
Journal of Applied Mathematics and Stochastic Analysis, 11:3, (1998), 411-423.

ON INTENSITIES OF MODULATED COX MEASURES

JEWGENI H. DSHALALOW
Department of Applied Mathematics

Florida Institute of Technology
Melbourne, FL 32901, U.S.A.
e-mail eugene@winnie.fil.edu

(Received April, 1997; Revised March, 1998)

In this paper we introduce and study functionals of the intensities of
random measures modulated by a stochastic process , which occur in
applications to stochastic models and telecommunications. Modulation of a
random measure by is specified for marked Cox measures. Particular
cases of modulation by as semi-Markov and semiregenerative processes
enabled us to obtain explicit formulas for the named intensities. Examples
in queueing (systems with state dependent parameters, Little’s and
Campbell’s formulas) demonstrate the use of the results.
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1. Introduction

This work is inspired by the popularity of Markov modulated Poisson processes
(MMPP’s), which widely occur in telecommunications [1,10,17] and queueing [14], in
particular, in queues with state dependent parameters [7,15]. The basic notion of an
MMPP is as follows. Let be a Markov chain with continuous time parameter and
finitely many states: {sl,...,Sm}. Suppose we have m (component) Poisson processes,
Ill," ",Ilm with intensities 1," ",m, respectively. We will merge them in one process,
say //, as follows. While is in state sk, Il Ilk" As soon as changes its state to

sj, Il assumes Ilj and so on. Obviously, //can also be described in terms of a Cox
process with stochastic intensity being a function of . Such processes are common in
telecommunications, where m input signals at a node are governed by a relay
switching to one of the m positions. This relay is contorolled itself by a Markov
chain. The output signal is moving on to a next node where it is further processed. In
various applications, such a signal is an arrival process in a queueing system. These
queueing models were developed by Neuts and his followers [9,11-13]. Rather than
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ordinary arrivals, Neuts [11] further allowed bulk arrivals referred to as batch Markov
modulated Poisson processes (BMMPP’s).

Whereas Neuts generalized BMMPP’s by augmenting multiple exponential
phases, all governed by the Markov chain (a so-called versatile Markov process),
our research takes a completely different direction modifying the BMMPP and
targeting the intensity of the -modulated process. Here we allow to be more
general than a Markov chain with finitely many states, and we upgrade each
component Poisson processes to a marked Cox process. Various applications to que-
ueing, such as Little’s formula, L- W or its generalization, such as H- AG and
Campbell’s formula (where A stands for such intensity) [16,18], and optimization [7],
motivated the author to study these problems in [5,6,8].

In this article, the author refines the concepts and results initiated in [5,6,8] and
further extends them to a class of functionals of the intensity. The paper is organized
as follows. Section 2 provides a minimal background on random measures and
BMMPP’s and introduces to the notation used throughout the paper. Section 3 deals
with the formalism of Cox measures modulated by a random process and evaluates
the potential for -modulation. Section 4 contains the main results of the paper. It
introduces functional intensities of modulated Cox measures and provides a

background to special cases of treated in Section 5. Section 5 deals with as semi-
Markov and semi-regenerative processes. Here the author obtains explicit formulas for
the intensities of Cox measures modulated by such processes. The latter find
applications to the prominent queueing formulas L W and H G, which, among
other examples in queueing, are demonstrated in Section 6.

2. Random Measures

The following are basic notions of random measures outlined in this section for
consistency and to comply with the notation throughout the paper. For more infor-
mation, the reader is referred to monograph [4] by Daley and Vere-Jones.

Let E be a Polish space. Denote by the set of all Radon measures on the Borel
(r-algebra %(E). Recall that a measure # is Radon if # is finite on the ring % of all
relatively compact subsets of E. For instance, the Lebesgue measure on %(Rn) is an
example of a Radon measure.

A Radon measure is called a point or counting measure if #(R)E o for all
R E %. A point measure is simple if for each x E, #({x}) is either 0 or 1. A Radon
measure #a is purely aomic if there is a nonempty countable set {a1,a2,.. .} _C E and
a sequence {a1 _> 0,c2 _> 0,...} with 0 < Y n > lc% < c such that

x)

On an
#a-- n----1

where ea is the Dirac point mass. The Radon measure #d is diffuse if #d({X))- 0 for
all x @ E. Any Radon measure can be decomposed as

# #a - #d"

p’ a, and !ffd stand for the sets of all point, atomic, and diffuse measures,
respectively.

Let (, ) be a measure space. A random measure is a measurable mapping from
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(a, ) to (I,N(I)). In other words, a random measure is, on one hand, a family of
Radon measures indexed by w E f; on the other hand, it is a family of random
variables (r.v.’s) indexed by all Borel sets. A random measure is point, atomic, or

diffuse, if in the above definition, is replaced by p, a, or d, respectively.
Let r-{rl, r2,...} be a sequence of r.v.’s valued in E. Then, the random

measure
M j > 1 njr.’ with nj No,

?

is an element of !Iltp. M is purely atomic if all r’s are discrete, and diffuse if all r’s
are continuous r.v.’s. Given M above,

N- j_> lgvj
is called its support counting measure.

For v ld, the random measure rv = . e-V--e is called a Poisson
.j>0 n

measure directed by a (diffuse) measure u. A Posso-n measure can also be directed by
a (diffuse) random measure A, in notation, rA.

A point random measure H is called a Poisson (counting) process directed by a
measure u e d, if for each Borel set A, II(A)is a Poisson process with mean u(A),
or, equivalently,

:[ZII(A)] ev(A)(z 1).
u is called the mean measure of//.

A point random measure C is called a Cox measure or Cox process or doubly
stochastic Poisson process directed by a random measure A if

1) given A and disjoint Borel sets A1,...,An, the r.v.’s C(A1),...,C(An) are in-
dependent,

2) Pc rA or, equivalently, _[zC(A) A eA(A)(z- 1).
Let E- Nm and denote the Lebesgue measure on %(Rr). Suppose the,., mean

measure v (of a Poisson process H) is absolutely continuous and let , be a
version of its Radon-Nikodym derivative. We assume that v is such that , is--trictly
positive. Such , is called the rate or intensity function of the Poisson process H. In
particular, if is constant, the Poisson process//is called homogeneous or stationary.
If C is a Cox process directed by a random measure A then the corresponding rate
function , is called the stochastic intensity. In other words, , is a stochastic process
and it is related with A by

A(-,A) = f ,(-,z)L(dx). (2.1)
A

In applications, the stochastic intensity is a function of a stochastic process
= h((). In particular, if ( is a Markov process, then C is an MMPP.

Let X {X0, X1,...} be a sequence of R +-valued r.v.’s. The random measure

M E j > Xjr" (2.2)
J

isis called a marked Poisson process if its support counting measure H j _> 1 grj
Poisson. If // is a Cox process then M is a marked Cox process. We will denote a
marked Poisson process by the triple <M,u,X>, and a marked Cox process by
<M,A,X>. If the mean measure A is expressed through a stochastic intensity ,
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A(), is a Markov process, and Xi’s depend upon , then such a marked Cox
process will be denoted M <M,A(),X> and referred to as the BMMPP.

3. Modulated Cox Measures

In the above definition of the BMMPP it is assumed that is a jump Markov process
with finitely many states, say {Sl,...,sm} so that if enters state s/c, the intensity of
the input becomes ,k/c (s/c) and the respective marks (arriving batches) will assume

index k, i.e X(/c) -{X(/c) X(/c) .). This status of the input remains unchanged1 2 ""
while stays in s/c. As soon as enters another state the arrival Poisson process
alters accordingly.

Below we offer an alternative and more explicit construction of such a process.
Let M {M/c k 1,...,m} be an m-tuple of marked homogeneous Poisson processes

X(_P) (3.1)Mk j >_ 1 :1

with intensity I/c. Then, the BMMPP M can be represented by

mM(w,A) k 1Mk(W,A r3 Sk(W)) (3.2)

where S/C- -1({8k} ). This construction is also advantageous for the formation of

the intensity of M(. Before we turn to the intensities we would like to extend the
notion of a modulated process by allowing to be an arbitrary separable stochastic
process. If the state space of ( is countable then the above construction (3.2) is the
same, except for m being replaced by oc. Should the state space of be more than
countable, we would like to reduce it to a countable decomposition for the
convenience of the next construction.

Let {a, , (PJ)j, (-,t), t e E} -- {, %()} be a separable stochastic process.
For H %(), S {(w,t) flxT: (w,t) H} is the sojourn time of in H on a
time set T. [We will assume that T is relatively compact.] Therefore,
S- -I(H)V1 ( x T) is a random set. For instance, if <M,A,X> is a marked Cox
process, in which the discrete-valued mark X gives the size of the ith arrival batch
at ri, then

M(S) j > I Xjgrj(S)
gives the number of arrivals of M during the sojourn time of the process in H on a
time set T. o

Let -{H0,H1,...} be a sequence of subsets of such that [.J Hn is a
n--0

measurable decomposition of , called -decomposition of t, and let
M- {Mn; n- 0,1,...} be a sequence of random measures. If Sn denotes the sojourn

time of in Hn on the time set T, then obviously, (.J Sn is a measurable
n--0

decomposition of the cylinder set fl T. Let T denote the set of all Radon measures
on the trace Borel a-algebra %(E) T. Then, the "decomposition" of M with respect
to and ,
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M(w’A) ,
j >_ o Mj( ., I(Hj) gl T), (3.3)

is obviously a random measure from (f, ) to ([YT, (T))" The following is a re-
fined definition of a modulated random measure originally introduced in Dshalalow

Definition a.1. We wi can U in (3.3) the random measure modulated by (on
T) given -decomposition and the sequence (of random measures) M- {M0,MI,...},
or, alternatively, the -modulation of M given . In particular, if the components

-<Mj,Aj,X(J)>,j- 0,1,..., are Cox measures M will be referred toMj as
modulated Cox measure given -decomposition and Cox measures M
{<Mj,Aj,X(J)>;j-0,1,...}, or a -modulated Cox measure, for short. If M

{<Mj,vj,X(J)>; j- 0,1,...,} are marked Poisson measures, then M will be called
a -modulated marked Poisson process.

When the process enters the set Hk, M turns to Mk and remains equal Mk as

long as stays in Hk, i.e. during its sojourn time in set Hk, in our case, traced on a

relatively compact time set T. Thus, given E Hk, M is a marked Cox process with
stochastic intensity (w,x)--Ak(W,x) and marks x(k)--(x!k); r--1,2,...). In the
special case, when k are constants and is a jump Markov process with finitely
many states, M5 reduces to the BMMPP.

Definition 3.2. Given a sequence M- {M0,M1,...} of random measures, denote

41fl(T) tfl( ., T) E j >_ o Mj( ., Sj) ,
j >_ o Mj( ., (Hj) f3 T) (3.4)

and call =[llfl(T)] the M-potential for -modulation given .
For example, if the marks X are discrete-valued, the random variable lfl(T)

can be interpreted as the total number of arrivals on a time set T. Note that if we let
T vary, then in (3.4) becomes a random measure from (, ) to (, ()). We
can also assume that each Mk is a Cox measure directed by a random measure Ak if
another dependence is required.

Definition 3.3 Let T be a relatively compact set in E and let p . If #(T) 0
we define

,(T) ,(T)
and call it the intensity of the modulated measure M on set T with respect
measure p. Suppose there exists a monotone increasing family {Ta;a } of
relatively compact subsets of E along a net N such that Ta E. If the limit

g lim e (gT) (3.6)

exists we call it the intensity of M with respect to measure p.
Now we make the following assumptions. For each j N0, the marks X(j)

{xJ);r e N} represent a stationary sequence of r.v.’s, with common mean

independent of their positions v(j) {vJ); r N}. Thus, given Hi, for each relatively
compact set R
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Mj()- Mj(-,/)- 7-1X(nJ)r(j)(R! =_(j) /(nj), a.s., (3.7)
n tn:rr R}

where //j is the associated support counting measure directed by a Radon measure

j. Then, (3.7) yields

E[[Mj(R) [//j]] y[//j(R)] j(R).

(3.8) is modified as
If R is a random set, independent of X’s,

E[H[E[My(R) I//1 R]] cfi:[(R)].

Let R Sj ,- 1(Hi) CI T (for each w E fl). Obviously

(3.9)

uj(Sj)- TIHj()duj, (3.10)

and, if uj is absolutely continuous, then due to (2.1) and the above assumptions
imposed on the intensities ,j’s (as being constants on Sj), (3.10) yields that

uj(Sj) ,kJ fTIHj()dL.
In a more general setting, where ,./varies on Sj, (3.10) leads to

(3.11)

uj(Sj)- fTIHj((z)),j(z)L(dx). (3.12)

Finally, if the measure, directing H.i is random (in notation Aj) then (3.12) turns to

A:i(Sj) f IH .((x))Aj(-, x)L(dz), (3.13)
T 3

where $j is the stochastic intensity of Hi. Now, from (3.4), (3.8), and (3.11), along
with the monotone convergence theorem, we have that

.[Mlfl(T)] E j > 0 j$jTP{ Hj}dL. (3.14)

If measure Aj, directing IIj, is random, then (3.9), under (.), should be modified as

[[[:[Mj(R) IIIj]It]IAj]] c,fi:[E[//j(R) R,Aj]] (3.15)

and in light of (3.13) it leads to

-[dilfl(T)]- j>_o jE[ TIHj((x))’Xj(" x)L<dx)]. (3.16)

If, given -:t(Hj), and Aj are uncorrelated, then from (3.16), by Fubini’s theorem
we have that

/[.)(T)] E j _> o ajTfe{(x) Hj}Aj(x)L(dx), (3.17)

where j(x)- E[j(-,x)]. in particular, if for each j, Mj is a stationary Cox
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measure, i.e., then (3.17) yields the same formula as (3.14) for

where ,j -[Aj(- )].
Note that (3.14) and (3.16-3.18) hold true also for real-valued cj. The above

results can be summarized as the following theorem.

Theorem 3.1. Let M be a -modulated Cox measure (on T) given -decomposition with respect to Cox measures M--{<Mj,A.j,X(J)>,2-0,1,...}.
Then, the M-potential for -modulation satisfies formula (3.16) wuJh ",e conditions
imposed
on X(j) and Aj:

marks X(j) represent stationary sequences, with common means

cj, independent of their positions vj),
Aj have stochastic intensities j.

1If, given - (H.), and A. are uncorrelated, the M-potential reduces to formula
(3 17), where A3 _’(x)- :[A.(-,x)] If, in addition, M. are stationary Cox measures

(with Aj=:[Aj(.)]) then M-potential further reduces to formula (3.18). [The same
result as in (3.18) holds true for nonstochastic intensities Aj.]

4. Functional Rates of Modulated Cox Measures

The following will generalize the above formulas (3.14) and (3.16-3.18) for the case of
reward functions applied to on respective sojourn times. The idea is to replace
indicator functions IH. in (3.11-3.13) by arbitrary Borel functions 9j.

3

Def’mition 4.1.

(i) Assume that 9- {90,91,...} is a sequence of Borel measurable functions. Let
us call

i() E j > o ijgj() (4.1)

-modulation of M given 9, which we also denote by <MO(),M {Mjthe

E > 1X!j)e.t4;,‘, J 0,1,...), 9 (90, 91,’")>" [For 9 _> 0, M() is a random

measure (Ft, 5)to (!Ill, %()).]
(ii) Given a relatively compact subset T of E, denote

dtt()(T) E j >_ ofT9j()dMj (4.2)

and call the value -[dtt()(T)] the M-potential for -modulation given 9.

For instance, if Mj- i>_ 1x!J)gr!j)’ where X!j) stands for the size of the ith

batch of type j and the state space of is discrete, and 9j(x)- cj(x)I{j_}(x), then

gj()dMj gives the reward for all arrivals on time set T of type j during the
T
sojourn time of in state {j}. Thus, the M-potential gives the total reward of all
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arrivals during the time set T subject to .
Lemma 4.2. Let M-j >_oXjgrj be a marked Cox measure directed by a

random measure A and led by a stationary sequence X- {X1,X2,...} of marks with
common mean a < oc, independent of their positions r- {Vl,’2,...}. Then, for a

Borel measurable function o, the stochastic integral a T()dA is a version of the
conditional expectation E[ o()dM A].

Proof. It is sufficient to show the validity of the Lemma for >_ 0, since to turn
to the general case, we will apply it for p+ and - in the decomposition
-o + -o-.

Given >_ 0, there is a sequence {sn} of simple functions with sup{sn} (#. Let

r= a !n)’
Denote h(A) :[ f 9()dM A]. By change of variables formula,

h(A) _[ fdM- 1[ A] =[sup r=l
tn an)M- l(A!n)) A

sup E In lan)-[M- I(A()) A]r-- r

Let//be the support counting measure for M. Then, because of (3.7),

E[M- I(An)) A E[E[M- I(A!n)) II] A

aE[II- I(A!n))]A] aA- I(A!")).
The latter yields that

h(a) asup f snda f da- 1.

The following theorem gives an explicit expression for the M-potential, [V[M()],
generalizing the results of Theorem 3.1.

Theorem 4.3. Let M- {<M:,Aj,X(J)>, j 0,1,...} be a sequence of marked Cox
measures. Then, the M-potentia{for -modulation given 9 satisfies the following for-
mula:

:[atg()(T)] -[E j >_ OfTj()dMj] E j >_ oaj-[ fTj()dAj]. (4.3)

Proof. The statement follows from Lemma 4.2 and the monotone convergence
theorem.

Corollary 4.4. In the conditions of Theorem 4.3, let E m, Aj be absolutely
continuous for each w and let ,j be a version of the correspondin9 Iadon-Nikodym
derivative. Assume further that, given Aj, ,j is independent of , j- 0,1,... Then,
the M-potential for -modulation satisfies the following formula:

:[-/tt()(T)] E j > oCj T _[j((x))]Aj(x)(dx), (4.4)
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where Aj(x)= E[j(-,x)]. In particular, if Mj is a stationary marked Cox measure,
j- 0,1,..., then (4.4) reduces to

:[()(T)] ,
j >_ oajj T _[pj((x))](dx), (4.5)

Prof. The corollary follows directly from (4.3) by applying Fubini’s theorem and
using the conditional expectation with respect to Aj.

Formula (4.5) further reduces to (3.18) for pj- IHj.
In (3.5), we defined the intensity of the modulated random measure M on T

with respect to a Radon measure as

T: p(T)and in (3.6) by

-limN (T)

the intensity of M. Now, for ITM(), we define the function T[[IT()] on a

set T as

E[()(T)
(4.6).(T)and and analogously,

() -lima e N T() (4.7)

calling them, the reward rate on set T and reward rate (with respect to #), respective-
ly.

5. Reward Rates and Intensities for Special Processes

This section will deal with the evaluation of reward rates and intensities for as
semi-Markov and semiregenerative processes. Throughout this section we make the
following assumption.

Assumption 1. E-N+ and # is the Lebesgue measure. <M(),M {Mj
E > 1X!J)e j); j 0,1,...}, {90, )91,’’’}> is the M-modulation for , where

Tj:---N. [See Definition 4.1.] Mj’s are stationary marked Cox processes with
stochastic intensities 1j(-), j- :[1j(-)], led by stationary sequences X(j) of marks
with common finite means aj.

Notation. For a vector x with entries indexed by elements of and a Borel-meas-
urable function g defined on , denote xg- r e q Xrg(r)" In all other instances xy
denotes the usual scalar product. The vector x o y stands for the Hadamard (entry-
wise) product of vectors x and y. A {Aj; j E q}, c--{cj;j E }, and denotes
the matrix with row elements {pj(k), k G q}, j > 0. Define the transformation
F: ---,R as
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r(.) (5.1)

5.1 as a Semi-Markov Process

Let
0itT" be an irreducible and aperiodic Markov renewal process with a

discrete state space tI for n" Denote flj E3[T1] and /3 (j;j E ). Suppose that
the embedded Markov chain {n} is ergodic and that p -(pj;j P) is its invariant
probability measure. We call the Markov renewal process recurrent-positive if its
mean inter-renewal time, denoted as scalar product p/3, is finite. An irreducible,
aperiodic, and recurrent-positive Markov renewal process is called ergodic. Let

N-j>0T denote the support counting measure associated with . Then,

(x) N([0,z]), is known to define the semi-Markov process associated with the
Markov renewm process . The semi-Markov process is ergodic if so is . We
assume that the Markov renewal process is ergodic.

For some Borel set B let

and
(R)J(j, B) EJ[ f B g(C)d.]

OJ(B) {@J(j,B) j

where g is a Borel-measurable function with compact support defined on .
Proposition 5.1. (cf. C.inlar [3]). Let be the semi-Markov process associated with

an ergodic Markov renewal process and let p be the invariant probability measure

of the embedded Markov chain n" Then for some Borel .function g on fit and for all
j , the limit

o

oo pfl
exists and it is independent of j.

Now, using Proposition 5.1 (for j replacing g) and formula (4.6) from Corollary
4.4 for T [0,t], we establish:

Theorem 5.2. Under Assumption 1, the M-potential for {-modulation is deter-
mined from the formula:

)-1 -[.]llo()([0,t])] p_/(p o #).
too

(5.3)

5.2 as a Semiregenerative Process

Definition 5.1

(i) Let T be a stopping time for a stochastic process {f2,ff, (PJ)j, (t); t >_ 0}
--, (, !B(P)). is said to have the locally strong Markov property at T, if for each
bounded random variable if: f2--,r and for each Baire function f: pr__R,
r- 1,2,..., it holds true that

EJ[f( O OT)[ffT]- ET[f()] PJ-a.s. on {T <
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where 0u is the shift operator and o stands for the composition.

(ii) A separable stochastic process {,ff, (PJ)jeo, ((t); t>_ 0} (, !13()) with
_
N and a.e. right-continuous paths is called semi-regenerative if

a) there is a counting measure N-n lgTn
on R + such that Tn--*cx:

(n--cxz) and such that each Tn is a stopping time relative to the filtration

r(t t < Tn),
b) the process has the locally strong Markov property at Tn, n- 1,2,...,
c) Z- oiCTi n- (Tn), is a Markov renewal process.

is ergodic if so is Z.

The following Proposition is similar to one in C.inlar [2].
Proposition 5.3. Let be an ergodic semi-regenerative process with the stationary

probability measure r and let g be a Borel-measurable function on with compact
support. Then

J" (5.4)
t---x) 0

Theorem 5.4. Under Assumption 1, the M-potential for -modulation is deter-
mined from the formula:

()- lira :J[(()([0, t])]- F(r).
----cx

(5.5)

Proof. Formula (5.5) follows from Proposition 5.3 (for j replacing g) and
formula (4.6), from Corollary 4.4, for T- [0,t]. V1

6. Examples and Applications

Example 6.1. Consider a class of queueing systems in which the queueing process
Q(t) is semiregenerative, for instance, queues of type M/G/1 and G/M/m. Let- {Qn,Tn} and be the associated Markov renewal and semi-Markov processes,
respectively. Here {Qn} is the embedded Markov chain over the sequence {Tn} of
arrivals or departures of groups of customers. Let MQ denote the input as Q-
modulated marked Cox process and let j(k)- cj(k)I{j}(k) be the reward function
for mode k. Then,

’(Q)(T) E j >_ o T j(Q)dMj (6.1)

gives the total reward for all arrivals on time set T and (p)= F(r)is the reward
rate of the arrival process (over infinite horizon) modulated by the queueing process
Q. If in (6.1) we replace Q by , we arrive at a "restricted modulation." For instance,
if Tn is the nth departure time then the arrival process gets modulated only at
departure instants. Then, the reward rate is (p)-p- F(po ). If Tn is the nth

arrival epoch then the arrival process gets modulated by the system correspondingly
at arrival instants. All above systems refer to as "queues with state dependent
parameters."
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Finally, the arrival process can be modulated by an "external" semi-Markov or

semiregenerative process, for instance, by a totally separate stochastic system.

and

Example 6.2. Let oj I(/}. Then, forrnulas (5.3) and (5.5) will reduce to

p- p(c o 3 o ,) (6.2)

a r(c o ), (6.3)
respectively, earlier obtained in Dshalalow [6]. In a widely referred to Little’s formula
L- ,W, where L and W are the mean queue length and the mean sojourn time,
respectively, A stands for the intensity of the input process. Replacing by in (6.2)
and (6.3) we specify Little’s formula

L :W (6.4)
for a large class of queues and other stochastic systems with modulated input
processes. A similar use of is for generalizations of Little’s formula, such as H xG
and Campbell’s formula, see Whitt [18] and Schmidt and Serfozo [16].

Example 6.3. Consider the following queueing system of M/G/1 type with state
dependent parameters. Customers arrive at a servicing facility in bulk and are

successively processed by a single server which waits for customers if it is idle or goes
on "vacations." Introduce the following notation:

t),

rn the duration of the nth service,

Tn the instant of the nth departure,

Q(t) the queueing process (number of customers present in the system at time

Qn Q(Tn + 0).
Given Qn i, the probability distribution function of rn / 1 is B and on time

interval [Tn, Tn+I) customers arrive in accordance with the general queue-
dependent bulk birth process. The latter means that on time interval [Tn, Tn + 1) the
arrival process is a marked Poisson process modulated by Q(t). Q(t) is a semi-
regenerative process relative to the Markov renewal process {Qn,Tn}. A special case

of this model, with single arrivals, was studies by Shellhaas [15], who found the statio-
nary distribution, r, of the queueing process Q. Shellhaas’ results can further be
extended by using above Little’s formula (6.4) to arrive at the mean stationary
waiting time or to get the reward rate.
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