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1. Introduction

In this paper we evaluate the distribution of the queueing delay in the stationary
G/G/s queue. The particular case of the GI/G/s queue was extensively studied ear-
lier by Pollaczek [3]: it proves difficult to write down the equations for the GI/G/s
queue, whose partial solution can only be derived after long and complex calculations
involving multiple contour integrals in a multi-dimensional complex plane.

In Section 2, we state the underlying assumptions and introduce notation before
evaluating all singularities of the Laplace-Stieltjes transform of this distribution for
the GI/G/s queue for the limited case of the stationary regime. The method is then
extended to the case of the G/G/s queue (Section 3).

In Section 4, we derive the constraints to be satisfied in order that this Laplace-
Stieltjes transform be holomorphic. To do so we propose a factorization method,
which is more general than the Wiener-Hopf type decomposition.

In Section 5, we derive an expression for the distribution of the queueing delay in
the stationary G/G/s queue together with its asymptotic behavior for long delays. In
Section 6, we apply our results to the case of the GI/G/s queue. Finally, in Section
7, we consider the M/G/s queue.

The method presented requires relatively simple calculations making it possible to
consider the evaluation of local queueing delays in multiserver queueing networks.
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2. Notation, Assumptions and Preliminary Results

2.1 The Stationary G/G/s Queue

We consider a queue handled by a multiserver of s identical servers.

a) The Arrival Process: We assume a metrically transitive, strictly stationary pro-
cess of successive, non-negative interarrival times. Let N(t) denote the random num-

ber of arrivals in the interval (0, t]. We write dN(t)--1 or 0 dependent on whether
or not there is an arrival in the infinitesimal time interval (t, t + dr). We exclude the
possibility of simultaneous arrivals. We can then write:

E[dN(to) dN(to + t)] E[dN(to) p(t)dt, (1)

where p(t) is the arrival rate at time (t + to) if an arbitrary arrival occurred at time
to We let, for Re(z < 0:

ezt. p(t)dt Cl(Z 90, x(Z), (2)
0 x=l

where po, x(z) corresponds to the xth arrival following the epoch t0. However, the sta-
tionary assumption and Abelian theorem gives: Limz_0z- al(Z A, where A is the
mean arrival rate. In a more general way, we may write, for j- 1,2,..

E[dN(to) dN(to + tl)...dN(to + tI +... + tj)]
[EdN(to)]. fj(tl...tj), dtl...dtj, (3)

and for R(zj) < O, j 1,2,..

ezl .dtl... e 3 3. dtj.fj(tl. ..tj) aj(Zl...zj). (4)
0 0

In the case of a renewal process, the successive arrival intervals Yn are mutually in-

dependent and identically distributed and we let" o(Z)- NezYn for R(z)< O. Ex-
pression (2) becomes:  0(z) (5)Ol(Z) 1 o(Z)’and (4) becomes:

Oj(Zl...Zj) Ol(Zl)...OZl(Zj). (6)

b) The Service Times: The successive service times Tn are mutually independent
and independent of the arrival process. They are identically distributed in accordance

with a distribution function F(t) and we let (z)- EeT’, for Re(z < O. We
exclude the possibility of bulk service; consequently:

rl(0) FI( + 0) 0. (7)

c) The Service Discipline: The service discipline is "first come-first served’, and
the s servers are indistinguishable.
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d) Traffic Intensity:
one:

The traffic intensity (per server) is supposed to be less than

[EdN(t)]’[E(Tn)]
r- s <1. (8)

Under this condition, Loynes [1] demonstrated the existence of the stationary
regime.

e) Queueing Delay: Let ’n denote the queueing delay of the nth customer, and -of an arbitrary customer. Note: Since the term "waiting time" means "sojourn ime"
in Little’s formula, for clarity we prefer to use the term "queueing delay" for the
queueing process only.

f) Contour Integrals: In this paper, we use (Cauchy) contour integrals along the
imaginary axis in the complex plane. If the contour (followed by the bottom to the
top) is to the right of the imaginary axis (the contour is closed at infinity to the
right), we write f. If the contour is to the left of the imaginary axis, we write f.

+o -o
Unless it is necessary to specify whether the contour is to the right or to the left of
the imaginary axis, we write f.

0

2.2 Preliminary Results (GI/G/1 Queue)

It will be useful to refer to Pollaczek [2] for the queue GI/G/1. For Re(q)>_ O, we
have"

_ml"f0{q -t-1 1 1Ee qr Exp{
1 } log N0(I dl},

with" No(l 1 0( 1)" 1(1)"
(9)

Note that:

1 1 1Exp{-zl" [q -t- 1 1 ]" lOg(1 (o( 1))" dl } 1, (9a)
+o

since we have Io(- 1) < 1 for R.e(l) > 0, and, consequently, there are no singu-
lar points in this region. We then multiply (9a) by (9), which leads to the substitu-
tion" N0(l)N(I)--NI(I) 1 o( 1)

1 Cl( 1)" [91(1) 1], (10)

where c(- 1)is defined by (5).
be written, for Re(q) >_ 0, as

Finally, the functional Ee -qr, defined by (9), may

with:

0 q+l

N1(1 --1-[1" Ctl(- 1)]" (1( 1.)

1 }" log NI(I) dl],1 (11)
1 Ctl( 1)" [1(1) 1].

To find the singular points of this expression, we cross the poles 1- 0 and
1---q in the integrand, and have (I)- (q) denote new Expression (11), for
Re(l) < 0 and Re(l) < -q. We get the following Wiener-Hopf type of decomposi-
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tion for Re(q) < O, where -(q)is holomorphic for Pe(q) < O, and

G-(q)
(I) + (q) (1 ).N1 q). (12)

Here, r/ denotes the traffic intensity and the probability of the delay. The roots of
the denominator define the singular points of Ee-qr. Conversely, from (12) we may
deduce Expression (11). We intend to extend this procedure to the case s > 1 by ini-
tially defining the singular points, and then defining the kind of decomposition.

3. The Singular Points [for Re(q) < 01
From Expressions (10) and (12), the singular points of Ee -q" in the case of the sta-
tionary GI/G/1 queue are also the singular points of

1 1 990(q)
[1 990(q)]" E [99o(q)]n" [991 q)]n.NI( q) 1 990(q) 991( q) n 0

(13)

The latter may be rewritten as:

1 1 1 / dz1 q 1 99o(q)
NI(-q) 27ri Zl q + z 1 -99o(q)" 991(Zl)" (14)

+0

In the stationary regime, the distribution of the queueing delay is independent of the
initial conditions. For instance, in the case of a large number of arrivals prior to

n
time zero, the busy period is then very long. The terms (W,x- V,x) and [p0(q)]n.

[991(- q)]n serve to evaluate the queueing delay of the nth customer following the ear-
lier arrivals.

With the same initial conditions as before, the only change for the GI/G/s queue
is to note that the sequence n of successive terminations of service times is now
defined by s strings j of successive service times T,x(j), j- 1,...,s in parallel and by
the expression

n n

T,Xl( E (s)] nI +... + ns n, (15)n MiniE 1),..., T,X
sA 0 As

0

where all possible groups (nl...ns) are considered.
use the following expression given by Pollaczek [3]"

To evaluate this sequence we will

1 dZl dzsexp[- q. min + (al...as) 1 (2ri)S+J0-Yi-1...+j
with: Re(q + z,) > O,

u=l

q exp( au zu),
q+ zv v=l

t=l
(16)

where: min + (a1. ..as) Max[0, min(al...as) ].
GI/G/s queue, (14)becomes:

Consequently, for the stationary
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1 =1_ 1 /dZl ]’dzsNs( q) (2ri)--" -fi-1""" zs
+o +o

q I 1 -9%(q)

q+ zv j= ll --(-’(zj)

which rnay be written, due to (5), as

Ns( q) (2ri)------" -i--1" zs

+o +o q+ zv j=ll--Ctl(q)’[l(Zj)-1]"
--1

(17)

(18)

Note that the transformation from (14) to (18) depends on the arrival process
through [OZl(q)]nl...[Ol(q)]ns. For stationary G/G/s queue (with the same initial con-

ditions) we have to make the following substitution, due to (6)"

[1 (q)]nl’" "[Ctl(q)]ns--*OZn(q’" "q)’ rtI +... -t- rts n.

More simply, it may be noted that (11) depends on {1/N1(1)} through
-logNl(l --log[1/Nl(l)]. We will see that this is also true for the stationary
G/G/s queue [see (33) below]. Consequently, it is sufficient to consider the following
substitution"

s-1

--n,s(Z1. ..Zs;q)- 1 + , (-1 "as- ,x(q"" "q)" 1

[(fll(Zj)- 1]

(19)

[g91(zj) 1].

This substitution is very simple. It is due also to a typical property of the arrival
point processes (with non-simultaneous arrivals); the logarithm of the characteristic
functional with respect to N(t) allows to replace all the higher moments (3) by a

single integration of E[N(t)]. Finally, we can state:
Theorem 1: (Singular points) For the stationary G/G/s queue, the singular points

of Ee- qr, for Re(q) < O, are those of the function:

with:

dZl / dzs q 1 (20)Gs(q) 1 (21i)------- -57-1... z-" Rs(Zl...Zs q)’
+o +o q + 2_, zv

and:

s-1

R,s(Zl. .Zs; q) 1 + ,, 1 "as- ix(q"" "q)" l [l(Zj)- 1],
j=+l

R,e(q + zu) > O,
v-----1

where cs ,x(q’. "q) is defined by (4) for Re(q) < O"

/ eqt,k + 1. dta + l’"f eqts’dts’fs-x(tA+l" "ts)"
o o
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Corollary 1: For the stationary GI/G/s queue, (6) gives OZs_ A(q’"q)- [Cl(q)]s- "
and (18) gives:

/ dzl / dzs q l 1 (20a)1)s -i--1" z---"Gs(q)- 1
(2ri

+0 "’+0 q+ z j=ll Cl(q) [l(Zj)-- 1]
,=1

4. The Factorization

We want to get a holomorphic function for Re(q) >_0, with singular points
(le(q) < 0) as defined by (20). We will be obliged to introduce some auxiliary com-

plex variables z (i 1...s). Finally, we want to define a function Us(zl...zs; q), holo-
morphic for Re(zi) >_ 0 (i.e., _> -5), i= 1...s, and Re(q) >_ 0, such as the singular
points of Us(0...0; q) are dCnd by (20).

Consider the following integral, for I{.e(q + z) > O"
u=l

[ Us(z1. .zs;q). (21)
dzs qI(q)

+o +o q + zu

With our assumption for Us, the integrand is holomorphic for R(zj)> 0, j- 1...s.
Therefore, we have: I(q) O. But, if we cross over poles zj 0 (j 1...s) from the
left hand side of the right-hand side, the residue of the integrand is" (-1)s

Us(0...0;q). We therefore deduce that

_(-1)s [dZl [dzs qUs(0. "0 q Z1 Zs;q) ()(. ]...]
-o -o q + zu

In this integral, q is not a variable; rather it is only a parameter.
following factorization"

Ftorization: We set
1) (q...)" [l(Z) 11

s(Zl "zs; q) j 1

Introduce the

H Mi(Zl’" "Zs; q)’ (23)Rs(Zl""Zs’q) i= 1

where Rs is defined by (20) and Us is holomorphic for Re(zi)>_ 0 (i 1...s) and
Re(q) >_ O, with the following conditions for Mi:

a) M is holomorphic for Re(zi) < O, 1...s;
i-1

b) Mi(Zl...Zi_l, -q- zu, zi+l...Zs;q)- 1.
t--1

Now, we want to evaluate the integral (22) in the region FCe(zi)< 0, i= 1...s. In
this region, the equation P%(zl...zs;q)=0 has no root because of the inequality
l(Zj) < 1; thus the product

(-- 1)s- [l(Zj)- 1],
j=+l

in (20), always has a positive real part. Consequently, it is the same for Ks.
When we integrate in complex plane zs, Ms has no singularities for P(zs) < 0 due
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s-1
to condition (a). In this plane, we find only the pole: z -q- z,. To evaluate

u=l
the residue, we have to apply condition (b): as a result, M disappears. This will be
the same for the integration in successive planes zs -,...,z1. Finally, (22) becomes:

c%(q...q)" -I [9l(Zj)-- 1]
Us(O" .O; q) l J dZl J dzs q j=l

(27ri)s -1"’" z---ft" l{s(Zl" q)
+0 +0 q-Jr- zv "zs’

/2=1

where zj 0 (j- 1...s) is not a pole. To simplify the integrand, firstly we consider
the GI/G/s queue. We write, due to the symmetry with respect to variables zj:

fl [(zj)- 1]
=1 I( Ctl(a)’[(fll(Z)--l] )c(q...q) j

R(Zl...z,q j =1
1 i) [-1i 1]

(1- 1(- 1)s

"j=l 1-Cl(q). [(zy)- 1]

(-1)s. [1 +,(). (-1)s-’x 1 .].
,= II [1 Ol(q)’[991(zj) 1]]

j=,k+l

For the G/G/s queue, we may apply the same reasoning which led to substitution
(19) and used the following substitution, corresponding to formula (6)" [ch(q)]S-’X
cs ;(q...q). Under the integrand we may write:

Cts(q’"q)" -I [l(Zj)-- 1]
2=1

Is(Zl. .Zs; q

s--1

=(-1) .[1+ , .(-1 1
P%- ,k(z,k + 1"" "Zs; q)]"

Between brackets, term 1 and terms ,( > 0), where at least one zj is missing, do not
contribute to the integral [for Re(zj)> 0]. The expression of Us(0...0;q becomes
with the only term ,- 0"

U(O..0; q) 1
(i)

Let

dZl Jdzs q 1 (24)-1" Z-----" R,s(Zl" .Zs; q)"
+o +o q + zv

Vs(Zl...Zs; q) 1 Us(Zl. .Zs; q). (25)

We can finally write, for Re(q) >_ O"

v(o...o; q) a(q), (26)

where Gs(q) is Expression (20) giving the singular points of Ee- qr. To summarize:



66 PIERRE LE GALL

The holomorphic function Vs(Zl...zs;q) defined by (25) and by factorization, in
(23), with condilions (a) and (b), leads to (26) giving the singular points of Ee -qr

for the slalionary G/G/s queue.
Note: 1) For s 1, the factorization, in (23), is of the Wiener-Hopf type:

_UI(Zl;q /l(Zl; q) 1 Ml(Zl;q)
Rl(zl;q)il(zl;q)-(i"2) For s > 1, it is not sufficient to define Gs(q) and the singular points; to define

Ee -qr, it is also necessary to use the factorization, in (23), different from the
Wiener-Hopf type.

5. The Queueing Delay (Stationary G/G/s Queue)

5.1 The Distribution

We introduce the following holomorphic function for Re(zj)>_ 0 (j-1...s) and
R(q) >_ 0"

Vs(Zl...Zs; q) 1 Us(Zl...Zs; q)

1 Exp[(2lia [q q- 1 -f-
Zl 1

-0

1 1 S.]dl"" s 1 + "ds" lgNs(ffl"" "ffs)
-o q+ z,+(s Zs-

v--1

(27)

i-1
with Re(q + E z, + i) > O, i- 1...s, and

1 As(z1"" "Zs)
Ns(Zl. .Zs)= Bs(Zl. .Zs) (28)

where: As(z1...zs) 1)s. { 1-] ; l[(fll(Zj)- 1]}. cs( Zl, z z2,... Z,),
s-1

’=1

Bs(Zl...Zs)- 1 + A (- 1)

j=A+I

and j(Zl...zj)is defined by (4).
Now, we decompose Us for Re(zi)< O, i- 1...s. First, consider variable zs and

complex plane s in (27). We go to the region Re(s)> Re(zs) and, consequently, we
cross pole s- zs and set

Us(Zl...Zs; q) Hs(Zl...Zs; q)" Ms(Zl...Zs; q), (29)

where the integrand of Hs is the residue of the integrand of Us(z1...Zs; q). We have:
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Hs(Zl...Zs); q) Exp[ 1
(27ri)s-1

1 .,.+ .1 d1

-0 (30)

1

-o q+ Z+s- 1
,=1

1+
Zs (s 1

]" ds 1" lgNs(l""s 1, Zs)]"

Ms(Zl...zs;q) is still defined by (27) but with R(s)> R(zs). Ms is therefore holo-
morphic for Re(zs)< 0. Proceeding in the same way for variable zs_ 1 and plane
s- 1 in (30), we set as above

Hs(Zl" "zs; q) Hs- l(Zl "’’zs;q)" Ms- l(Zl "’’zs;q)’ (31)

where the integrand of Hs_ 1 is the residue of that of H,. We therefore have"

Hs_ l(Zl...Zs;q)- Exp[ 1
(27ri)s-1

1 1[q / 1 /
Zl 1]" dl" (32)

-0

1

-0 q+ }2 z.+_
u=l

1 ]" ds 2" lgNs(l’" "s 2, zs 1, Zs).
Zs 2 s 2

Ms- 1 is defined by (30), with R(s_ 1) > t(Zs- 1)" Ms- is holomorphic for
Re(Zs_l) < 0. Continuing in this way, we derive the decomposition, in (23) with
j- 1...s"

-1/ 1Mj(Zl""zs;q) ExP[(27ri)J [q / (i /
-0

1

-o q/ zuW(j

1 ]. dj. logNs(l...j, zj + 1"" "Zs)]"Zj--j

(33)

Mj satisfies conditions (a) and (b); finally Us satisfies the factorization, in (23), and
consequently, Vs satisfies (25). Moreover, from (25), we have Vs(0...0;0 1. We
will consider specially the function (Ee -qr) relating to the queueing delay r of
delayed customers, defined by Vs(O...O;q (I-P)+P.Ee -qr, where P is the
probability of delay corresponding to ]ql increasing indefinitely. Consequently, we
may drop the terms [1/(zj-j)] in integrand (27). Since we know that the solution
is unique, we can state:

Theorem 2: (G/G/s Queue) For the stationary G/G/s queue, the queueing delay
7 of an arbitrary delayed customer is given, for Re(q) > O, by:

Ee qr 1 EzP{(2ris J dl i d(nus(: lflgs(l " )} (34)q+l q s

where Ns((1...(s is defined by the long Expression (28).



68 PIERRE LE GALL

5.2 The Asymptotic Distribution

The asymptotic distribution corresponds to the (real) singularity closest to the origin.
We wish to evaluate it. To more readily evaluate this singular point, we transform
(20) by noting a certain symmetry with respect to variables zj close to this real
point. We successively set:

zj- l-g.(-q+j), j-1...s; (35)

(Z)- 1()" (36)

We deduce, for Re(-q + 4j) > 0 (j- 1...s)"

Gs(q) 1 (21i)s q + 1"" q -1- s
+o +o

with
s--1

R’s(l""s;q)--1+o()’(-: 1)s-’ "as- )(q"" "q)" 1
=,+

[p(- q + ffj)- 1].

(37)

We go now to the region Re(-q + j)< 0
poles 1 ="" =s -0 and 1 =’"=s--q"
Re(-q+ffj)<0 (j-l...s):

Gs(q (_@)s- 1. 1
n;(0...0,q)

(j- 1...s)and, consequently, cross

Expression (37) becomes, for

(38)
s f dl / d______s q______. 1

(27ri)s q + 1"" q -t- s p /’s(l"" "s, q)"

For Re(-q+j)<0, we have 19(-q+j) <1. It follows that the real part
of [p( q + (jj 1] is positive, and it is the same for R;((1...,; q), R(q) > 0. It
does not appear that any singularity exists in the integrand of (38) for Re(j < 0
(j- 1...s). The integral is equal to zero, and we deduce for our transformation that
around the wanted singular point,

Gs(q (_@)s- 1. 1 (39)n;(0...0, q)"

Rule: Finally, the singular point (for the asymptotic expression of the queueing
delay distribution) is the real root qo (closest to the origin) of the following equation,
for Re(q) < O"

s--1

/;(0...0;q) 1 + A "cs-’x(q’"q)’[1 -7(- q)] -a 0, (40)

where 9(- q)is defined by (36).
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6. The Stationary GI/G/s Queue

To get Ee- qr, we apply Theorem 2 where (28) becomes, due to (6):

1 As(Zl" "zs)
Ns(Zl...zs) Bs(Zl. .zs)’

with
s

As(Zl’"Zs) (- 1)s" H {[I(ZJ 1]. al(- E
j--1 =1

s-1 J
Bs(Zl...zs)- 1 + I (- 1 {[Tl(zj)- 1]. Ctl(- Z,)}.

j=A+I ,=1

(41)

To get the asymptotic distribution, equation (40) becomes"

R;(0...0; q) [1 Cl(q). [99( q) 111s
1 -o(q)’P(-q)

1 o(q)
This leads to the equation"

(42)

1 Po(q)" 9i( q) 0. (43)

The asymptotic expression of the queueing delay distribution corresponds to the real
root qo (closest to the origin) of (43). We may conclude:

Rule for the asymptotic distribution: The arbitrary delayed customer of the sta-
tionary GI/G/s queue has the following queueing delay asymptotic distribution"

F(t,s)-F(st, 1), (44)

where F(t, 1) is the queueing delay distribution in the GI/G/1 queue corresponding to
the couple 0(z) and 1()" But, to evaluate the probability of delay, we have to use
the factorization, in (23) for s > 1 rather than the Wiener-Hopf decomposition
(corresponding to s 1).

Note: 1) For the GI/D/s queue, the cyclic nature of service time terminations
leads to a factorization, similar to the Wiener-Hopf decomposition, but for the couple
[7)0(z)]s and 7)l(Z), instead.

2) For the GI/M/s queue, there is only one singular point. Consequently, (44) is
valid for any value of > 0).

7. The Stationary M/G/s Queue

In (41), the function Cl(Zi) becomes, in case of Poisson arrivals with A for the arrival
rate:

A (45)o1 (zi) zi.

Expression (4.1) becomes:
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with

1 As(Zl...zs)
Ns(Zl...zs) Bs(Zl. .zs)’ (46)

Consider the term for j A + 1 by writing it as

zA+I z1 --.. -k- z,k _F 1"
Due to the symmetry in (34) and (46), we do not change anything for the value of
integrals in (27) by writing successively, for zj with j _< A + 1:

A.{I(ZA+I) -1 zj } 1 1A.{991(z,+1)-1} Zl+’"+ZA+l
-*, - ZA -- 1 "Zl +""" - ZA -t- 1"ZA -t- 1 Zl -"’5c ZA + 1

If we apply this transformation to the successive terms in (46), Theorem 2 allows us
to state:

Theorem 3: (M/G/s Queue) For the stationary M/a/s queue, the function
Ee-qr relating to the queueing delay 7 of an arbitrary delayed customer is 9iven by

I As(Zl""zs, (4)Ns(Zl...zs) Bs(Zl. .zs

with

As(z1 z) -(-1)s I{A’[pl(Zj)-1]}zj=l

_l)-,X IB(Zl...z) 1 + (i- A)IA=O "j=A+I
{A.l(Zj) -1}zj

8. Conclusion

We may note a discrepancy in the case of the GI/M/s queue. We recall that a key
point in this paper relating to (15) is the one that defines the sequence tn of success-
ive terminations of service times during the congestion period; and it is not a Markov
process. The traditional Markovian assumption was sufficient to evaluate the events
for a single arrival, and for the asymptotic expression of the queueing delay
distribution of a delayed customer. However, to evaluate the probability of the delay
and occupancy probabilities it is necessary to properly evaluate the correlations
between two successive arrivals by taking into account the starting epoch and age (in
number of service times) of a busy (quite congested) period. It is also imperative to
introduce the sequence tn defined in (15), and modify the basic Poisson process to
evaluate the service time terminations during congestion. Surprisingly, for a very
long time, the discrepancy between the formulas presented in Pollaczek [3] and
Takcs formula (for the GI/M/s queue) has never been stressed.
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