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The classical renewal-theory (waiting time, or inspection) paradox states
that the length of the renewal interval that covers a randomly-selected
time epoch tends to be longer than an ordinary renewal interval. This
paradox manifests itself in numerous interesting ways in queueing theory,
a prime example being the celebrated Pollaczek-Khintchine formula for the
mean waiting time in the M/G/1 queue. In this expository paper, we give
intuitive arguments that "explain" why the renewal-theory paradox is ubi-
quitous in queueing theory, and why it sometimes produces anomalous re-
sults. In particular, we use these intuitive arguments to explain decomposi-
tion in vacation models, and to derive formulas that describe some recent-
ly-discovered counterintuitive results for polling models, such as the re-
duction of waiting times as a consequence of forcing the server to set up
even when no work is waiting.
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1. Introduction

Queueing theory was born in the early 1900s, when A.K. Erlang first addressed the
questions raised by telephone engineers who were trying to understand the effects of
the randomness of telephone traffic. In 1960, Professor Syski published his classic
book, Introduction to Congestion Theory in Telephone Systems [28], which
summarized in its 742 pages (just about) everything that had been done in the field
of teletraffic (and queueing) theory. The book is a masterful exposition of an area in
which sophisticated mathematics and real applications intersect; and it has had a
profound effect on its field, and on those of us who work in it. In this paper, we
reflect on some of the surprising insights into reality provided by the mathematical
analysis of randomness, as exemplified by Professor Syski’s expository and theoretical
contributions over the last 40 years.

Queueing theory is interesting because it is based on a simple model of a simple
reality (customers arrive at random, wait if necessary for the server to become avail-
able, hold the server for a random length of time, then leave) that exposes sorne sur-

prising behavior. For example, it is common sense that if the arrival rate increases,
then so will the waiting time. But it is the antithesis of common sense to assert that
waiting times can be arbitrarily large even when the utilization of the server (the frac-
tion of time that the server is busy) is arbitrarily small (assuming, of course, that the
server never sits idle when there is work waiting to be done). But this is easily shown
to be true: Consider the waiting time W in the ordinary M/G/1 queue. The cele-
brated Pollaczek-Khintchine formula relates the mean waiting time to the basic para-
meters of the model (the arrival rate h of the Poisson arrival process, and the mean
and variance of the service time S) as follows:

P 1 E(S)-[- (1)E(W) p E(S) ]’
where

AE(S) if hE(S) < 1
P-

1 if hE(S) >_ 1

and E(. and V(. )denote the mean and variance, respectively.
The quantity p defined in (2) equals the utilization of the server. As (1) clearly

shows, for any positive value of p, no matter how small, E(W) can be arbitrarily
large (because the variance-to-mean ratio V(S)/E(S), often called the "index of dis-
persion" in statistics, on the right-hand side of (1) can arbitrarily large). This is a
truly remarkable and counterintuitive insight.

Furthermore, the probability that a customer will have to wait at all is P(W >
0) p (the fraction of customers who find the server busy equals the fraction of time
that the server is busy, by PASTA; see Wolff [35]), which is insensitive to the particu-
lar form of the service-time distribution function. Thus, of two fundamental perform-
ance measures for M/G/l, one of them (How often do customers wait?) does not de-
pend in any way on the variability of the service times, whereas the other measure

(How long do the customers wait?) is quite sensitive to this variability.
The culprit here is, of course, the term

E(Y) 1/2 E(S) / (3)
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which is the mean value of the time interval Y from a random interruption of a re-
newal process whose interrenewal intervals are iid random variables $1, $2, until
the end of the interrupted interval. The fact that E(Y) > E(S)/2 (unless the Ss are

constant) is the famous renewal-theory (length-biasing) paradox, or waiting-time para-
dox, which has been widely used to demonstrate that "surprising phenomena can
occur in waiting time problems" (Takcs [29, p. 10]); likewise, it has caused some

grief among researchers who overlooked its presence.
In this paper, we discuss some recently-discovered counterintuitive behavior in poll-

ing models (in which a single server switches from queue to queue, "polling" each
queue to see whether there are customers waiting), and we argue that their strange be-
haviors are further examples of the hidden effects of the waiting-time paradox. In
particular, we discuss the fact that in certain polling models, forcing the server to re-
main idle even when there is work waiting to be done can actually decrease the wait-
ing times. We describe this phenomenon and we argue that it is, in fact, a manifesta-
tion of the waiting-time paradox. Along the way, we try to give some insight into
why (3) is ubiquitous in queueing theory, and why it has been so troublesome. Since
this is an "explanation" paper, we will not give mathematical details nor worry about
mathematical precision in the presentation.

2. The Renewal-Theory (Waiting Time) Paradox

Let $1,$2,... be a sequence of iid interevent times of a renewal process, and let T be
an arbitrary random point that "picks out" (that is, interrupts, or is covered by) one
of the Ss. More formally, let n(T) be the number of the Ss that are contained in the
interval [0, T); then, I S + 1 is the particular S that is "selected" by this sampl-
ing procedure. Assume for te moment that the Ss are discrete. Then, the probabili-
ty that the variable I is of length t is approximately (assuming that T is "large
enough" so that, for all practical purposes, the origin is infinitely distant from T)
given by tn

P(I-t) ](T) + 1Si--1

where n denotes the number of S1,S2,...,Sn(T) + 1 that are of length t. This
expression shows, for n(T) "large enough",

t(n(T) + 1)P(S- t) tP(S- t).P(I- t)- (n(T) + 1)E(S) E(S) (4)

that is, the likelihood of sampling an I of length is proportionally biased by t.
Of course, this "derivation" of (4) is a casuistry, but the physical argument can be

formalized to provide a rigorous proof; and it is easy to see that (4) remains correct
when we pass from discrete time to continuous time. That is, in general,

drz(t tdFs(t)

Now, taking expectations in (5) yields

E(S V(S)
E(S) E(S) + (6)

and (3) follows from symmetry, because E(Y)- E(I)/2. This is standard fare in
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renewal theory (see, e.g., Heyman and Sobel [191, Ross [24], and Wolff [36, 37].
An interesting feature of (6) (and (3)) is that the right-hand side is not necessarily

an increasing function of E(S); that is, it is possible for the ratio E(S2)/E(S) to
have a negative "slope". For example, suppose S- X + u, where u is a nonnegative
constant and X is a nonnegative random variable that does not depend on the value
ofu. Then V(S) E(X) + u /

V(X)E(S) + E(X) +
is convex in u and will have a minimum at u u*= v/V(X)- E(X)if v/V(X)>_
E(X) (if v/V(X)< E(X), let u*-0). That is, suppose that an arbitrary customer
(the "tagged" customer) interrupts a renewal process {$1,$2,...} and waits a time
from his arrival epoch until the end.of the interrupted interval (think of T as the
tagged customer’s arrival epoch, and Y as his waiting time); and suppose that S
X + u (as described above), where X is "more variable than exponential" (that is, X
has a coefficient of variation v/V(X)/E(X) that is greater than unity). Then his
mean waiting time E(Y) will decrease as u (and therefore as E(S))is increased from
zero, reaching a minimum when u u* v/V(X)- E(X).
Now suppose that customers arrive according to a Poisson process, and let AS be

the number of arrivals during an interval of length S. Consider a tagged customer
whose arrival epoch T "picks out" one of the Ss that comprise the renewal process,
and let AI be the number of arrivals (in addition to the tagged customer) that arrive
during the I that contains T. Then E(AI)/2 is the mean number of customers who
arrive during the tagged customer’s I but before (and after) T. (That is, the tagged
customer belongs to a batch of size AI + 1 and, on verage, E(AI)/2 of those custom-
ers have preceded him and E(AI)/2 followed him.) Thus,

E(AI) .t dFi(t E(S)
0

where the second equality follows from (5).
Also, straightforward calculations give E(As)- .E(S) and

0 0

and combination of these equations gives, for the mean number of customers preced-
ing (following) the tagged customer in his batch,

E(AI) E[As(AS 1)]
2 2E(A:) (7)

As pointed out by Burke [3], several eminent probabilists (and, likely, many less-
eminent probabilists as well) have published incorrect results because they mistakenly
ignored the size-bias of a batch that contains a particular customer. This is an easy
mistake to make, because in this case the error-detecting feature of queueing theory
fails. That is, if one implicitly makes an incorrect assumption, then the subsequent
analysis usually produces a result that is clearly wrong on its face (like a negative pro-
bability); but the oversight alluded to here often produces a "reasonable", but wrong,
answer.

This phenomenon is also discussed by Whitt [34], who cites his earlier paper Whitt
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[33], where "it is shown for a large class of queueing systems in which customers
arrive in batches that the delay distribution of the last customer in a batch to enter
service is a function of the batch-size distribution whereas the delay distribution of an
arbitrary customer is the same function of the associated batch-size stationary-excess
distribution."
An apparently similar phenomenon appears in a computer-science analysis of hash-

structured files by Cooper and Solomon [9]. (This paper was written in response to
an invitation by Professor Syski as a "Contribution to the Special Issue on Teletraffic
Theory and Engineering in Memory of F6lix Pollaczek (1892-1981).") Here the
quantities of interest are the length of a successful search (the number of accesses re-

quired to locate a record in a "chain" of records) and the length of an, unsuccessful
search (the number of accesses required to search to the end of the chain and affirm
that the record sought is not on the chain). Numerical calculations made from formu-
las that describe these values showed that, in some cases, "the average length of an
unsuccessful search which [goes to] the end of the chain is less than the average length
of a successful search which goes only to the ’middle’ of the chain Apparently,
this is an example of ’batch-biasing,’ a discrete version of the famous waiting-time
(or inspection) paradox, so dear to the hearts of queueing theorists."

Returning to the continuous-time case, one might wonder why E(W)in (1) can be
written simply

PE(W) 1 pE(Y), (8)
where Y can now be interpreted as the amount of service remaining when a service
time (in a renewal process whose intervals are service times) is interrupted by an

arriving customer. Every arrival epoch occurs either when the server is idle (in which
case W --0 for the arriving customer) or busy; thus, every customer who waits "picks
out" a "long" service time, so it is not surprising that the effect of the renewal-theory
paradox (clearly, the server idle-times are irrelevant) is manifested in the formula for
the mean waiting time. But why so simply?

Consider the M/G/1 queue with the queue discipline LIFO Preemptive-Resume.
(Each arrival begins service immediately, bumping the customer in service, if any,
back to the head of the queue. When a customer who has been preempted eventually
resumes service, his service continues from where it left off when it was last preempt-
ed.) Since all we know about a waiting customer is that his service time has been
interrupted at least once, it is intuitively clear that each customer in the queue must
have the same distribution of remaining service time, independent of the number of
customers in the queue; and moreover, it would be surprising if this common distribu-
tion of remaining service time were not given by the forward-recurrence time Y of the
service times.

Now, the total amount of remaining service time is the amount of time that the
arriving customer would have to wait if the queue discipline were FIFO (instead of
LIFO Preemptive-Resume). Then, (8) will follow if we can show that p/(1- p) is
the mean number of customers present at an arrival epoch in the M/G/1 LIFO Pre-
emptive-Resume queue.

To this end, let j be the equilibrium probability that an arriving customer finds
j other customers present when he arrives, and let Pj be the corresponding equili-
brium probability for an arbitrary time epoch. Then, equating the rate (transitions
per unit time) up from any state to the rate down from the state above it, we have

j_ #jPj (j 1,2,...) (9)
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where A is the (Poisson) arrival rate and/j is the "aggregate" service completion rate
when there are j customers present. But, by our previous observation that each cus-
tomer present at an arbitrary point in time has the same distribution of remaining
service time regardless of queue length, it follows that #j-# (independent of j).
Also, since the server can never be idle when there is work waiting, therefore, P0-
1- p. Finally, invoking PASTA (that is, rj- Pj), it is easy to see that (9) defines a

geometric distribution, whose mean is p/(1 p); and (8)is "proved". (This argu-
ment provides a basis for a derivation of the famous formula of Bene [1] for the dis-
tribution of waiting times in the M/G/1 FIFO queue. See Kelly [20] and Niu [23] for
rigorous proofs, and Cooper and Niu [5] for an intuitive argument similar to the one
given here.) Observe also that this argument shows, in passing, that the state proba-
bilities {Pj} for the M/G/1 LIFO Preemptive-Resume queue are insensitive to the
form of the service-time distribution; thus, arguably, this is a fundamental queue dis-
cipline, our democratic preference for FIFO notwithstanding.

Based on an intuitive understanding of the renewal-theory paradox, we have "de-
rived" (8). Now, using (8)together with the elementary fact that E(W)-
pE(WIW > 0), it is easy to verify that

E(W W > O) E(W) + E(Y). (o)
Equation (10) is a remarkable decomposition. It says that the mean waiting time for
customers who do not begin service immediately at their arrival epoch is the sum of
the overall mean waiting time E(W), which includes the zero waiting time of the
first customer served in a busy period, and an amount E(Y) that equals "half’ of the
mean of the length-biased service time of this customer. (Equation (10), in fact, can
be extended to GI/G/1; see Li and Niu [22], Proposition 1.)

3. Vacation Models

Now consider the M/G/1 (multiple-) vacation model with exhaustive service. In this
model, the server continues to serve until there is no more work to be done (exhaus-
tive service), and then it becomes unavailable for service (goes on "vacation") for a
random length of times after which it returns to see whether there are any customers
waiting; if so, then it resumes working, otherwise it takes another vacation, and so
on.

Every arrival epoch must occur either during a service time or during a vacation,
so it is reasonable to expect that the effects of the renewal-theory paradox will appear
twice; each customer arrives during either a "long" service time or a "long" vacation.
But surprisingly, this double length-biasing effect manifests itself in a very simple
way. Let WV be the waiting time of an arbitrary customer in this vacation model.
Then, as is well known,

P E(Ys) + E(Yv) (11)E(Wv) 1 p

where Ys is the forward-recurrence time of the renewal process constructed from the
service times, and Yv is defined similarly with respect to the vacation times. (Signifi-
cantly, the vacations need not be mutually independent for (11) to be valid.)

From (11) we see that the "interesting feature" observed in the discussion follow-
ing (6) applies here: Because of the term E(Yv) on the right-hand side of (11), it is
possible that longer vacations can lead to shorter waiting times. In particular, as the
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example discussed here shows, it is possible that lhe mean wailing lime in a vacation
model can be decreased by exlending every vacalion by a conslant amounl. (Note
that the first term on the right-hand side of (11) does not produce a similar effect, be-
cause that effect is "canceled" by the factor p AE(S).)

Observe that in the vacation model, P(Wy > 0) 1, so E(Wv) = E(Wv]Wv >
0). In light of this observation and equation (8), equation (11) can be written

E(Wv Wy > O) E(Wo) + E(Yv), (12)
where W0 is the waiting time in the corresponding M/G/1 queue withoul vacations.
With the present notation, equation (10) can be written

E(Wo Wo > O) E(Wo) + f(Ys). (13)
The similarity between (12)and (13)is striking.

In ordinary M/G/1 queues, the effect of the unavailability of the server to the first
blocked customer of the busy period contributes an amount E(Ys) to the mean wait-
ing time of the blocked customers. Apparently, in the vacation counterpart, the same
role is played by the vacation time during which the first blocked customer of a busy
period arrives. That is, the vacation time that is interrupted by the first blocked cus-
tomer of a busy period in a vacation model plays the same role as the service time
that is interrupted by the first blocked customer of a busy period in the
corresponding ordinary (no vacations) M/G/1 queue. With hindsight, this is
obvious, and the waiting-time decomposition(ll)(or, equivalently, (12))is now

"explained." (For rigorous proofs of the decompositions (12) and (13), see Doshi [10]
and Li and Niu [22]; these results, in fact, extend to GI/G/1.)

Equation (11) is an example of the well-known decomposition phenomenon of
some vacation models. Under certain conditions (weaker than those assumed here),
the FIFO waiting time in the vacation model is distributed as the sum of two inde-
pendent random variables: one random variable is the waiting time in the corres-

ponding ordinary M/G/1 queue (i.e., without vacations), and the other random vari-
able relates only to the characteristics of the vacations; and the successive vacations
need not be independent. Indeed, other quantities, such as workload or total number
of customers, sometimes enjoy similar decompositions. These properties make vaca-
tion models useful adjuncts in the analysis of polling models, to which we will return
shortly. The fact of decomposition in the case of exhaustive service was originally un-
covered by Skinner [26] and Cooper [4]. The fact that the vacation term in this de-
composition is a forward-recurrence time was first recognized by Levy and Yechiali
[21]. The more general conditions under which decompositions occur in the M/G/1
queue were given in Fuhrmann and Cooper [17]. Extensions from waiting times to
workloads were given by Boxma and Groenendijk [2]. A comprehensive survey of
vacation models is given in Doshi [11], and detailed textbook treatments are given in
Takagi [31] and Wolff [37].

4. Polling Models

In a polling model, N queues are served by a single server that travels from queue to
queue in a prescribed sequence, "polling" each queue to determine whether to provide
service to the polled queue. We will restrict our attention to the classical polling
model in which the server polls the queues in cyclic order, and continues to serve a
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queue until it is empty (exhaustive service). The switchover time is the time it takes
for the server to travel from one queue and poll the next one; and the setup time is
the time it takes for the server to prepare itself (set up) before beginning to serve a

polled queue. In isolation, each queue would be an ordinary M/G/1 queue; but link-
ed together through the sharing of a single server, they interact in complicated ways,
and their performance measures are strongly dependent on each other.

Polling models have important applications in telecommunications (where switch-
over times are important) and manufacturing (where setup times are important), and
consequently a huge literature has grown up since the mid 1960s, when polling
models were first studied. (See Takagi [30, 32] for comprehensive surveys.) Recent
interest has centered on the effects of the "dead time" (switchover and setup times)
during which the server is not serving the customers. From the viewpoint of a

particular queue, when the server is away serving the other queues (or switching, or

setting up), the server can be imagined to be on "vacation"; so vacation models are
useful adjuncts in the study of polling models.

Counterintuitive behavior (like a decrease in waiting times with an increase in
switchover or setup times) has recently attracted much attention. Here we argue that
this paradoxical behavior is another manifestation of the renewM-theory paradox, and
we discuss it in the context of decomposition in vacation models.

In a much-discussed paper, Sarkar and Zangwill [25] gave numerical examples that
showed increases in mean waiting times when the mean switchover times were decreas-
ed. (In their model, setup and switchover times are in effect the same. We will refer
to the dead times as switchover times unless it is necessary to distinguish between
switchover times and setup times.) They correctly associated this phenomenon with
the renewal-theory paradox: "These examples are another manifestation of the afore-
mentioned ’inspection paradox’ or ’random incidence’ from renewal theory. By reduc-
ing average setup or processing times we make the expected lengths of ordinary cycles
smaller. If the variances are not reduced proportionately, however, there exist cycles
of longer length. But the probability that a random arrival will fall in this large
interval depends on the ratio of larger to smaller intervals. Thus, by making the
lengths of ordinary cycles smaller, we increase the probability of arrival into a larger
cycle. As a result, arrivals wait longer, and this explains the nonintuitive outcomes
of the examples."

Here we summarize some results from subsequent work of ours that elucidates this
observation. In Cooper, Niu, and Srinivasan [6] we showed that mean waiting times
in some polling models exhibit a decomposition with respect to switchover times that
is similar to (but not exactly the same as) the decomposition (11) in M/G/1 vacation
models. Specifically, we showed that, for the N-queue cyclic-service polling model
with exhaustive service, the mean waiting time E(Wi) for an arbitrary customer in
queue (i 1,...,N) is given by

r 1 -pi (14)E(Wi) E(W)- 2 lL--
where W is the waiting time in a "corresponding" zero-switchover-times model (the
server stops traveling whenever the system becomes empty, and advances instantan-
eously to the queue at which the next arrival occurs), Pi is the server utilization at
queue i, p- Pl +’" + PN is the total server utilization, and r is the total mean
switchover time per cycle. By definition, the "corresponding" zero-switchover-times
model is the same as the original model, except that the switchover times are zero
and the second moment x!2) of the service times at queue is given by
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1-pX!2) 5!2) + (-1 ir (15)

where i and b!2) are, respectively, the arrival rate and second moment of the service
times at queue i, and 5_ is the variance of the original model’s switchover times as
the server switches from queue i- 1 to queue i. Observe that if the switchover times
are constant, then 5_- 0 and the corresponding zero-switchover-times model has
the same parameters as the original model. This version of the theorem (i.e., for con-
stant switchover times) was first proved by Fuhrmann [15]. But the variability of
the switchover times is the crucial factor underlying the anomalous behavior we are

discussing here.
The theorem embodied in (14) and (15) says that the expected waiting time in the

general-switchover-times model (the model with nonzero switchover times) decom-
poses into a sum of two terms; one term is the mean waiting time in the "correspond-
ing" zero-switchover-times model, and the other is a simple term that depends only
on the server utilizations and the sum (but not the individual values) of the mean
switchover times. (See also Srinivasan, Nit, and Cooper [27], where (14) is extended
to a relation between the waiting-time distributions.) This is reminiscent of the
ordinary M/G/1 vacation decomposition, but the polling model does not satisfy the
sufficient conditions for decomposition given in Fuhrmann and Cooper [17]. Our
proof of (14) and (15) is straightforward (based on the equations given by Ferguson
and Aminetzah [13] for the general-switchover-times model), but no simple, intuitive
"explanation" (like the "derivation" of the vacation decomposition (13) by analogy
with (12)) has been forthcoming.

In Cooper, Nit, and Srinivasan [7], we applied this theorem to the symmetric
polling model, in which, by definition, all queues have the same arrival rate, the same
service-time distribution, and the same switchover-time distribution. Then, clearly,
the "corresponding" zero-switchover-times polling model is simply an ordinary
M/G/1 queue. Hence, E(W)- E(W) is given by the Pollaczek-Khintchine formula
(1),

E(W) 1 p 2E(S)’
where E(S2) -x(2) given by (15); und after some trivial algebraic simplification, (14)
becomes

(16)

where b is the mean service time and R denotes a switchover time.
Observe that the second term on the right-hand side of (16) is "almost" equal to

the mean forward-recurrence time of the renewal process constructed from the switch-
over times; that is, it assumes essentially the same form as (3) (and (6)). Indeed, if
N 1 then (16) is precisely the vacation-decomposition result (11), with the switch-
over times being the vacations. Therefore the symmetric polling model behaves
essentially like a vacation model, and shares with it the "interesting feature" discuss-
ed following (6). As explained earlier, it is possible, because of the renewal-theory
paradox, that longer vacations in a vacation model can lead to shorter waiting times.
In a polling model, this anomaly translates into: longer switchover times can lead to
shorter waiting times; the essential factor is the variance-to-mean ratio of the
switchover times, and the variance of the service times is irrelevant.

Thus, the counterintuitive effect observed by Sarkar and Zangwill can indeed be at-
tributed to the renewal-theory paradox: Customers are more likely to arrive during
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long setup (switchover) times than during short ones; and reducing the variance-to-
mean ratio of the setup times (by, for example, increasing each setup time by a con-
stant value) can produce a reduction in mean waiting time (also see Fuhrmann [15,
16] for a discussion of the length-biasing effect in polling models). And conversely,
cutting setup times (which, according to Sarkar and Zangwill is a commonsense goal
of manufacturing engineers) may cause the work-in-process to increase. Although our

argument applies, strictly speaking, only to the symmetric case, it is clear that, quali-
tatively, the same forces are at work in the general case, and hence similar counterin-
tuitive results will be observed (as Sarkar and Zangwill did, in fact, observe in other,
nonsymmetric examples).

As we have indicated, in the context of manufacturing there is much interest in sys-
tems that can be described by polling models with setup times. It is just common-
sense that it is a waste of time to set up at a queue if no work is waiting at that
queue. But polling models in which the decision to set up depends on the state of the
queue being polled (State-Dependent setups, SD) are much more difficult to analyze
mathematically than their counterparts in which setups are always performed,
whether or not work is waiting at the polled queue (State-Independent setups, SI).
For this reason, and consistent with the commonsense view that "empty" setups are
wasted setups, the SI model has been proposed to provide upper bounds for the wait-
ing times in the corresponding SD model (Ferguson [12]).

But, one might argue, if decreasing the setup times in an SI model can increase the
waiting times, perhaps eliminating altogether some setup times (when there is no

work waiting in the polled queue) might have a similar deleterious effect. In fact,
Gupta and Srinivasan [18] showed numerically, via exact analysis, that the SI model
does not necessarily provide an upper bound for the mean waiting time in its corre-

sponding SD counterpart. In Cooper, Niu, and Srinivasan [8], we investigated this
question further, and for symmetric polling models with N 2, we proved a surpris-
ingly simple comparison theorem, given as equation (18) below, that characterizes the
difference in the mean waiting times in the SD and the SI models.

Denote the dead time (defined earlier as the switchover and setup times during
which the server is not serving any customers) between two successive queues as V,
and assume that V is the sum of a switchover time R and a possibly-absent setup
time Z (we assume that both R and Z are not identically zero), i.e.,

V=R+ Z
where i is the indicator function of the event that the server sets up when it polls a

queue (at the expiration of the preceding switchover time). Thus, in the SD model,
i 1 whenever at least one customer is waiting in the queue when it is polled;
whereas in the SI model, we always have i 1. By assumption, Z is independent of
both R and 6; but clearly, in the SD model, R and i are dependent.

Let R be a switchover time during which (i.e., given that) no customers arrive at
the queue to which the server is switching. It is easily seen that E(R)-
E(.kRe-’xR)/E(e-’xR), where is the arrival rate at each queue. Let WD denote
the waiting time in the two-queue symmetric SD polling model, and let WI be its
counterpart in the corresponding SI model. Then,

E(wD)- E(WI) c ([E(R) + E(Z)] I1
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where c is a known positive number.
Equation (18) completely characterizes the sign of E(wD)-E(WI) in terms of

only the distribution of R and the first two moments of Z. In particular, it has the
following easily-verified consequences: ( If the switchover times are constant and
the setup times are constant, then E(WL’) E(WI); (ii if the switchover times re
variable and the setup times are constant, then E(W’)> E(WI); and (iii)if the
switchover times are constant and the setup times are variable, then E(WD) <
E(WI). It is remarkable that these consequences of (18) depend only on whether the
switchover times and setup times are constant or variable, and do not depend on the
server utilization or the service-time distribution. Furthermore, only statement (iii)
agrees with commonsense intuition.

The explicit formula (18), together with statements (i)-(iii) above, clearly demon-
strates that the relative variance-to-mean ratios of the switchover times and the setup
times, that is, the difference V(n) V(Z)

E(R) E(Z)
is the primary determinant of the sign of E(WD) -E(WI). In other words, the cul-
prit behind this counterintuitive behavior is, again, the renewal-theory paradox.

These results were derived for the special case N- 2. We conjecture that similar
qualitative statements can be made for the more-general polling model with N > 2
queues (but it seems unlikely that a formula as "clean" as (18) will result).

Our (rigorous) proof of (18) is quite detailed, which obscures the underlying role of
the renewal-theory paradox; therefore, in keeping with the spirit of this paper, we con-
clude with a derivation of (18) via a direct, intuitive argument based on the selection-
bias effects of the renewal-theory paradox.

Consider first the SD model. Let LD be the oal (i.e., both queues included) num-
ber of customers left behind by a (randomly-selected) departing customer in this
model. It is well known that E(LD) also equals the time-average total number of cus-
tomers in the system. Therefore, from Little’s law,

E(WD) E(LD)) (19)2

Now, define (following Fuhrmann [14]) each dead time as a vacation, and take the
viewpoint of a randomly-selected customer who arrives during a vacation. Call this
customer the "tagged customer," and let KD be the total number of customers in the
SD model as seen by tagged customer. Then, from Proposition 3 of Fuhrmann and
Cooper [17], we have (with d denoting equality in distribution)

LD_d KD+LM, (20)
where LM is independent of KD and is distributed as the total number of customers
left behind by a departing customer in a (corresponding) standard M/G/1 queue.
Since E(LM) is well known, our remaining task is to compute E(KD). To this end,
we will use a selection-bias rgument.

Let TD be the total number of waiting customers at both queues at server-
departure epoch, equally likely to be from either queue; and let AR and AZ be the
totM number of Poisson arrivals (at rate 2) during an R and a Z, respectively. We
now argue that

E(AR) {E(TD E[AR(AR I )]}E(KD) E(AR + E(6)E(Az )+ 2E(AR) (21)
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E(5)E(Az) {E(TDIE(AI) + E(5)E(AZ)
5 -1) + E(AR b --1)-t- E[Az(AZ2E(Az)

Observe that KD can be split into the sum of (i) the total number of waiting custom-
ers in the system at the server-departure epoch that precedes the tagged customer’s
arrival epoch (i.e., the preceding TD), and (ii) the number of customers who arrive to
both queues prior to the tagged customer’s arrival epoch but within the same vaca-

tion. To compute E(KD), the expected counts in (i) and (ii) need to be corrected for
selection bias. We consider two cases, corresponding to whether the tagged customer
arrives in the "R portion" or (whenever applicable) in the "Z portion" of a vacation:

Case 1: Clearly, the probability for the tagged customer to arrive during an R is
given by E(AR E(AR

E(AR + 5Az) E(AR + E(5)E(Az)"
From the viewpoint of the tagged customer, since TD and R are independent, there is
no length bias for the customer count TD at the preceding server-departure epoch;
this leads to the first term E(TD) in the first pair of braces. There is, however, a

length bias for the number of customers who arrived in R prior to the tagged custom-
er; this length-biased expected count is, from (7), given by E[AR(AR-1)]/
[2E(AR)]. Putting these observations together yields the first term on the right-hand
side of (21).

Case 2: The probability for the tagged customer to arrive during a Z is given by

E(Az) E(5)E(Az)
E(AR + 5AZ) E(AR + E(5)E(Az)"

From the viewpoint of the tagged customer, the total count in (ii) can be further
split into the sum of the number AR of customers who arrived during the preceding
R, and the number of customers who arrived prior to the tagged customer’s arrival
epoch but within the Z selected by the tagged customer. Observe that the tagged cus-
tomer can land in a Z only if 5 = 1 in a vacation in progress; and that 5 1 in a

vacation if and only if TD +R > 0, where R denotes the number of arrivals at the
next queue during t..he R portion of that vacation. Therefore, both TD and AR (cus-
tomers counted in AR constitute a subset of those counted in AR) are biased by the
event that 6-1; this leads to the terms E(TDI 5-1) and E(AR 16-1)in the
second pair of braces in (21). Finally, the length-biased expected number of custom-
ers who arrived in Z prior to the tagged customer is, again, given by E[Az(AZ -1)]/
[2E(Az) ]. These observations together lead to the second term on the right-hand
side of (21).

Starting from the relations .19), (20), and (21), it is now straightforward to derive
an explicit formula for E(WL’). Moreover, our derivation can also be repeated,
almost verbatim, to produce a parallel formula for E(WI) in the SI model.
Combining these two formulas then leads, after some algebra, to equation (18). (See
Cooper, Niu, and Srinivasan [8] for these remaining details).

5. Conclusion

Using intuitive arguments, we have tried to explain why the length-biasing property
of renewal theory is ubiquitous in queueing theory, and why some recently-uncovered
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surprising behavior in polling models can be attributed to its effects. Our reflections
in this festschrift paper for Professor Syski are part of a larger appreciation of the
power of mathematical reasoning in general, and queueing theory in particular, to un-
cover and describe commonplace phenomena whose very existence is not at first clear
and which, once discovered, seem to defy common sense.
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