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In the paper we analyze singularly perturbed telegraph systems applying
the newly developed compressed asymptotic method and show that the
diffusion equation is an asymptotic limit of singularly perturbed telegraph
system of equations. The results are applied to the random walk theory
for which the relationship between correlated and uncorrelated random
walks is explained in asymptotic terms.
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1. Introduction

An asymptotic equivalence between uncorrelated and correlated random walks (or
between the diffusion and telegraph equations) has been studied by many authors (see
e.g. [14], a survey in [16] or recent paper [7]). The results can be divided into two
streams: in the first one the probabilistic aspect of the problem is of primary interest
and the results for the differential equations are obtained as a by-product and in the
second one the situation is reversed. Our paper belongs to the second stream. We
combine recent advances in the asymptotic analysis of kinetic equations with an obser-
vation that the system of telegraph equation is in fact a simplified Boltzmann equa-
tion (which was probably pointed out first by Kac [8]) to provide a unified treatment
of various singularly perturbed telegraph systems showing their asymptotic
equivalence with a diffusion equation.

In most cases known to us the asymptotic analysis is carried out for the second
order telegraph equation. However, it is known that in the continuous limit of the
correlated random walk one obtains a system of equations which can be reduced to
the second order equation only for a restricted class of coefficients. Thus, the confine-
ment to the second order telegraph equation seems to limit considerably the generali-
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ty of the results so that in this paper we consider the systems of telegraph equations
with variable coefficients.

A well-known result is that the correlated random walk tends to an uncorrelated
random walk if the strength of correlations goes to zero but at the same time the
speed of particles tends to infinity in such a way that

strength of correlations x (speed of particles) 2 O(1),

(see e.g. [7] and the references therein). We recover this result and, introducing the
initial layer, extend it to hold uniformly in time for any bounded time interval [0, T].
Moreover, we shall show that the diffusion approximation is also valid under the sole
assumption that the strength of correlations tends to zero allowing the speed of parti-
cles to remain finite. In this case, the error of approximation turns out to be much
smaller than in the previous case.

In the analysis the crucial role is played by the recently developed compressed
method (which is a modification of the Chapman-Enskog method, well-known in kine-
tic theory). The detailed description of the compressed method can be found in [11].
The reader is also advised to consult the relevant references cited in the book (particu-
larly, [1, 3, 4, 9, 10, 12]).

2. Basic Notions from Random Walk Theory

In this section, we introduce relevant definitions and formulas from random walk
theory. Since, however, our primary aim is the singular perturbation analysis, we con-
fine ourselves to a simple, one dimensional free-space case, as presented e.g. in [16].

Let us assume that each particle moves on the real line, with common probability
p(x) at position x to the right and to the left by the distance 5 every time interval 0.
We define v(x, t) as the probability of finding a particle at the position x and time t
if it starts at x 0 and t 0. If we denote r(x) 2p(x), then the probability that
the particle rests at each step is 1- a(x). The function v satisfies the forward Kolmo-
gorov equation

v(x, t + 0) = (1- cr(x))v(t,x) + p(x 5)v(x 5, t) + p(x + )v(x + 5, t).

By expanding the functions in (2.1) into Taylor series and passing to the limits as 5,
0--,0 in such a way that

D(x): lim
r(x)52

0

remains finite, we arrive at the diffusion (Fokker-Planck) equation satisfied by the
probability distribution function v:

1 2(Dv)"OtV -0x
Equation (3.2) is to be supplemented by the initial condition

(2.4)
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The requirement that the diffusion constant D is finite implies that the particle speed

is infinite. This result clearly indicates that the diffusion equation does not supply an
adequate description of random walk. The reason is that the Kolmogorow equation
(2.1) refers to an uncorrelated random walk so that remedy this drawback we have to
take into account the correlations. There are various ways to do this like, for in-
stance, utilizing the Langevin equation. We will choose the approach of Taylor [15]
and Goldstein [6] and introduce two probability distribution functions, separately for
particles moving to the right , and to the left X. In a similar way we take p as the
probability that a particle persists in moving in the same direction and q as the proba-
bility that it changes the direction. The probability that the particle rests at each
step is given by 1- r(x), where

a(x) p(x) + q(x). (2.6)

We assume that r is a Lipschitz continuous function and

(2.7)

for all x C N.
Under these assumptions, we have the following system of Kolmogorow equations

for the functions and X

(, + 0) ( v() q())(*, ) + p( )( , ) (2.8)

+q(x-6)X(x-6, t),

X(x, t + O) (1 p(x) q(x))x(x, t) + p(z + 6)X(x + 6, t)

+ q(x + 6)X(x + 6, t). (2.9)

In the presence of correlations we expect that p is approaching a and q is approaching
0 when 0--.0 and relation (2.6) holds. Therefore, it is reasonable to take p and q in
the following form:

v(:) (z)- ()o + o(o:), q() ()o + o(o:), (2.10)

where A is the rate of reversal of direction and is related to the strength of correla-
tions in the system. We assume that A is a Lipschitz continuous function satisfying

0 < O--’(X)

_
z1 < (2.11)

for all x C .
Expanding the functions and X in Taylor series, using Equation (2.10) and let-

ting 6, 0---0, in such a way that 7 defined in Equation (2.5) remains finite, we obtain
the system of equations
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ot -70x() + a- an.
(2.12)

It is convenient to introduce two new functions

v(, ) (,) + x(, ), (2.13)

and

,(t, ) (t, :) = x(t, ), (2.14)

where v is the density and w is the net (to the right) current of the particles.
adding and subtracting the equations in (2.12) we obtain the telegraph system:

Now

Otv + 70.(rw =0.

Otw + 70x(rv + 2,w = O.
(2.15)

System (2.15) is supplemented with the initial conditions

v(. ;) . w(. 0) o
W. (2.16)

Due to the presence of variable coefficients in system (2.15) it is convenient to consid-
er it as an evolution equation

where

0 73’ + 2AC
W w W

and e
0:o" 0 0 -1

(2.17)

in the Hilbert space a- L2(R)x L2(R with the following norm:

This norm is equivalent to the natural one by virtue of Equation (2.7).
In a similar manner we define norms in the Sobolev spaces used throughout the

paper; these spaces will be denoted by Wk
2,"

It then follows that the operator f defined on the domain D(b) -W ([)x
W,() is maximal dissipative and hence t generates a semigroup of contractions de-
noted by (G:f(t)) > 0" Since the operator 2AC is bounded, the operator " 3’ + 2)C
also generates a seYnigroup of contractions, say, (G(t)) > 0- Hence the Cauchy pro-
blem related to Equation (2.17) is solvable.
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3. Seting the Problem

If the correlations are weak, that is, the coefficient , is large, it is natural to expect
that the probability density v of the correlated random walk should be close to the
probability density obtained by solving diffusion equation (2.3) of the uncorrelated
random walk.

A well-known result in this field is that if , is independent of x and ,, 7--+00 in
such a way that 72/, remains finite and non-zero, then system (2.15) reduces to the
diffusion-type equation:

for v, where

We note that Equation (3.1) coincides with Equation (2.3) only when D is constant.
The proof of convergence can be found in e.g. [5, 7].

In this paper we show that the solution to the diffusion equation approximates
that of the correlated random walk and provide estimates of th incurred error. More-
over, we shall show that the diffusion approximation is also valid when we let
and assuming that 3’ is finite. This seems to be by far more acceptable from the phy-
sical point of view, since there are no reasons for the signal to travel at infinite speed.
All these will be done in a general setting of the singular perturbation theory develop-
ed originally for kinetic equations in [11]. In the spirit, of the theory we normalize
the relevant coefficients in system (2.15) by introducing a small positive parameter e,
independent of x.

To cover both types of behavior of 3’ we consider two separate cases.
First case: With

Equation (2.17) takes the form:

Second case: For

’ (3.2)7 T7, ’ e

-, (3.4)

Equation (2.17) is written as

0 ivl iv I iv]+--e
l/) l/)

We note that mathematically speaking, forms (3.3) and (3.5) are equivalent as re-

scaling time t+et, discussed in detail in Section 5, transforms (3.3) into (3.5) and,
therefore, t---,(v(t, .),w(t, .)) is a trajectory of the former if and only if t-+
(v(et,.), w(et,. ))is the trajectory of the latter. However, as we shall see it later, the
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asymptotic behavior of the trajectories as e--,0 are quite different and full comparison
is not possible unless some sophisticated asymptotic procedure is used. In this paper
we present such a procedure, called the compressed asymptotic procedure, which is a
modified version of the well-known Chapman-Enskog procedure in kinetic theory. An
exhaustive discussion of various scalings of equations can be found in [2, 11].

Basic features of the compressed asymptotic method are:
1. Functions v and w are sought in the form

+

where r-tie2 in the first case, and r-t/ in the second case, is the
"stretched" time variable necessary to cater for the initial layer phenomena;
V, and , are sought independently.

2. Function depends on only through its dependence on , that is, for some
function W,

w(v (t)).

3. Functions ,, are expanded into asymptotic series in :

(t) ffo(t) -- el(t + e22(t) + O(e3)

Wo( (t)) - CWI( (t)) - 2W2( (t)) -- 0((3),

" (T) Vo(T) - e’l (7") -- e2’2(T -- 0((3),(7") 0(7") -- e.1(7-) -- e22(7- -- O(e3),

whereas V remains unexpanded and treated as an O(1) function at all levels of
approximation.

Remark 3.1" Assumption (3.6) is known in the theory of autonomous differential
equation, where very often taking the unknown function as a new independent
variable simplifies the considerations. The assumption that V is not expanded is then
merely a statement of the fact that one cannot expand an independent variable. In
our case, however, (3.6) will be satisfied in the asymptotic sense only.

The reason for truncating the expansion at 2 terms is, as will be clear from the
formal asymptotic expansion of the next section, that we fail to obtain the diffusion
equation for higher order approximations.

4. Singularly Perturbed Systems: First Case

In this section we are concerned with the singularly perturbed initial value problem
(3.3), which can be written in an expanded form as follows:

Otv +-cO(aw) O,
(4.1)
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2,wo +o(v) +-j o,

with the initial values given by

(o, ) , (0, ) o
W. (4.2)

O(e 2): wo 0, (4.5)

0( 1): Wl ’Ox((7- (4.6)

O(e) w O. (4.7)

Going back to (4.3) we obtain the following diffusion equation:

(4.8)

which coincides with Equation (3.1) if is independent of x. Here we used the fact
that 2/_ 72/$.

To obtain the initial layer terms and the appropriate initial conditions for Equa-
tion (4.8) we insert Equations (3.8) and (3.9)into Equation (4.1) to obtain

Oq,r’0 + (0-’1 -F 20v’2... + e (Ox(O’)O)+ x((71)-F 2x(72)+...) 0 (4.9)

and

5-0 + e0-1 + 2(v2... + (0x(70)--x(71)--e2(x(72)+...)
2(0 +1 + 22"" ")" (4.10)

Comparing coefficients at the same powers of e we obtain the following set of equa-
tions:

o(): Ojo o,

0o- _2o,

Inserting (3.7) into (4.1) we obtain the following equations:

0t l0x(r0) 0x(O’1) 0x(ff2) (4.3)
dWJ for j- 0, 1 we haveDenoting Wj d "’"

w;o + W’lO + wio +... +10(
(4.4)

t- 2" (Wo(- + l-dWl( )-[- Ws( )2t-... O.

Inserting expansion (4.3) into (4.4) and comparing the coefficients at the same powers
we get:
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0(1)" Oq,r’ ’Oqx(O’o)

(rl --21
0()"0 ’Ox(O’1),

(4.11)

Recall that the solutions of Equations (4.11) represent the initial layer part and
must vanish exponentially at infinity. With this, we obtain that

v0 0,

o() o(O)-,
’1(T) ’0x (2-e 22v0(0) ),
I(T l(O)e-

( O" e--2rl )v2(r 0x - (0) (4.12)

We omit writing the explicit formula for 2 as it is not needed in the sequel. To
determine the initial values for Equations (4.8) and (4.11), we balance the initial
values

) (0) q- ’1(0) -- 22(0), (4.13)

and

0(0) -[- (1(0) -[- 1(0)) -[- 22(0), (4.14)

where we have to remember that Equation (4.13) defines the expansion of V(0).
Taking that into account, we obtain from Equations (4.14) and (4.12) that

o(0) -v, (4.15)

’1(0) --Ox(), (4.16)

1(0) 1(0) 2-Ox(ff (0)), (4.17)

2(0) ---0x (Ox(- (0))), (4.18)

(0) -0, (4.19)
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and for (0),

The last equation is a second order differential equation and it will be replaced by an

approximate expression for the initial value for V (0):

(2)(0)--Ox (v)-27----Ox (Ox()). (4.21)

The solution of the initial value problem (4.8), (4.21) will be denoted accordingly by
(2); V (0)in Equations (4.17), (4.18) V (0)is replaced by V(2)(0).

The error of the approximation is defined by:

y(t v(t) V(2)(t) e(t/e2) 2(t/2), (4.22)

z(t)_w(t)_~ 2 )wo(t/ (l(t/ -t-)- 2(t/2). (4.23)

To find the estimates of the error we insert (formally) v and w, as obtained from
Equations (4.22) and (4.23), into Equations (4.1). After algebraic manipulations
utilizing Equations (4.5)-(4.7)and (4.11)we obtain:

Oty +Ox({rz (0({r2) (4.24)

2Z e’0x(O’2) 0t1 (4.25)+ +y
The initial data for this system can be calculated as

z(0) =0.

We will need the following result:
Proposition 4.1: The operator defined by

"t’2 /\u -0x \’’]

with the domain

(4.27)

D()- W22(R), (4.28)

generates a uniformly bounded analytic semigroup, say (G(t)) > o, in L2(R).
Proof: As in Section 2 we introduce the weighted spa-ce Ha -L2(,rdx).

Clearly, Ha L2(), both set-theoretically and topologically. Norms on the respec-
tive Sobolov spaces are redefined accordingly. Let us consider the bilinear form

ac( ) /0x(r)0x(r )dx + c(, (4.29)
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where c is a complex constant. Clearly, this form is continuous on W(R) and, since
the mapping -- is an isomorphism on W(), we have for Red > 0 that

Reac( ) > C’ II 0x(Cr, )II / -+- Rec 2

z H

for some constants C’, C", C. Hence, aa is coercive on H and, therefore, the opera-
tor , associated with the bilinear form a0 and defined on the domain

D()- {u e W{(n),u e

is the generator of an analytic semigroup (see e.g. [5]). Letting c 0 in Equation
(4.29) we see that is dissipative in Ha, hence, (G(t)) > 0 is a uniformly bounded
semigroup in L2(N (and, clearly, a semigroup of contractions in Ha).

By classical results on regularity of variational solutions of elliptic problems we

obtain that D()is given by Equation (4.28).
For asymptotic estimates we shall need explicit expressions for domains of some

powers of . For the free space we have an easy identification

D(c’) WC’(R), (4.30)

where a E N.
We can now formulate and prove the main theorem.
Theorem 4.1: Let
(i) o" and , satisfy

0 < O"0 <__ r(X) <__ cr (. O0

and " e C’I(N), r e C’I(N),
(ii) e W(),
(iii) v e W().

Then, for each T, 0 <_ T <_ oo, there is a constant C such that the error of approxima-
tion {y,z} defined in Equations (4.22) and (4.23) satisfies

II {, z} 11%() 2() < c2, (4.31)

uniformly in [0, T].
Proof: Throughout the proof C, will denote a generic constant. First we note

that, due to the assumptions on the initial values and the coefficients in the equa-
tions, the error function is differentiable with respect to both t and x can be inserted
in the system (4.1). Therefore {y,z} is a genuine solution of the initial value problem
(4.24)-(4.26).

The second term in right-hand side of Equation (4.25), Otff1 can be written as
follows:
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Ot1 (2--x(0"(2)))
(4.32)

where, utilizing identification (4.30) and assumptions (ii)-(iii), we have

l_j_). (4.33)II F (t)II L2() -< C(1 + x/
To obtain the desired estimates we split the right-hand sides of (4.24) and (4.25) into
two parts and accordingly we will be solving two problems:

Problem Pi:

Oty + 7O(azi) COx(a@2) (4.34)

Otz +Ox(ayi) +z -eO(a2)- e2, (4.35)

with the initial value given by Equations (4.26).
Problem Pb:

Otyb +0e (Zb) O, (4.36)

70 ’ 21z (4.37)OtZb + T x(Yb) + b--

b(O) O, Zb(O) O, (4.38)

where

By the results of Section 2 we can write the solution {yi, zi} as

z(t)
ar(t) o

+ ar(t )
Ox(2(/2)) ?(

d

0

and, since (G(t)) >__ o is a semigroup of contractions in , we have
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ds

<_ c2C 1 + e

0
J(1)ds"S’Q(s’)ds’ + M 1 +-0

Cc2(1 + T + V/). (4.39)

The constant C depends on the coefficients and the initial values, T is the length of
the time interval, and Q is a polynomial.

To estimate the solution of Problem Pb we introduce an auxiliary function defin-
ed as a solution to the following problem:

Oth 2,h
2 -t"1

(o)-o.

Clearly,

h(t) f
0

(t- )
2 l(S)ds (4.40)

and the pair {yb,b}, where b- hb, satisfies

O,b + lo.(b) 0
0

:(t-)
2 ?l(S)ds

22Ojb + l*o(b) +-j b 0

b(O) o, (o) o.

(4.41)

(4.42)

(4.43)

Using again the fact that the semigroup (G(t)) > 0 is a contraction semigroup in
we obtain

0x r e Fl(s’)ds’ ds

o
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’ o(-’)
8 e2<_ C 1 + s

e
e ds’ds

0 0

<_ C(Tc2 + c4), (4.44)

since II Gg(t)g ]1 wk(N)
as the estimate (4.33).

We have also

is bounded for k _< 4 (this statement can be proved similarly

II h(t)II . c3

and, therefore, the mild solution {Yi+ Yb, Zi + zb} to problem (4.24)-(4.26) satisfies
the estimate

II { + b, z + Zb} II : <-- C. (4.45)

Since (4.24)-(4.26) has a classical solution {y, z}, this solution coincides with the mild
solution and hence the estimate (4.31) is proved.

Remark 4.1: In the next section we shall need a sharper version of the estimate

(4.31). It follows from Equation (4.32) that if we assume E W24(N), then the esti-
mate (4.33) can be improved to

II r(t)
Hence, Equation (4.39) changes into

z(t)

and, consequently, we have

_< e2(1 + T + eX/

(4.46)

where T is the length of the time interval.
Remark 4.2: It is to be noted that the parameter 2 was introduced in an artifi-

cial way to label the magnitude of the strength of correlations A (A /e2) and, there-
fore, the error of the approximation is of order A.

Formulas (4.22) and (4.23) together with Theorem 4.1 can be rewritten in the
following form:

V (2
._[_ C’l -t- 2’2 -[- 0 2), (4.47)

(4.48)

We see that in fact, terms 2 and 2 are superfluous as they are multiplied by 2.
Similarly, if we are interested only in the error of approximation we can simplify the
initial condition for the diffusion equation given by Equation (4.21) by dropping the
last term. tIowever, it follows (see [1], Chapter 5.7) that to get the required esti-
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mates we had to use the second order relation 2- 0. The second order terms in
approximation (4.47), (4.48) will be utilized later when we analyze the relation be-
tween the moments of correlated and uncorrelated random walks.

The observations made above can be summarized in the following corollary.
Corollary 4.1: Let v be the density of the correlated random walk, which satisfies

equations (4.1) and (4.2), let (1) be the solution of the problem

0t(1) --.0x
V(1)(0) e0x (2-)w (4.49)

and let

Then, for each 0 < T < oc there is a constant C such that

II (1)(t)- Cl(t/2) II L2([) - Cc2,

uniformly ]’or t E [0, T].

(4.50)

5. Singularly Perturbed Systems: Second Case

An intuitive perception of a correlated random walk is that one should be able to
approximate it with a uncorrelated random walk whenever the correlations are weak.
Hence, the additional assumption that

72- O(1),

which requires the velocity to go to infinity at a specified rate, seems to have no phy-
sical meaning and the question appears whether it is possible to obtain a diffusion
approximation to the correlated random walk equation basic solely on the assumption
,---.c. H’ere we shall see that such an approximation is indeed possible and is of far
better accuracy than that discussed in the previous section.

To obtain the singularly perturbed system corresponding to the assumption about
the weakness of correlations we introduce , (so that now the strength of correla-
tions is of order ) and consider the following system:

Otv+70(zw -0,

+ + o, (5.1)

with the initial values given, as before, by Equations (4.2)"

,(0, o
W.

We can analyze this problem either directly, or notice that the substitution
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t’-- t

reduces to (5.1) to (4.1), which was thoroughly examined in the previous section.
Returning to the original variable t we obtain from Equations (4.5)-(4.8) and (4.21)
that

0(()). (5.)

The only difference is that the parameter enters the diffusion coefficient or, in other
words, that the diffusion coefficient is of order 1/A- e/A, which seems to be a

natural result.
The initial layer terms given by Equations (4.12) do not change the form; the

only difference is that r 0/2 t/e.
The equations for the error has a form similar to Equations (4.22), (4.23)"

y(t) v(t) (2)(t) l(t/e) _2,’,.,v2(t/), (5.4)

z(t) w(t) o(t/) (l(t)q- l(t/))- 2(t/),

where this time (2) is a solution to problem (5.2).
To obtain an estimate of the error (5.4), (5.5) we note that estimate (4.31) (and

(4.46)), obtained after substitution t’- et, is valid for each t’ so that we can safely re-

place t’ by t and get te required estimates in t. Moreover, if 0 _< t <_ T, then 0 _< t’ _<
eT, and from Equation (4.46) we see that the error is of order e3. Hence, the
following theorem is true.

Theorem 5.1" Let
(i) o" and A satisfy

o < o < () < o <

0 < ;to <_ ;() <_ ;oo <

(ii)
and 2 e c’l([), (r E c’l(),
e w4(s),

(iii) e W42().
Then, for each T, 0 <_ T <_ cx, there is a constant C such that the error of approxima-
tion {y,z} defined by Equations (5.4) and (5.5) satisfies

II {v,z} II s_,(a)x s2(a) < c2, (5.6)
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uniformly in E [0, T].
Note that in this case, the error of diffusion approximation is of order of 1/A3,

which is considerably better than for singularly perturbed system (4.1).
Remark 5.1: If we select the direct way of obtaining estimate (5.6) and proceed

as in the previous section, we obtain the following equations for the error

0 + O(z) -0(o), (.)

OtZ --[- "yOx(O’y -+-Z 20x(ff2) e0t1. (5.8)

However, by Equations (5.3) and (5.2) we obtain

0 l 7O(z0t(:
2A

2
: -Ox[tT(x(rl)

and the bulk part term in Equation (5.8) is multiplied by e2. Now, following the
same procedure as when estimating the solution of Problem Pb in Theorem 4.1, we
show that the contribution of term e1 to the total error is of order ea.

6. Application to Pamdom Walk Theory

Let us return to the real coefficients 7 and A and remove from the formulas approxi-
mating the density v of the correlated random walk. It turns out that in both cases
we obtain the same equations

V V(2) (2) + Vl _+_ V2’

where (2) satisfies

(6.1)

o o" o 7
2

o" (6.2)

and

vi(t)--l(T)--/Ox (2-e 2"kt), (6.3)

v:(t) (6.4)

We recall that the profound difference between the two asymptotic expansion is
that, when A--.cx but /72 remains finite, the error of approximation (6.1) is of order
1/A and if we require only A--c, then the error is of order 1/A3.

To show clearly the meaning of the asymptotic expansions obtained in previous
sections in random walk theory we assume throughout this section that the coeffi-
cients of the original telegraph system (2.15) are independent of x and demonstrate
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that in such a case, the moments of v up to the second order (and, therefore, the var-

iance of v) are exactly equal to the respective moments of v(2).
For a given function f and p- 0, 1,..., we denote

(f)p J xPf(x)dx"

We have the following theorem.
Theorem 6.1: Let and v satisfy the assumptions of Theorem 4.1 and, more-

o?)er,

fork-l,2,3 and j-O, 1. Then, for all t >_O and p-0,1,2,

(v)p(t) (v(2))p(t), (6.6)

where v(2) is defined by Equation (6.1).
Proof: Using the Fourier transform one can verify that if the initial values have

the properties specified in the theorem, then the same properties will have the solu-
tions (v, w) to the telegraph system

OtV +’)’69xw O

Otw + 7rOxv + 2,w O,

v(0)

and the solution (2) to diffusion equation (6.2).
will exist up to the second order since, e.g.,

Then, the moments of the solutions

x2v(t, x)dx <_ J (1 -+ x I)- 1( 1 -t Ix )v(t, x)dx

(1 + Ix I)21 v(t, x) 2d

Since xkOJv are integrable for k- 0,1,2 and j- 0,1 and continuous on N, by the
Sobolev imbedding theorem, we have

lim xkcgJxv O. (6.8)

Similar results hold for w and (2) where in the last case we can have 0 < j < 3 The
above assumptions ensure also that all the moments are differentiable with respect to
t as Ll-valued function; thus, we can interchange operations 0 and f.

Using these facts we obtain the following equations for the moments of the sys-
tems (6.7)"
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O(V)o o, (V)o(O) ()o,

a,<>o (>o <>o(O) (>o,

Ot(V)l ’r(W)o, (V)l(0) ())1,

Ot(W)l 2<W)l - "/O’<V)0, (W>l(0) (>1,

O<v)- 2(>, <>:(o)- < ).

Solving these equations we obtain

(V)o() ()o,

()o(t) ()o-:

(V)l(t) = 7()o-2 ()o
2 -" 2, -" ())1’

(v)2(t) 7()----Q02 t + (
’0"<)1 ’)’20"2 <) )0+():.+ i 2A2

The moments of V(2) can be calculated as follows:

2At

0t(v(2))o o, ((2))o(O) (g)o,

0t((2))1 0, ((2))1(0) (g)1 -- -W0’22ot(v(:)): "/,x (v(:))o’

(v(2)):(o) (g)2+/ff()l

which gives

((2))0(t) (g)t
0"/o

((2))2(t) ")’20"2( )0t + ())2 -t- -------’O’()1
The moments of the initial layer terms are given by

")’20"2 ())0
2A2

(6.9)

(6.10)

(6.11)

(6.12)
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(i)o() (;7)o() 0,

(i)()
()o x

2A
e

(6.13)

(6.14)

<v)() 0,

<>:()

(6.15)

e-2At (6.16)

e (6 17)<)() 2
Adding Equations (6.11), (6.14) and (6.15) we see that for ii >_ 0 we obtain

((:))(t)- ()(t),

where (v>l is given by Equation (6.9), and adding equations (6.12), (6.16) and (6.17),
we obtain that

(,(:)):(t)- (,):(t),

where (v)2 is given by Equation (6.10). Hence, the theorem is proved.
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