We independently
simulated more than 100 sets of data from model (11) based on different
values of σ1 and σ2 and found that in many cases we can always accept yt

as I(0) by using DF test while the ratio (σ2
2λ

(T )
1 )/σ2

1 = 10. Since, the DF



240 Y-X LIN AND M. MCCRAE

test is a common method for testing I(0) series, the conservative criterion

(σ2
2λ

(T )
1 )/σ2

1 < 0.01 should be a fairly reasonable criterion for deciding
whether a series can be continuously accepted as a stationary series when
the time period is extended.

We have shown in Section 3 that max0<t≤T [var(
∑t

k=1 uk)/σ2
z1

] could be
used to indicate the level of impact given by the I(1) series in a model like
(5). It is obvious that evaluating max0<t≤T [var(

∑t
k=1 uk)/σ2

z1
] is easier

than evaluating (σ2
2λ

(T )
1 /σ2

1 . It is of interest to ask whether the criterion

(σ2
2λ

(T )
1 )/σ2

1 < 0.01 can be replaced by max0<t≤T [var(
∑t

k=1 uk)]/σ2
z1

<
0.01. Based on our simulation studies, it seems the criterion max0<t≤T

[var(
∑t

k=1 uk)]/σ2
z1

< 0.01 works well in practice. However, as yet we are
unable to prove this.
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