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Abstract. The Pearson-Fisher chi-squared test can be used to evaluate the goodness-
of-fit of categorized continuous data with known bin endpoints compared to a continuous
distribution, in the presence of unknown (nuisance) distribution parameters. Rayner and
McAlevey [11] and Rayner and Best [9],[10] demonstrate that in this case, component
tests of the Pearson-Fisher chi-squared test statistic can be obtained by equating it
to the Neyman smooth score test for a categorized composite null hypothesis under
certain restrictions. However, only Rayner and McAlevey [11] provide even brief details
as to how these restrictions can be used to obtain any kind of decomposition. More
importantly, the relationship between the range of possible decompositions and the
interpretation of the corresponding test statistic components has not previously been
investigated. This paper provides the necessary details, as well as an overview of the
decomposition options available, and revisits two published examples.
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1. Introduction

The chi-squared goodness-of-fit test is essentially an omnibus test, but in
many situations it decomposes into asymptotically independent component

tests that can provide useful and illuminating interpretations of the way in
which the data fit (or do not fit) the hypothesized distribution. The nature
of the particular decomposition can be related to a particular orthogonal
scheme: different schemes correspond to the component tests optimally
detecting various kinds of departures from the null hypothesis distribution.
In the absence of a compelling reason otherwise, for interpretable tests,
Rayner and Best [9] recommend using orthogonal polynomials to produce
component tests that detect moment departures from the null hypothesis
(that is, the first component detects a mean shift, the second a change in
scale, the third a change in skewness, etc.).

† Requests for reprints should be sent to G.D. Rayner,Institute of Mathematical Mod-
elling and Computational Systems University of Wollongong, Wollongong, NSW 2522,
Australia.
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In their book, Rayner and Best [9] decompose the chi-squared goodness-
of-fit test statistic for both simple and composite goodness-of-fit hypotheses
about uncategorized continuous data. Here, the terms simple and compos-
ite refer, respectively, to the absence or presence of (nuisance) distributional
parameters that must be estimated. However, for categorized continuous
data where the bin endpoints are known (see for example the datasets in Ta-
bles 1 and 2), only the simple hypothesis case (of no nuisance parameters)
has been thoroughly explored. In all of the above three cases this is done by
equating the chi-squared statistic to an appropriate decomposed Neyman
smooth score test statistic based on any chosen orthonormal scheme.

For categorized continuous data where the bin endpoints are known and
where nuisance parameters are present (referred to in Rayner and Best’s
book as the categorized composite case), only restrictions on the decom-
posed Neyman smooth score test statistic are provided to enable the de-
composition to be performed. No method of constructing the test statistic
components satisfying these restrictions is provided other than a comment
that such a decomposition can be “based on a Helmert matrix”.

In Rayner and McAlevey [11] and Rayner and Best [10] some examples
are provided that use the categorized composite constructions outlined in
Rayner and Best [9]. Even here however, only a set of restrictions are
provided, and although the component test statistics have evidently been
calculated in these examples, the method used to do so is briefly presented
as a linear programming problem, and not discussed in any detail. In fact,
the method used to construct the component test statistics here results in
the interpretation of the r-th component as some kind of unknown contrast
in the first r + constant data cells.

The basic problem is that for the categorized composite case (catego-
rized continuous data where the bin endpoints are known), the relation-
ship between a particular decomposition of the Pearson-Fisher chi-squared
statistic and the corresponding orthogonal scheme has not yet been made
clear. This stands in contrast to Rayner and Best’s [9] informative decom-
positions of the chi-squared goodness-of-fit test statistic for uncategorized
simple, categorized simple, and uncategorized composite null hypotheses.

This paper addresses each of the above deficiencies. First, section 2 intro-
duces the problem along with the current state of the literature. Section 3
describes my method for constructing components of the Pearson-Fisher
chi-squared test according to any chosen orthonormal scheme. The exam-
ples of Rayner and McAlevey [11] and Rayner and Best [10] are revisited
in section 5, which also discusses the difficulties involved in obtaining the
relevant MLE’s.
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2. Notation

Consider n data points gathered from a continuous distribution that are
grouped into m categories specified by the m + 1 bin endpoints c0 < c1 <
. . . < cm−1 < cm. These data are probably better described as grouped

continuous rather than strictly categorical. See for example the datasets in
Tables 1 and 2. Because the category bin endpoints are available we can
express the m null hypothesis cell probabilities p = (p1, . . . , pm)T in terms
of β = (β1, . . . , βq)

T , the q unspecified (nuisance) parameters of the null
hypothesis distribution.

To calculate the chi-squared test statistic, the m null hypothesis cell
probabilities p(β) = (p1(β), . . . , pm(β))

T
must first be estimated. Using

maximum likelihood estimation (MLE) methods (see section 5.1) to do so
will result in known asymptotic test statistic distributions, and the resulting
chi-squared statistic will be the Pearson-Fisher chi-squared statistic X2

PF .
It also simplifies the problem considerably (if, as is usually the case, q < m),
requiring only MLE’s for the q nuisance parameters β to be found, as the
MLE’s for the cell probabilities are then given by p̂ = (p̂1, . . . , p̂m)T = p(β̂).

Following the notation of Rayner and Best ([9], chapter 7), define D̂ =
diag(p̂1, . . . , p̂m) and W to be the q by m matrix with components the
derivatives Wu,j = (∂pj/∂βu) evaluated at p = p̂ (where u = 1, . . . , q and
j = 1, . . . ,m). Let

F = D̂−1 − D̂−1p̂p̂T D̂−1 − D̂−1ŴT
(

Ŵ D̂−1ŴT
)

−1

Ŵ D̂−1. (1)

Now define Ĥ to be the (m − q − 1) × m matrix that satisfies

ĤT Ĥ = F (2)

subject to the three restrictions

Ĥp̂ = 0, ĤŴT = 0 and ĤD̂ĤT = Im−q−1. (3)

Let N = (N1, . . . , Nm)T be the number of observations in each of the m
categories and n =

∑

N . Then, with Ĥ as specified and V̂ = ĤN/
√

n,
Rayner and Best’s ([9], p.116) Neyman smooth score test statistic becomes
the same as the Pearson-Fisher chi-squared statistic X2

PF = V̂ T V̂ , and can
be decomposed into m − q − 1 asymptotically independent χ2

1
distributed

component test statistics given by squared elements of the vector V̂ . See
Rayner and Best ([9], p.116) for details.

Clearly, the difficulty here is constructing Ĥ so that equations (1), (2),
and (3) are satisfied, and the resulting components are usefully inter-
pretable. The literature is rather uninformative on this matter. Rayner
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and Best ([9], p.116) mention that Ĥ can be “...based on a Helmert ma-
trix” in some way, though how is not clear. Other references (Rayner
and Best, [9]) refer to Rayner and McAlevey’s [11] approach, though they
acknowledge that it is not unique. Their construction method uses the
fact that the r-th row of Ĥ is subject to q + r + 1 constraints due to the
requirements of equation (3) and an additional introduced restriction of or-
thonormality. There are m elements to be solved for in each of the m−q−1
rows of Ĥ, and elements of the r-th row after the (q + r + 1)-th are taken
to be zero. The problem then reduces to a linear programming task. The
resulting interpretation of the vector of component test statistics V̂ due to
this construction method is that “...V̂r is a contrast in the first q + r + 1
cells”.

3. Constructing Ĥ

This section uses the restrictions in equations (2) and (3) to develop a new
method for obtaining Ĥ from any given square orthonormal matrix of the
appropriate size. This allows all possible Ĥ’s to be considered as corre-
sponding to a particular choice of orthonormal matrix. The desired choice
of Ĥ can then be made, by first selecting the appropriate orthonormal
scheme.

Rayner and Best ([9], proof of Corollary 7.1.1, p.114) prove that for

K = D̂−1/2p̂p̂T D̂−1/2 + D̂−1/2ŴT (Ŵ D̂−1ŴT )−1Ŵ D̂−1/2, (4)

then Im − K has rank m − q − 1. Since Im − K has rank m − q − 1
then F = D̂−1/2(Im −K)D̂−1/2 also has this rank, and therefore possesses
m − q − 1 non-zero eigenvalues.

Obtain the m − q − 1 non-zero eigenvalues λ1, . . . , λm−q−1 (arranged
in non-decreasing order) and normalized eigenvectors f1, . . . , fm−q−1 of
F . Define the m × m matrix Λ = diag(λ1, . . . , λm−q−1, 0, . . . , 0). Also
let U1 = (f1, . . . , fm−q−1) and U = (U1, U2) where U2 is an arbitrary
m × (q + 1) matrix of normalized column vectors chosen to be orthogonal
to f1, . . . , fm−q−1. One possible choice for U2 is a Gram-Schmidt orth-

normalization of the columns of (p̂, ŴT ), since by equation (8) these are
orthogonal to F , although any choice of U2 is equivalent as long as U is
orthonormal. With U and Λ defined in this way, we have FU = UΛ and
UUT = UT U = Im so that

UT FU = Λ and F = UΛUT . (5)

Note that when actually computing the decomposition in equation (5), it is
better to replace D̂−1p̂p̂T D̂−1 (the second term in F ) with its equivalent,
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an m×m matrix of ones. In addition, this construction can sometimes be
more efficiently computed using the singular-value decomposition of F (see
Datta, [3]).

Define the m × m matrix Λ∗ = diag(λ−1

1
, . . . , λ−1

m−q−1
, 0, . . . , 0). Let Ji

(i = 1, . . . ,m) be the m × m matrix that is zero everywhere except for
the first i diagonal elements, which are unity. Then Λ∗Λ = Jm−q−1 and

defining the (m−q−1)×m matrix G = ĤUΛ∗1/2 means that equations (2)
and (5) give

GT G = Λ∗1/2UT ĤT ĤUΛ∗1/2 = Jm−q−1. (6)

Because G is an (m − q − 1) × m matrix, this equation tells us that the
first m − q − 1 columns of G must be orthonormal vectors, which are the
only non-zero elements of G. Then for any given G satisfying equation (6)
a corresponding

Ĥ = GΛ1/2UT (7)

is defined. Note that Ĥ does not depend on the particular U2 chosen.
For distinct eigenvalues λ1, . . . , λm−q−1 and a given G, U1 (and therefore

Ĥ) is uniquely defined up the signs of the eigenvectors f1, . . . , fm−q−1.
Without loss of generality, assume the sign of each eigenvector’s leading
element is positive. Because a change in the sign of the i-th eigenvector fi is
equivalent to changing the sign of the i-th column of G (i = 1, . . . ,m−q−1),
each Ĥ corresponds uniquely to a given G, and therefore uniquely to the
given orthonormal scheme selected.

This Ĥ satisfies the restrictions in equation (3). From Rayner and Best
([9], p.116) p̂T D̂−1p̂ = 1 and WD̂−1p̂ = 0 so that p̂T D̂−1WT = 0. Using
these expressions it is easy to show that

p̂T F = 0 and ŴF = 0. (8)

This means that both p̂ and the q rows of Ŵ are orthogonal to all columns
of F , so are orthogonal to each of f1, . . . , fm−q−1 and we have UT

1
p̂ = 0

and UT
1

ŴT = 0. Therefore, since only the first m − q − 1 columns of Λ1/2

are nonzero, we have

Ĥp̂ = GΛ1/2UT p̂ = GΛ1/2

(

UT
1

p̂
UT

2
p̂

)

= 0

and

ĤŴT = GΛ1/2UT ŴT = GΛ1/2

(

UT
1

ŴT

UT
2

ŴT

)

= 0.
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Also, from equation (1) and the transpose of the expressions in (8),

FT DF = FT

(

Im − p̂p̂T D̂−1 − ŴT
(

Ŵ D̂−1ŴT
)

−1

Ŵ D̂−1

)

= FT .

This expression, along with equations (5), (7) and the fact that UT U = I,
shows that Ĥ satisfies the final restriction since

ĤD̂ĤT = GΛ1/2UT DUΛ1/2G

= GΛ∗1/2UT (UΛUT DUΛUT )UΛ∗1/2GT

= GΛ∗1/2UT (FT DF )UΛ∗1/2GT = GΛ∗1/2UT (FT )UΛ∗1/2GT

= GΛ∗1/2UT (UΛUT )UΛ∗1/2GT = GGT = Im−q−1.

The definition of G (see equation (6)) and equation (7) together describe
how to obtain Ĥ: the first m − q − 1 columns of G are chosen to be any
square orthonormal matrix, the remaining elements of G are zero. Then Ĥ
is formed from this G using equation (7). But what orthonormal matrix
should be used?

4. Interpreting the Component Statistics

Clearly the composite hypothesis case (when nuisance parameters are present)
should generalize the simple hypothesis case (where the null hypothesis dis-
tribution is completely defined). In the simple hypothesis case there are no
nuisance parameters so q = 0, Ŵ does not exist, and F only consists of the
first two terms in equation (1). In the simple case, Rayner and Best ([9],
section 5.3, p.63; and appendix 3, p.147) assign the r-th row of Ĥ (corre-
sponding to the component test statistic Vr, r = 1, . . . ,m − q − 1) to be
values of the orthogonal polynomials hr(xi) evaluated at xi = 0, . . . ,m− 1
and defined by the equations

m
∑

i=1

hr(xi)pi =

{

1, r = 0
0, r 6= 0

}

and

m
∑

i=1

hr(xi)hs(xi)pi =

{

1, r = s
0, r 6= s

}

(9)

where h0(x) = 1 and hr(x) is a polynomial of degree r. The component test
statistic Vr arising from this choice can be written as Vr = (HN)r /

√
n =

∑m
i=1

hr(xi)Ni/
√

n. This Vr is said to correspond to departures of the r-th
moment of the categorized data from the r-th moment of the hypothesized
distribution.

It is clear that for r = 1, . . . ,m − q − 1 the r-th row of G corresponds
to the same row of H and thus to the component test statistic Vr. It is
desirable to keep the moment interpretations for Vr, but this is difficult.
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This question governs which orthonormal scheme for G is selected, and
warrants further investigation.

I recommend selecting the r-th row of G to be values of a (linear com-
bination of the pj weighted orthogonal) polynomial. The particular linear
combination is chosen to ensure compatibility with the simple hypothesis
case (where no nuisance parameters are present).

For H0 an (m − q − 1) × m matrix, choose its rows to be values of the
orthogonal polynomials hr(xi) (r 6= 0) evaluated at xi = 0, . . . ,m − 1 and
defined by the equation (9) above (for details see Emerson, [4]). Define

F0 = HT
0

H0 (10)

Obtain U0, Λ0 and Λ∗

0
from this F0 in the same way as U , Λ and Λ∗ are

obtained from F (see equation (5)). Then let

M = U0Λ
∗1/2

0
Λ1/2UT . (11)

Since we know what H should be in the simple case (that is, H0), we
can obtain F in the simple case (F0) and calculate the corresponding G

(G0 = H0U0Λ
∗1/2

0
). Then, using this G to find H in the composite case

gives H = G0Λ
1/2UT = H0U0Λ

∗1/2

0
Λ1/2UT = H0M and V = HN/

√
n =

H0MN/
√

n provides the desired component test statistics.
For the simple case (no nuisance parameters present) q = 0 and F = F0

so that H = H0M = H0 (though M is not the identity matrix) and this
method gives the same results as the simple case method of Rayner and Best
([9], chapter 5). Note that when elements of p are very close or the same,
obtaining U or U0 is a numerically sensitive operation. For this reason I
recommend ensuring that the elements of p differ by a small amount (I use
10−5).

Interestingly, since H0 has only m − q − 1 rows and there are m − 1
orthogonal polynomials hr(x) (for r = 1, . . . ,m − 1) to choose from, for
q 6= 0 there is some freedom in the order of the moment departures that
can be examined.

For distributions where the parameters fitted represent moments (eg Nor-
mal) then one is unlikely to be interested in examining moment departures
of the order of the parameters fitted, so r = q + 1, . . . ,m − 1 would be
chosen. For other distributions (eg Beta and possibly Poisson) we may
still be interested in moment departures of low order despite obtaining the
parameters from the data, so one could then choose r = 1, . . . ,m − q − 1.
Note that whichever group of moment departures are examined, the result-
ing component test statistics will always be asymptotically chi-squared by
definition.
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5. Examples

In this section I first discuss issues relating to the MLE of parameters using
grouped data, then revisit Example 5.2 (see Table 1) from Rayner and Best
[9] and the example in section 3 (see Table 2) from Rayner and McAlevey
[11]. In both these examples, a goodness-of-fit test is performed to judge
how well grouped continuous data with known bin endpoints fit a normal
distribution (with unspecified nuisance parameters µ and σ). Programs
to perform the Pearson-Fisher chi-squared decomposition for the normal
distribution, along with output for the examples considered in this paper,
are available from the author on request.

5.1. MLE’s for grouped data

To find Ĥ we first need p̂ = p(β̂), the MLE’s of the m null hypothesis cell
probabilities p(β).

Rayner and McAlevey [11] and Rayner and Best ([9],[10]) all indicate that
categorised MLE’s are used with the Pearson-Fisher chi-squared statistic,
but do not emphasize the vital information that the category endpoints
c0, . . . , cm are available, so that the data are in fact grouped continuous

instead of categorical. For truly categorical data, only the vector of observed
counts N is available, and the usual multinomial MLE’s p̂ = N/n are
obtained. More information (such as the category endpoints) must be
available in order to introduce the underlying distribution parameters β
into the likelihood function. Note that for the elements of p̂ to sum to
unity the support of the distribution being fit to must be (c0, cm). For
example, when fitting the normal distribution (which has infinite support)
the first and last category endpoints must be −∞ = c0 < . . . < cm = ∞.

The Sheppard corrected grouped mean and standard deviation (Kendall
and Stuart, [6], Vol 1, sections 2.20 and 3.18, p.47, pp. 77-80) are some-
times used in place of MLE’s when estimating parameters of the underlying
distribution (D’Agostino and Stephens, [2], p.548). The resulting estimates
are generally closer to the correct MLE’s, although Kendall and Stuart ([7],
Vol 2, Exercise 18.24-18.25, p.74-75) note that the grouped MLE correction
is not generally the same as the Sheppard correction.

In the following examples we will require MLE’s for grouped normal data
with unknown mean and variance. Here there are q = 2 nuisance param-
eters, β = (β1, β2) = (µ, σ). Let Φ(x) be the distribution function for the
standard normal distribution N(0, 1). The log-likelihood is then

`(µ, σ) = constant +
m

∑

j=1

Nj log pj(µ, σ) (12)
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Maize plant heights example from Rayner and Best (1990)

Heights of Maize plants (deci−meters)

D
en

si
ty

10 15 20

0.
00

0.
05

0.
10

0.
15

Figure 1. Density histogram of Maize plant data in Table 1 from Rayner and
Best [10] superimposed on the fitted normal distribution with parameters (µ̂, σ̂) =
(14.539603, 2.213820).

where pj(µ, σ) = Φ
(

cj−µ
σ

)

− Φ
(

cj−1−µ
σ

)

for j = 1, . . . ,m.

It is difficult to maximize this log-likelihood analytically, so numerical
methods are used. In a similar fashion to the approach used in Rayner
and Rayner [8], I use the Nelder-Mead simplex minimization algorithm (as
implemented in the statistical package R, see Ihaka and Gentleman [5]) on
the negative log-likelihood in equation (12), using the Sheppard corrected
grouped mean and standard deviation as the starting value.

5.2. Example from Rayner and Best [10]

Table 1. Distribution of the heights of Maize plants (in decime-
ters).

Class center 7 8 9 10 11 12 13 14
Frequency 1 3 4 12 25 49 68 95
Class center 15 16 17 18 19 20 21
Frequency 96 78 53 26 16 3 1

This example uses the EMEA data set in Table 1 from D’Agostino and
Stephens ([2], p.548) and assesses if these data set are normally distributed
(with the unspecified mean and variance as the nuisance parameters). The
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Table 2. Distribution of the heights of mothers (in inches).

Upper limit 55 57 59 61 63 65 67 69 ∞
Frequency 3 8.5 52.5 215 346 277.5 119.5 23.5 6.5

data set provides the observed number of maize plants in each of 15 height
categories specified by the category class center.

Before analysing these data as if they are grouped continuous we must de-
cide what we can assume about data with heights (−∞, 6.5) and (21.5,∞),
since fitting these data to the normal distribution assumes heights in these
ranges have positive probability. Because only the “class centers” of the
categories are provided, there are two ways of approaching the data.

1. Either these categories were included in the data (and there were zero
observations in these categories), so that the number of categories is
m = 17, and we obtain MLE’s agreeing exactly with Rayner and Best
[10] of (µ̂, σ̂) = (14.539603, 2.213820) along with a not dissimilar X2

PF =
7.051491 (Rayner and Best, [10], find X2

PF = 6.54).

2. Alternatively, the first and last categories were actually (−∞, 7.5) and
(20.5,∞), so there are m = 15 categories, we obtain different MLE’s of
(µ̂, σ̂) = (14.539722, 2.217189) and X2

PF = 6.226699.

Rayner and Best [10] present m − q − 1 = 12 component statistics, which
(since there are q = 2 nuisance parameters) implies they are considering
m = 15 categories. Confusingly however, they use the MLE’s obtained for
m = 17 categories.

Taking the first approach (where m = 17) and examining moment depar-
tures of order r = 3, . . . , 16, we obtain the following V̂r’s and corresponding
p-values (since asymptotically V̂ 2

r ∼ χ2

1
):

V̂3 = −1.53 (0.13), V̂4 = 0.47 (0.64), V̂5 = −0.52 (0.60),

V̂6 = −0.61 (0.54), V̂7 = 0.52 (0.60), V̂8 = −0.51 (0.61),

V̂9 = 1.09 (0.27), V̂10 = −0.44 (0.66), V̂11 = −0.45 (0.65),

V̂12 = −0.16 (0.87), V̂13 = −0.83 (0.40), V̂14 = −0.48 (0.63),

V̂15 = −0.79 (0.43), V̂16 = 0.39 (0.70).

Here, as in Rayner and Best’s [10] analysis, the p-values are all relatively
large, so there do not seem to be moment departures of any order consid-
ered.
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Taking the second approach (where m = 15) and examining moment
departures of order r = 3, . . . , 14, we obtain:

V̂3 = −1.52 (0.13), V̂4 = 0.69 (0.49), V̂5 = −0.81 (0.42),

V̂6 = −0.15 (0.88), V̂7 = −0.19 (0.85), V̂8 = −0.03 (0.98),

V̂9 = 1.13 (0.26), V̂10 = 0.03 (0.97), V̂11 = 0.80 (0.43),

V̂12 = 0.41 (0.68), V̂13 = 0.69 (0.49), V̂14 = −0.41 (0.68).

Here, all p-values are also relatively large.
Interestingly, the first few V̂r’s are similar for each approach, though

the higher order components are progressively more affected by the “edge
effect” differences between the two approaches. This is to be hoped for,
since both interpretations of the data category bin values are reasonable.
It may be a better idea to fit some kind of truncated normal distribution to
this dataset (possibly with the truncation endpoints included as nuisance
parameters).

Of course, it is certainly not good statistics to apply 12 or 14 significance
tests to a data set and focus on the most critical of these. Rayner and Best
[10] recommend that when testing a distributional hypothesis (rather than
investigating it in an EDA manner) only the initial components (say, V̂3

and V̂4), along with a residual test formed from the remaining components
(that is, X2

PF − V̂ 2

3
− V̂ 2

4
) be used. Since each V 2

r ∼ χ2

1
is (asymptotically)

independent, the null distribution of such residual tests is easily obtained.
For the example data set, both approaches give non-significant V̂3 and

V̂4; while for m = 17, X2

PF − V̂ 2

3
− V̂ 2

4
= 4.499918 (with p-value 0.97 from

χ2

12
), and for m = 15, X2

PF − V̂ 2

3
− V̂ 2

4
= 3.432863 (also with p-value 0.97

from χ2

10
). So if we were actually testing for normality, in practice the same

conclusion would be made using either approach. Of course, it is important
to be consistent and use the appropriate MLE’s corresponding to the class
structure chosen!

Note that while Rayner and Best [10] come to the same conclusion, the
V̂r’s they obtained are not similar to either of the two possible approaches
shown above, and should be interpreted differently.

5.3. Example from Rayner and McAlevey ([11])

Here a normal distribution is fitted to the heights of 1052 mothers grouped
into m = 9 classes (see Table 2), taken from Snedecor and Cochran ([12],
Example 5.12.5, p.78). No explanation is given for the “half mothers” that
are observed - perhaps these are observations falling on the class bound-
aries?
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Mothers heights example from Rayner and McAlevey (1990)
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Figure 2. Density histogram of Mother’s heights data in Table 2 from Rayner and
McAlevey [11] superimposed on the fitted normal distribution with parameters (µ̂, σ̂) =
(62.486285, 2.368791). Note that since the extreme classes are half-infinite, the histogram
height corresponding to these classes is zero despite the fact that they are not empty.

This time the class limits are quite clear, and we can obtain the MLE’s
as (µ̂, σ̂) = (62.486285, 2.368791). These estimates have log-likelihood of
1.672713 ∗ 10−4 larger than Rayner and McAlevey’s [11] values of (µ̂, σ̂) =
(62.4865, 2.3678).

These MLE’s lead to a chi-squared test statistic of X2

PF = 12.69994 in-
stead of Rayner and McAlevey’s [11] value of X2

PF = 13.16, and examining

moment departures of order r = 3, . . . , 8, we obtain the following V̂r and
corresponding p-values (since asymptotically V̂ 2

r ∼ χ2

1
)

V̂3 = 0.61 (0.54), V̂4 = 2.59 (0.01), V̂5 = −1.06 (0.29),

V̂6 = 2.08 (0.04), V̂7 = 0.44 (0.66), V̂8 = 0.08 (0.94)
From an EDA point of view, there seems to be a discrepancy in terms

of the 4th and 6th order moments, but nowhere else. On the other hand,
if we were testing for normality, then V̂3 is non-significant but V̂4 is quite
significant, and X2

PF − V̂ 2

3
− V̂ 2

4
= 5.642718 (with p-value 0.23 from χ2

4
) is

non-significant, so we would probably reject normality as a model for these
data because of their tail weight.

Interestingly, Rayner and McAlevey [11] also reject normality here be-
cause of their V̂2 = −2.2904 with p-value 0.02 and their V̂6 = 2.0650 with
p-value 0.04. Their component statistics are different to those obtained
above, and must be interpreted differently. Their component statistics lead
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to the conclusion that normality should be rejected because the ”...fifth and
ninth cells are less normal-like than their predecessors”.

It is worth considering that these results might be due the somewhat
unrealistic edge effect assumptions we have incorporated about the extreme
data classes. Tail weight could be quite heavily influenced by the extreme
classes, and in Rayner and McAlevey’s analysis, one of the culprit cells (the
ninth) is itself an extreme class. As with the Rayner and Best [10] example,
it may be better to consider fitting some kind of truncated distribution to
these data.

6. Conclusion

This paper provides, for the first time, a complete understanding of the
options available for Rayner and Best’s [9] decomposition of the Pearson-
Fisher chi-squared statistic. In addition, unlike previous analyses using this
method (see for example Rayner and Best [9] [10]; Rayner and McAlevey
[11]), comprehensive details are provided to enable researchers to perform
these tests. The example analyses of Rayner and Best [10] and Rayner and
McAlevey [11] are revisited and re-analysed using a far more interpretable
decomposition than the original analysis.

The approach outlined in a conference paper by Best and Rayner [1]
has recently produced very good approximations to the component values
given for the examples in section 5.2. In a private communication, Best and
Rayner indicate they produce 3rd and 4th order components of -1.535 and
0.682 (compared to -1.52 and 0.69, if we assume m = 15 classes) for the
maize plants example in section 5.2; and 0.603 and 2.588 (compared to 0.61
and 2.59) for the mothers heights example in section 5.3. This agreement
is probably a result of the fact that fitting data by MLE and moment
matching produces fairly similar results for the normal distribution.

Note that for the approach provided in my paper, whichever group of
moment departures is examined, the resulting Pearson-Fisher component
test statistics will always be asymptotically chi-squared by definition. In
contrast, the Pearson chi-squared components obtained by Best and Rayner
[1] may not have a known distribution if parameter estimates of comparable
order to moments used for fitting the distribution. However, the Best and
Rayner [1] method is clearly of interest for future work given the empirical
agreement obtained for the examples included despite the different nature
of their approach.

Expressing Pearson’s test in terms of its components explains why this
test often has weak power. This test assesses deviations from the null hy-
pothesis distribution with equal weight for each of its m−q−1 components.
For the examples included here, m − q − 1 was as large as 14. Examining
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all of these dimensions reduces the effectiveness of the test for detecting
departures in terms of the (usually more important) earlier moments. Us-
ing these component tests, it is unnecessary to dilute the test power: we
can test using the first few component test statistics along with the sum of
the remaining components.

In addition, each component corresponds to a specified moment differ-
ence between the data and the hypothesized distribution. This allows a
more EDA approach to investigating departures from the null hypothesis
distribution in terms of interpretable components.
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