
Journal of Applied Mathematics and Stochastic Analysis, 11:3 (1998), 397-409.

PERFORMANCE LIMITATIONS
OF PARALLEL SIMULATIONS

LIANG CHEN
Lucent Technologies

Wireless Networks Group
67 Whippany Road, Room 14D-270

Whippany, NJ 07981 USA

RICHARD F. SERFOZO
Georgia Institute of Technology

School of Industrial and Systems Engineering
Atlanta, GA 30332 USA

(Received November, 1997; Revised February, 1998)

This study shows how the performance of a parallel simulation may be
affected by the structure of the system being simulated. We consider a
wide class of "linearly synchronous" simulations consisting of asynchron-
ous and synchronous parallel simulations (or other distributed-processing
systems), with conservative or optimistic protocols, in which the differ-
ences in the virtual times of the logical processes being simulated in real
time t are of the order o(t) as t tends to infinity. Using a random time
transformation idea, we show how a simulation’s processing rate in real
time is related to the throughput rates in virtual time of the system being
simulated. This relation is the basis for establishing upper bounds on
simulation processing rates. The bounds for the rates are tight and are
close to the actual rates as numerical experiments indicate. We use the
bounds to determine the maximum number of processors that a simulation
can effectively use. The bounds also give insight into efficient assignment
of processors to the logical processes in a simulation.

Key words: Parallel Simulation, Distributed Processing, Speedup
Bounds, Time Warp, Virtual-Time Conservation Principle, Linearly Synch-
ronous, Random Time Transformation.

AMS subject classifications: 68U20, 65Cxx.

1This research was supported in part by NSF grants DDM-922452 and DMI-
9457336.

Printed in the U.S.A. ()1998 by North Atlantic Science Publishing Company 397



398 LIANG CHEN and RICHARD F. SERFOZO

1. Introduction

Analysts rely on discrete-event simulations to evaluate the performance of large-scale,
complex systems, such as telecommunications networks and computer systems. Exist-
ing simulation packages based on serial processing of events, however, are often inade-
quate for large, realistic systems. The alternative is to use simulations based on

parallel processing. Several protocols for parallel simulations have been developed for
general systems as well as for special purpose applications. For a survey of these
protocol, see Fujimoto [5]. Each protocol has its strengths and weaknesses depending
on the application at hand and the mechanisms and techniques used for synchroniz-
ing the parallel processors. There have been several studies of the speedup of parallel
simulations for particular protocols and applications; see for instance [1, 6, 8, 10].
The approach in these studies is to model both simulator and simulated system as a

single Markovian stochastic system at a detailed level. Another approach is to cap-
ture the major characteristics of a parallel simulation protocol by using coarser per-
formance measures based on macro-level assumptions that are not too sensitive to
detailed properties of the simulation protocol and the simulated system.

The present paper is such a macro-level study of parallel simulations. The aim is
to give insights into the following issues"

What is the maximum number of processors that can be usefully employed
in a parallel simulation?
Does the structure of the system being simulated limit the maximum poten-
tial processing rate of the simulation?
How do non-homogeneous processors differ from homogeneous ones in affect-
ing a simulation ’s execution rate?
How is the maximum potential processing rate of a simulation affected by
processor scheduling: the way in which processors are assigned to execute
events of the processes?
How is the processing rate (in real time) of a simulation related to the
throughput rates (in virtual time) of the system being simulated?

In this paper, we study the potential performance of a parallel simulation of a

general discrete-event system consisting of several interacting logical processes.
Events associated with the logical processes are executed by a set of processors over
an infinite time horizon. The simulation may be synchronous or asynchronous, and
conservative or optimistic. Although we present our results in the setting of discrete-
event simulations, they also apply to other types of discrete-event systems using distri-
buted computations.

The evolution of a logical process in the simulation is presented by its virtual
time (simulated time) Ti(t). This is a random function of the events it processes in
the real time (simulation time) t. In a synchronous parallel simulation, the virtual
times of all processes are equal (Ti(t) Tj(t) for all i,j and t). We consider systems
with a significantly weaker virtual-time conservation principle that all processes have
the same long-run average virtual speeds (as defined in the next section). This does
not mean that all logical processes or processors in a simulation must be
homogeneous, but only that their virtual time flows have the same rate in the long
run. We show that this principle is satisfied for a wide class of simulations that are

linearly synchronous. In such a simulation, the virtual times of the processes may
vary considerably as long as their difference from each other (or from the simulation’s
global virtual time) is of the (linear) order o(t) as t tends to infinity. In an



Performance Limitations of Parallel Simulations 399

aggressive Time Warp simulation, for instance, it is often the case that the difference
between a processor’s virtual time and the global virtual time is bounded by a
constant (this may even be a constraint inherent in the protocol). Such simulations
are therefore linearly synchronous. We also show that the linearly synchronous
property is equivalent to the virtual-time conservation principle.

For the class of simulations that are linearly synchronous, we show that their simu-
lation processing rates have a natural, simple representation in terms of the through-
put rates of the simulated systems. The proof of this is based on the fundamental
property that the number of events the simulation executes at real time is a random
time transformation of the number of events in the simulated system (see expression
(2)). This time transformation idea relating the simulation to the system being simu-
lated is implicit in studies of parallel simulations, but it has not been exploited expli-
citly as we do here. The analysis also uses sample-path properties of stochastic pro-
cesses and strong laws of large numbers.

After characterizing linearly synchronous processes, we study their maximum
potential processing rates under the following processor scheduling strategies.

Autonomous processor assignments. Each processor is assigned to a subset of
processes, and the subsets are disjoint.

Group processor assignments. Disjoint groups of processors are assigned to
disjoint subsets of processes (a special case is global scheduling all processors are

assigned to all processes).
Using the relation between the processing rate of the simulation and the system

throughputs, we derive upper bounds on the simulation’s processing rate under these
processor scheduling strategies. The bounds are tight and our numerical examples in-
dicate that they tend to be close to the actual processing rates. We describe how the
bounds can be used to obtain efficient processor scheduling strategies.

The main interest in the bounds is that they show how a simulation may be
limited by the structure of the system being simulated. A conventional view is that
if K homogeneous processors are employed in a parallel simulation, then in an ideal
situation, there would be a simulation protocol such that the speedup of the simula-
tion is approximately K. Our bounds show, however, that for most applications, the
speedup is much less than K no matter what simulation protocol is used. The reason
is that the efficiency of a parallel simulation may be limited by the structure of the
simulated system. We give expressions for the maximum number of processors that
can be usefully employed in a simulation; more processors beyond this maximum will
not add to the speed of the simulation.

In a related study of parallel simulations of queueing networks, Wagner and
Lazowska [11] show that, under a conservative protocol, the structure of the network
limits the parallel simulation speed. They also gave an upper bound on the speedup
of a specific queueing network simulation. Another study on speedup bounds for self-
initiating systems is Nicol [9]. Also, Felderman and Kleinrock [4] give several per-
formance bounds for asynchronous simulations of specific applications under the Time
Warp protocol. The ideas and analysis techniques used in these studies are geared to
the particular models they consider and do not apply to the general setting herein
covering both conservative and optimistic protocols and a wide class of protocols that
obey the virtual-time conservation principle.

The rest of the paper is organized as follows. Section 2 describes the class of linear-
ly synchronous parallel simulations that satisfy the virtual-time conservation princi-
ple. Section 3 contains upper bounds on the simulation speed under autonomous and



400 LIANG CHEN and RICHARD F. SERFOZO

group processor assignments. Section 4 gives a numerical example, and Section 5
gives insight into obtaining efficient processor assignments.

2. Conservation Principle and Linearly Synchronous Simulations

In this section, we discuss a conservation principle that is satisfied by a large class of
what we call linearly synchronous simulations. For such a simulation, we derive a

simple relation between the simulation’s processing rate and the throughput rates of
the system being simulated.
We shall consider a parallel simulation of a discrete-event system, denoted by S,

consisting of n logical processes that are simulated by a set of processors over an infin-
ite time horizon. We also write S {1,...,n}. Associated with a logical process is a

stream of events for the system (e.g., a stream of service times, waiting times and de-
parture times for a node in a queueing network). The events of one process might de-
pend on events from other processes. Each event contains several items of
information including its virtual timestamp the virtual time that it is scheduled to
occur in the simulated system. In this section, we do not specify how the processors
in the simulation are assigned to the processes, such assignments are the subject of
the next section. Messages are exchanged between processes (or processors) for
synchronizing or coordinating their executions of events in the simulation. Following
the standard convention, we also call these messages events. An event in the
simulation is said to be a true event if it actually occurs in the simulated system S.
The other events are called synchronizing events; they are generated only for
synchronizing the executions of the processes. The simulation may be asynchronous
or synchronous and its protocol may be conservative (like the Chandy-Misra
protocol) or optimistic (like an aggressive Time Warp protocol). Aside from its
processing rate information, our analysis does not require other details of the
protocol.

The speed of the simulation is described in terms of general processing rates of
events as follows. Simulation time (the time the simulation has been running) is re-
ferred to as real time and is denoted by t. The simulated time (elapsed time) of pro-
cess in the simulation is called its virtual lime, and is denoted by Ti(l ). This time
is usually the minimum of the timestamps of the events of the process that may have
been executed but are still subject to being canceled or rolled back (uncommitted
events). This Ti(t is a random function of real time that may decrease periodical-
ly but it eventually tends to infinity. Under a conservative protocol, the Ti(t will
typically be nondecreasing in real time, but under an optimistic protocol, this virtual
time may decrease periodically due to rollbacks. The simulation speed of process is
measured by its virlual speed

v -lim t- 1Ti(t ).
This limit and the others herein are with probability one. We assume that the limit
v exists and is a positive constant. This is a rather natural law of large numbers for
an infinite horizon simulation. The v can also be interpreted as the average amount
of virtual time simulated for process in one unit of real time. Let Ni(r denote the
number of (true) events in the system S associated with process in the virtual time
interval (0, r]. We define the virtual throughput of the process E S as



Performance Limitations of Parallel Simulations 401

This "i is the rate in virtual time of true events passing through process i. We
assume this limit exists and is a positive constant for each process i. Keep in mind
that the throughput rate h is a parameter of the simulated system S while v is a

parameter of the simulation.
The relevant parameters of the simulation are as follows. We shall view the

parallel simulation of the system S also as a discrete-event system and denote it by
S. The two systems S and S have the same network structures and routing
probabilities for the true events, but the systems run on different time scales.
Another difference is that S may contain synchronizing events while S does not. Let
Ni(t denote the number of true events simulated at process in the real time
interval (0, t]. (The bar over a parameter denotes that it is associated with the
simulation S). This quantity is related to the variables of the system S by

(2)
In other words, the simulation’s cumulative work stochastic process N is a random
time transformation of the system’s throughput process Ni. This is a fundamental re-
lation for parallel simulations that allows one to express performance parameters of
the simulation in terms of parameters of the system being simulated. Although this
time transformation is implicit in some studies, we have not seen it exploited as expli-
citly as we do here. The rate of the stochastic process N is called the simulation pro-
cessing rate or execution rate of process i. This rate exists and is given by

i- lim t-li(t) vi/i. (3)

This expression follows since, from the existence of v and "i, we have

lim T- li(t) lim t- 1Ti(t)Ti(t 1Ni(Ti(t))

=t--,limt- 1Ti(t tli_,rnTi(t)- 1Ni(Ti(t))

The last limit uses the facts that Ti(t)c as t-cxz since v > 0 exists.
The following is a rather natural conservation principle for the simulation describ-

ed above.
Definition 1" The simulation satisfies a virtual-time conservation principle if

v vj for each i, j E S (the virtual speeds of all of its processes are equal).
This principle says that the long-run average virtual speeds are equal, although in

the short run they may vary considerably. To see what type of simulation satisfies
this principle, consider the simulation’s global virtual time

GVT(t) min Ti(t ).
l<i<n

This minimum of the processes’ virtual times at the simulation time t is a measure of
the simulation’s progress. Typically, the GVT(t) is nondecreasing in t and an event
that is executed at a virtual time less than the GVT is committed or put in the fossil
collection forming the simulation output; such events are never rolled back. The
following is another notion related to the conservation principle.



402 LIANG CHEN and RICHARD F. SERFOZO

Definition 2: The simulation described above is linearly synchronous if

t-l[Ti(t -GVT(t)]-O, as t--,c, for each E S. (4)

This says that the virtual times never get too far away from each other their deri-
vation is of the order o(t) on the time interval [0, t]. This is satisfied, for instance,
when the deviation of the virtual times is bounded by some constant; this may even
be a natural or desired constraint built into the simulation protocol. Note that at the
termination of a simulation, all virtual times are equal (otherwise, the simulation
would not be complete). This suggests that for an infinite time horizon representa-
tion of a simulation, the virtual times should be relatively close to each other for a

large t (as in a linearly synchronous system).
The following is a characterization of the conservation principle. It says, in parti-

cular, that a system satisfies this principle if and only if it is linearly synchronous.
Theorem 3: The following statements are equivalent.
(a) The simulation satisfies the virtual-time conservation principle.

a.u i, j
(C) "A/,A--,B/,B, for any subsets A,B of S.
(d) The simulation is linearly synchronous.
Proof: The equivalence of (a) and (b) follows directly from v -.i/Ai, which was

noted in (3). Clearly (b) is a special case of (c), and, (c) follows from (b) by using
the fact that , e A)i- e AVii and v -vj. Finally, from the definition
v limt__,oot- Ti(T), we have

t- 1GVT(t) mint- 1Tj(t) minvj.

Using these limits in (4), it follows that (d) is equivalent to v -minjvj, for each
process i, which in turn is equivalent to (a).

Statement (c) in Theorem 3 relates the processing rates of a linearly synchronous
simulation to the throughputs of the system. The equivalence of (b) and (c) says
that the equality in (b) for any pair of processes also applies to any pair of subsets of
S. We will use these relations in the next section to derive performance bounds for
simulations.

If the simulated system S is a closed system, it may be easier to express the simula-
tion’s processing rate in terms of visit ratios. Assume that there are a fixed number
of true events that circulate in the closed system S. The visit ratio Pi of a process
E S is the average number of visits a true event makes to the process between

successive visits to process 1 (an arbitrary fixed process). For a large class of systems
with Markovian routing of events, the visit ratios satisfy the equations

PJ- E PiPij’ J G S, (5)

where Pl- 1 and Pij is the routing probability that a (true) event in the system S
moves from process to process j. For these systems, the throughputs are related to
visit ratios by li/Pi- j/Pj" The following immediate consequence of Theorem 3 is
a relation between the processing rates of the simulation and the visit ratios.

Corollary 4: If the simulation is linearly synchronous, then

AA/PA- /B/PB, for any subsets A and B of S.



Performance Limitations of Parallel Simulations 403

3. Upper Bounds of Simulation Speed

In this section we discuss upper bounds on the simulation speed under several process-
or-sharing scheduling strategies that are suggested for parallel simulations.
We shall consider a parallel simulation of a linearly synchronous system as describ-

ed above. The system consists of n logical processes that are simulated by K process-
ors. We will study the following strategies for assigning processors to the processes:

Autonomous Processor Assignments: The set of processes S is partitioned into K
subsets S1,...,SK and processor k is assigned to simulate the events associated with
the subset of processes Sk. Note that K cannot exceed the number of processes n.
The special case in which each Sk is a single process is called single-processor assign-
ments.

Group Processor Assignments: The set of processes S is partitioned into M sub-
sets S1,...,SM and the set of processors G- {1,...,K} is partitioned into M subsets
or groups G1,...,GM. The group G.m is assigned to simulate the events for the set

Sm. The idle processors of Gm reside in a pool and whenever a set of events need exe-
cution and the pool is not empty, then one processor is taken from the pool, and it
executes one event in the event set with the smallest timestamp. The special case in
which all K processors are assigned to all the processes (M- 1) is called global pro-
cessor assignments.
To measure the efficiency or quality of the simulation, we will use the total pro-

cessing rate AS ] n 1Aj of the true events in the simulation. Recall that ASy= 1Aj is the total throughput of the system S being simulated. An important
parameter affecting the simulation processing rate is the execution rate #k of process-
or k, which is the number of events that processor k can process continuously, includ-
ing any overhead time. The #k is therefore the maximal processing rate of processor
k or a bound on the rate of events processed by that processor. We also write

#B- E #k, B C G.
kB

The following results give upper bounds for the simulation processing rate under
the processor scheduling strategies described above.

Theorem 5: Under autonomous processor assignments

As -< min{#a,
Under group processor assignments,

minK#k/ASk} (6)
l<k<

s < min{/a, AS l_<m_<min M{#Gm/,Srn, OGm j.Smmin)-3 1}},
where

2
Gm

#G
1 E #k
rnkEGrn

is the average maximal execution rate for the processor group Gm.
under global processor assignments,

(8)

In particular,

S < min{#G, AscG min Aj- 1}. (9)

Theorem 5 clearly reduces to the following when all K processors used in the simu-
lation are homogeneous (here aa #).

Corollary 6: Suppose all m
processors are homogeneous with common execution rate



404 LIANG CHEN and RICHARD F. SERFOZO

#. Then under autonomous processor assignments,

s < # min {g As min A’k1 }. (10)
l<k<K

And under group processor assignments,

min M{IGm [/ min Aj-1)}, (11)AS _< # min {K, AS <_ m <_ ASm’ j e Sm

where G.m denotes the size of the set Gm.
lmarks: (a) The inequalities in the preceding results are tight there are

elementary examples of systems in which the processing rate s equals the specified
upper bounds. Furthermore AS is apparently fairly close to these bounds for standard
examples, as the next section illustrates.

(b) In the bounds on AS in (6), (7) and (9), the first term just states the obvious
property that this rate is limited by the maximal processing rate #a of K processors.
The second terms in these bounds, however, are more interesting. They reveal how
the processing rate may be limited by the system parameters.

(c) Be mindful that the bounds do not consider idleness of processors that may be
experienced, for instance, when a large subgroup of processors serves a small number
of processors. In these cases, one should decrease #k to account for idleness. A rea-
sonable compensation for idleness would be to multiply aGm by ,Sm/].tGm which re-

presents the "traffic intensity" of events or the fraction of time that processors in Gm
are busy (necessarily ASm <_ #Gin, otherwise the simulation would be unstable). This

compensation may be good for space-division protocols, but it may not be needed for
more efficient time and space division protocols that typically have small processor
idleness.

(d) For closed networks as discussed in Corollary 4, the upper bounds on As in
the preceding results have obvious analogues in terms of visit ratios; just replace Aj
by pj.

The major interest in the upper bounds of the simulation processing rate is that
they give insight into the maximum number of processors that can be usefully em-

ployed in the simulation. To describe this, we say that K* is the maximum effective
number of processors for the simulation if its processing rate As may be constrained
by the system as the number of processors K exceeds K*. For convenience, one

might want to assume that the processors are ordered such that #1-> #2 >- It
follows that the K* is the smallest value of K for which the "processor constraint"

#G, for all larger K, exceeds the "system constraint" as represented by the second
terms in the bounds above. The following is a formal statement of this.

Corollary 7: Under autonomous processor assignments

{ K’

ASI K’Pk/ASk’ }K*-min K’E #k-< min forK’>_K
k= <k<

Under group assignments,

K*-min K: #_<As min /As ,oa min A 2-1}, for K’ >_ K
k=l l<_m<_ m m jESm

J

In particular, for global processor assignments of homogeneous processors, the K* is
-1the smallest integer greater than min <_ j <_ nAj

We now prove the main result.



Performance Limitations of Parallel Simulations 405

Proof of Theorem 5: First, suppose the simulation uses autonomous processor
assignments in which processor k is assigned to the set of processes Sk. The simula-
tion’s processing rate on any set of processes cannot exceed the maximum execution
rate for that set; otherwise, the simulation would be unstable. Consequently,

Ask -< #k and AS -< #a" (12)
Next, note that the linearly synchronous property of the simulation implies by Theo-
rem 3 that AS ASAsk/Ask for any k. This equality and the first inequality in (12)
yield

AS Asn<,nKISk/ASk <_ Asn<,nK#k/,\Sk. (13)

Combining this and the last inequality in (12), we obtain the assertion (6).
Next, suppose the simulation uses group processor assignments with processor set

Gm assigned to the set of processes Sm. By Theorem 3, we have, similarly to the
equality part of (13),

As-AS min A /AS (14)

min (15)

Now the portion of events for the processes in Sm that are executed by processor k is

k/am. Then the average maximum execution rate for any event from Sm is

kGm
m

(recall (8)). Consequently, similarly to (12), we have

Aj <_ ca for each j E Sm.m

Applying this inequality to (15) and using AS _< #a (as in (12)) yields
m m

min A- 1}.ASm -< min{#arn’ ASmaam j e Sm
J

Then using this in (14), we have

min - 1}}.AS <- Asrnrn_nM{min{#am/ASrn Carn j e Sm

(16)

Combining this with AS _< #a yields the assertion (7). Finally, note that the inequali-
ty (9) for global processor assignments is the special case of (7) with M 1. E!

4. Numerical Example

Our experience with numerical examples of Time Warp parallel simulations of queue-
ing networks indicates that the upper bounds on simulation rates in the last section
are fairly close to the actual ones. This is illustrated by the following example.
We considered the parallel simulation of a closed queueing network with eight sin-

gle-server stations as shown in Figure 1. Each station has a general service time dis-
tribution with a common service rate and the service discipline is first-in-first-out.
The customers moving along the stations are homogeneous and they move indepen-
dently according to the probabilities shown on the arcs.



406 LIANG CHEN and RICHARD F. SERFOZO

Figure 1. Queueing Network

We ran several simulations of the queueing network for which the number of
customers was set at 8, 32, 64, 256, 512 and 1024. The efficiency of the simulation is
measured by its speedup defined as the ratio AS/# (the simulation rate per unit of
processing rate). According to Corollary 6,

S/# < min{8 S minAj-1},
j_<8

Graphs of the actual simulation speedup and the preceding upper bound, as functions
of the number of customers, are shown in Figure 2 below. Note that the actual speed-
up is very close to the bound. Although the speedup is not close to the maximum 8,
its value near 3.4 is reasonable. In this case, the speedup bound is the constant

Asminl < J < 8mina < J < 8Aj- 1_ 3.45. This bound does not vary with the number of
_custmer-s_ i the ngtwBrk. Indeed, if A were another set of rates, then }/
We used an aggressive Time Warp parallel protocol with preemptive rollbacks to

simulate the queueing network. The simulation consisted of eight processes represent-
ing the eight respective service stations. The main events of a process contain the
arrival, service and departure times of customers at the node it represents. These pro-
cesses were simulated on the KSR-1 parallel computer by eight homogeneous process-
ors under single processor assignments. Upon finishing the processing of an event, a
processor typically sends one or more events to other processors before it can execute
another event. The processing time therefore includes communication overhead,
which is a major cost for parallel processing.



Performance Limitations of Parallel Simulations 407

Simulation

----o-- Upper Bound

8 32 64 256 512

No. of Events

Figure 2. Speedup of Time Warp Simulation

1024

5. Efficient Processor Scheduling Strategies

In this section, we use the simulation rate bounds to gain insight into efficient assign-
ments of processors to processes.

For a linearly synchronous simulation under group processor assignments, the pro-
cessing rate bound in Theorem 5 is

where
AS

_
min(#a,sUM}, (17)

UM min M{#Gm/ASm, aG min A- 1}. (18)
l_m_ m jESm

J

For those simulations, as in the last section, in which the inequality (17) is close to
being an equality, one could achieve the highest processing rate AS by maximizing
UM. In this regard, the following optimal processor assignment problem may be of
interest.

Suppose the rates 1," ", An and #1," ", #K are fixed and one can vary the processor
assignments. Then one could ensure a maximal processing rate s by choosing the
integer M and sets S1,...,SM and G1,...,GM that maximize UM. This optional pro-
cessor assignment can be obtained by solving the following optimization problem suc-
cessively for M- 1..., min{ K n }.

Assume that M is a fixed integer. We can write
n K

)jXjm and #a /2kYkm,]ZSm
j=l m k=l

where X;m 1 or 0 according as j is or is not in Sm, and Ykm 1 or 0 according as k
is or is not in Gm. Similarly,

K K

k=l k=l



408 LIANG CHEN and RICHARD F. SERFOZO

Then from its definition (18), UM is maximized by the following mathematical pro-
gram:

max xoXo, Xjm, Ykm

subject to the constraints
n K

XOE jXjrn <-- E "kYkm, 1 <_ m <_ M,
j=l k=l

K K

XOjXjmE #kYkm < E 2
#kYkm, 1 <_j <_n, 1 <_m <_M, (19)

k=l k=l

n M K M

?=1 rn=l k=l m=l

Xjrn 0 or 1, Ykm 0 or 1, 1 _< j _< n, 1 _< m _< M.

In this nonlinear programming problem, the variable x0 plays the role of UM and
the two inequality constraints just guarantee that x0 does not exceed the two terms
on the right side of (18). The essence of the problem is to find the largest value of x0
for which there are feasible Xjm and Ykm" One could solve this problem by fixing x0
at various values and running a standard linear integer programming package, for
each fixed x0, to find whether there are feasible Xjm and Ykm (one can linearize the
constraint (19) by introducing new variables in the usual way). Note that for the
case in which the processors are homogeneous, one can replace the Ykm with the
variables kl,...,kM that denote the respective numbers of processors assigned to
S1,...,SM, where k1 /... + kM K. Then the two main constraints reduce to

XOE "jXjrn - kin#’ XO’jXjrn - #"
3--1

Finally, to optimize the M, one would solve the preceding problem successively for
M- 1,...,min{ K, n }.

Although the processor assignment optimization problem we just discussed is
rather narrow, it may be useful for gleaning a little more speed from a simulation.
Other ways to substantially increase the speed might involve varying the processing
rates, assigning processors dynamically depending on the state of the simulation and
using more efficient time and space divisions techniques. These approaches would
lead to interesting optimization problems, but they would require more intricate
details of the simulation structure than we have been discussing.

References

[1] Akylidiz, I.F., Chen, L., Das, S.R., Fujimoto, R.M. and Serfozo, R.F., The
effect of memory capacity on Time Warp performance, J. Parallel and Distribut-
ed Computing 18 (1993), 411-422.

[2] Chen, L., Parallel simulation by multi-instruction, longest-path algorithms,
(1993), Queueing Systems: Theory and Applications 27 (1997), 37-54.
Chen, L., Serfozo, R.F., Das, S.R., Fujimoto, R.M. and Akyildiz, I.F., Perform-



Performance Limitations of Parallel Simulations 409

[4]

[7]

[9]

[lO]

[11]

ance of Time Warp parallel simulations of queueing networks, (1994), sub-
mitted for publication.
Felderman, R.E. and Kleinrock, L., Bounds and approximations for self-initiat-
ing distributed simulation without lookahead, A CM Trans. on Model. and Corn-
put. Simul. 1 (1991), 386-406.
Fujimoto, R.M., Parallel discrete event simulation, Commun. ACM 33 (1990),
30-53.
Gupta, A., Akyildiz, I.F. and Fujimoto, R.M., Performance analysis of Time
Warp with multiple homogeneous processors, IEEE Trans. of Softw. Eng. 17
(1991), 1013-1027.
Greenberg, A.G., Lubachevsky, B.D. and Mitrani, I., Algorithms for unbounded-
ly parallel simulations, ACM Trans. Computer Systems 9:3 (1991), 201-221.
Lin, Y.-B. and Preiss, B.R., Optimal memory management for Time Warp
parallel simulation, ACM Trans. on Modl. and Comput. Simul. 1 (1991), 283-
307.
Nicol, D.M., Performance bounds on parallel self-initiating discrete-event simula-
tions, A CM Trans. on Model. and Comput. Simul. 1 (1991), 24-50.
Dickens, P.M., Nicol, D.M., Reynolds, P.F. and Duva, J.M., Analysis of optimis-
tic window-based synchronization, (1994), submitted for publication.
Wagner, D.B. and Lazowska, E., Parallel simulation for queueing networks:
Limitations and potentials, Perf. Eval. Review 17:1 (1989), 146-155.


