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An example of inverse estimation of irregular multivariable signals is pro-
vided by picture restoration. Pictures typically have sharp edges and there-
fore will be modeled by functions with discontinuities, and they could be
blurred by motion. Mathematically, this means that we actually observe
the convolution of the irregular function representing the picture with a

spread function. Since these observations will contain measurement errors,
statistical aspects will be pertinent. Traditional recovery is corrupted by
the Gibbs phenomenon (i.e., overshooting) near the edges, just as in the
case of direct approximations. In order to eliminate these undesirable
effects, we introduce an integral Cesro mean in the inversion procedure,
leading to multivariable Fejr kernels. Integral metrics are not sufficiently
sensitive to properly assess the quality of the resulting estimators. There-
fore, the performance of the estimators is studied in the Hausdorff metric,
and a speed of convergence of the Hausdorff distance between the graph of
the input signal and its estimator is obtained.
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1. Introduction

A practical example of noisy deconvolution of irregular multivariable signals is
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provided by image reconstruction. An image may have sharp edges, and can

generally be represented by an irregular function of two variables. Due to motion, for
instance, the actual observed picture is a convolution of the image with a known
spread function, where this convolution is observed with random measurement error.

Adopting a random design in order to remain in the framework of independent and
identically distributed (IID) random variables, a more precise description of the
above situation is that we observe n independent copies of X: (Y, Z), where:

Y: (w,O)(Z) + E, 0 @, (1.1)

Z is a random vector in d (the design) with d E N arbitrary, E a random variable in
(the measurement error), w a known convolution kernel on d, and 0 the input

signal contained in a class (R) of irregular functions on [d. More specifically, a certain
type of discontinuity is permitted (see Section 2 for details).

Example: For easy calculation, the functions in this and subsequent examples will
have two variables only, and will be of product type. More general functions could
be considered but explicit calculations would be much harder in general. Suppose the
input signal

O(x,y) 1[_ 1,1](x)l[_ 1,1](y),
and that it is corrupted by the function

(x,y) E2, (1.2)

v) v) e (1.3)

where
,1 1.)(x) COSX, X e [. (1.4)(x) (1[_1/2,1/2] ,]

The function a is syminetric about 0 and continuously decreases from 1 at 0 to 0 at 1
and stays 0 on [1,oc). We have

(w.O)(x, y) (.1[_ 1,1])(X)((fl* 1[_ 1,1])(Y) (X, y) 2. (1.5)

This function has support in [-2,2] [-2,2], and for the density of Z: (U,V) we
might take the uniform density on this square. Note that this density remains
bounded away from 0 on its support.

It is well-known that the sharp edges in the image cause degradation effects like
ringing artifacts (Biemond, et al. [1]). Mathematically, the irregularities of 0 induce
overshooting in the recovered image related to the Gibbs phenomenon. In this note,
we propose an improved deconvolution procedure to control the Gibbs phenomenon
when recovering irregular multivariable signals from the random data X1,... Xn, and
we assess the quality of the proposed signal estimators in a suitable metric to be des-
cribed below.

Traditionally, deconvolution involves Fourier methods. In ordinary direct approxi-
mation, the Fourier series displays the Gibbs phenomenon in the neighborhood of the
edges. By Cesro summation this undesirable effect can be remedied (Zygmund [15],
Shilov [13], Walter [14]). In this paper we propose a modification of the
deconvolution procedure in the same vein as Cesro summation. This procedure is an
extension of the one proposed in Chandrawansa, et al. [2] for univariable signals.



Controlling the Gibbs Phenomenon in Noisy Deconvolution 3

Donoho [3] and Neumann [10] also present interesting alternative approaches based
0n expansions in wavelet bases.

The use of the integrated mean square error doesn’t seem to be appropriate when
the signal to be recovered is irregular. A better insight into the quality of the esti-
mators could be gained by using the supremum norm. However, even though the pro-
posed estimation procedure keeps the Gibbs phenomenon under control, the esti-
mators are still continuous functions and cannot possibly be close to the irregular in-
put signal in the supremum norm. Therefore, the distance derived from the supre-
mum norm is replaced by the Hausdorff distance between the extended closed graphs
of the functions involved. This Hausdorff distance is related tot he sup-norm dis-
tance, and equivalent to it when the functions are continuous. Matron and Tsybakov
[9] advocate use of mathematical error criteria that more closely follow visual impres-
sion, and mention the I-Iausdorff distance as a possibility. Korostelev and Tsybakov
[8] employ the Hausdorff metric when the support of a density is estimated.

As we see from Equation (1.1), the problem considered here can be cast in the
format of an indirect nonparametric function estimation problem, where this function
is multivariable.

Let us conclude this introduction with an outline of our approach. The usual
direct regression estimators could be used to estimate p, where

p w.O. (1.6)

Such estimators would require the choice of a kernel and bandwidth that are extra-
neous to our problem and, moreover, the resulting estimator cannot be unbiased. For
this reason, and partly because the convolution operator in Equation (1.6) is not in
general Hermitian (symmetry of w about 0 is required for this operator to be Hermi-
tian), we follow a somewhat different route by replacing Equation (1.6) with an equi-
valent one which is easier to deal with. For this purpose we apply an injective
smoothing operator to either side, a process referred to as preconditioning. One of
the effects of preconditioning is that p is replaced with a smoother function q, which
can be unbiasedly and V/-consistently estimated in a direct and simple manner.
The effect of preconditioning can be compared to replacing a density (which cannot
be unbiasedly or V/--consistently estimated) by its smoother cumulative distribution
function (that does allow a simple unbiased and V/--consistent estimator).

Here we will precondition by means of convolution with w*(x)" w(- x), x e Nd,
which yields the equation

q RO, where R is convolution with r: w**w. (1.7)

In order to ensure that 0 is identifiable, we need to assume convolution with w to be
injective, and under this assumption Equations (1.6) and (1.7) are equivalent. We
will see in Section 3 that q can be unbiasedly estimated using an intrinsic method;
moreover, R is a Hermitian operator which is somewhat more convenient to deal
with.

Equation (1.7) is ill-posed because the inverse of the convolution is unbounded.
This ill-posedness is a serious problem because we have only imperfect knowledge of q
as represented in its estimator ’. The inverse will be regularized by using the
spectral cut-off scheme in the frequency domain. When we transform back to the
"time" domain, the inverse Fourier transform will be replaced by an integral Cesro
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mean, resulting in a regularized inverse 1 of the operator R in Equation (1.7), for
a suitable truncation point M > 0. We propose to estimate 0 by

OM: rl". (1.8)

The unbiasedness of " entails

(1.9)

Denoting the Hausdorff distance by d:E we have

d(Oi, O) <_ dj(Oi, Oi) 4- d(OM, 0). (1.10)

Easy calculation shows that the nonrandom function 0M is independent of r, and is
in fact a direct approximation of based on a smooth Cesro average. The asympto-
tics of the bias part d(OM, for large M show that the Gibbs phenomenon has
been eliminated. We briefly summarize this purely analytical result in Section 2; the
details can be found in van Rooij and Ruymgaart [11], Specification of the model (R)
and some further notation is also contained in Section 2. The construction of estima-
tors for q and 0 is considered in Section 3, and Section 4 is devoted to deriving a
speed of almost sure convergence to zero of the Hausdorff distance on the left-hand
side of Equation (1.10). It will become clear from the analysis that no extra ill-posed-
ness is introduced by the preconditioning procedure.

2. Some Notation and Further Preliminaries

The Fourier transform 5: LI(d)’-L(Rd)is given by

(f)(t): ei(t’x)f(x)dx, t d,
Rd

where it is convenient to have the special notation

] --(2r)d/2Jf, f E Ll(d),

for the characteristic function. For any f: d__., we write

f + (x): f(x).O[o,)(f(x)) x d

for the positive part. As usual we write

sinc "
sin, 0, sinc0"-l,

and introduce

for brevity.

d(1)dHs(t) t" (tl,...,td) d,

(2.1)

(2.2)

(2.3)

(2.4)

(2.5)
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The extended closed graph of any bounded function f" [d.._ is defined as

r]: (cl r], ) N (cl[’], u), (2.6)

where F/,I" {(x,) E d + 1. x E d, < /(x)} and Fi, u: {(x,) E d + 1. x E d,
>_/(x)}. The Hausdorff distance between any two such functions is defined as

d(f,g)" =ifo(Vp e FiSq e Fg: II p-q II < ,
(2.7)

where I1" II is the norm in any Euclidean space (d-t-1 in this case).
f: d__, satisfies

If a function

If(x)- f(y) _< c II - y II v, y A

_ , for some 0 (.8)

it is called Lipschitz on A. Let us now proceed and describe the class of functions in
which the model O is contained.

Definition: A function f:d_ is an element of the class if and only if it is
bounded and integrable, and if there exists a closed, nondegenerate hypertriangle
A- A(f) such that every a E d is contained in a hyperrectangle Aa, congruent to
A, on which f is Lipschitz. The constant c appearing in the Lipschitz condition does
not depend on the point a G d.
We have aimed at greatest generality in the definition of a suitable class . Now

we will give an explicit construction of a family of functions that is contained in .
Let Bp be the open ball in d, with center at the origin and radius p > 0, and let p
denote the closed ball. Suppose that Ok: Bp---d is a diffeomorphism for some P 1,
and let

Ak: (YPk(B1), k 1,..., K.

The following result is proved in van Rooij and Ruymgaart [11].
Theorem 1: Let the k be such that the Ak are pairwise disjoint. If f is bounded

and integrable on d, and Lipschitz on each Ak and on Ni_ cl(Ak) then f is in .
In particular, we have

K
f" E CkUnk e , Cl,...,CK e a. (2.10)

k=l

As a special case we may take the Ak to be bounded convex sets with nonempty inter-
ior.

Rather than the usual inverse Fourier transform y-1, we will employ gl,
defined by

(lg)(x): (2-) g(t) 1 M e-i(x’t)dt, M > 0, (2.11)
k=l

d
for any g LC(Nd). When we substitute g: Yf, f E LI(Nd), we obtain
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(]lf)(x) if(x--h)’(’)d’, X "d, (2.12)

where S is defined in Equation (2.5). For a proof of the result below, see van Rooij
and Ruymgaart [11].

Theorem 2: For each f E there exists 0 < c: c(f < oc such that

d(llf f) <- M" (2.13)

for all O < M < oc.

3. Construction and Elementary Properties of the Estimators

First, we formulate the basic assumption from which estimators can be constructed.
The conditions on the convolution kernel w partly serve to ensure the identifiability
of the unknown parameter. The condition on the density of the design vector entails
that an unbiased estimator of q can be constructed. Since we are free to choose this
density, the condition can always be satisfied. In the next section, a more restrictive
assumption will be needed to obtain a speed of convergence for the Hausdorff dis-
tance.

Basic assumptions: The model satisfies

OCt, (3.1)

and for the convolution kernel we have

wELI(d) gLc(d), with I >0nd. (3.2)

Let the probability density f of Z concentrate mass 1 on a convex set C d such
that

D cl ((.J 0 e o{x G d: (w,O)(x) > 0}), (3.3)

and let f be continuous and strictly positive on . The design vector Z is stochasti-
cally independent of the error variable E; the latter variable has a finite first moment
and mean 0.

Choosing the density f of Z in accordance with this assumption allows us to
construct an unbiased estimator of q, namely

k- f(Zk)
x (3.4)

To verify the unbiasedness of this estimator, we first observe that

[l:(Y Z) (w,O)(Z). (3.5)

Existence and evaluation of this conditional expectation follows easily from the
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assumption above, which entails

(Yw*(x- Z) -eE(*(- z) )f(Z) IZ

-E\ f(
E *( z)(,o)(z)

f(z)

/ *(x z)(,o)()dz (**,0)()
E

(3.6)

=(,O)(x)-q().

The condition in Equation (3.3) which ensures that the support of w,O is contain-
ed in the density f, is imperative to obtain unbiasedness. Note that we also have

" E LI(Nd) F! L(ld), with II ()II dx < . (3.7)

It follows immediately from Equation (3.2) that YI _< c+
0 < c < cxz, so that

E _<E(c/ll .E

-E(c+ IEI)P. J{f@z)}
p-

E

for some

(3.8)

for p > 0. Even if we require E IEI p < c, the last expression on the right-hand side
of Equation (3.8) is still oe if -Nd and p > 1, because the integral is inevitably
oe. In other words, if the support of w,O is all of Nd, the estimator ’(x) does not
have any moment of order p > 1. For a more precise analysis of the error, we cannot
avoid more restrictive conditions, as we have already noted before.

Let us next observe that " is well defined by Equation (3.7) and equals

(.)()_1 . ,
lf(Zk)(ayw Zk))(t

k

(w*)(t)fi(t), Nd,
(3.9)

where

Yk ei(Zk, t) tG,d. (3 10)"fi(t)" lg
f(Zk)k-1

Exploiting Equation (3.5) once more, it follows immediately that

p(t): E(t) (t)? (t), e , (3.11)
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so that z$- and are unbiased estimators of Jq and p, respectively.
Finally, let us introduce the estimator of 0 and first specify the regularized inverse

]1 of R (cf. Equations (1.8) and (1.9)). With ]1 as in Equation (2.11), we
define

lf: l+f, f E Ll(d), where 7 I 2. (3.12)

This suggests the following estimator for 0"

0M. /1-, for suitable M > 0. (3.13)

We see from Equation (3.9) that

----p (2-)d/221(), (3.14)

which indicates that the extra ill-posedness due to the preconditioning is compensated
by the properties of ’.

The estimator 0M is not in general unbiased (unless we restrict , for example, to
bandlimited signals; cf. Ruymgaart [11]). Its expectation equals

M 0 10, (3.15)

which apparently does not depend on w, and Equation (2.13) applies. It is obvious
that

0M E Ll([d) L(d) c(d), a.s., 0M Ll(d) L(d) C([d). (3.16)

Therefore, the Hausdorff distance between 0M and 0M essentially boils down to the
distance in the supremum norm.

Example: Referring to the Example in Section 1, let us first note that Equation
(3.1) is fulfilled since 0 is a simple indicator (Theorem 2.1). To see that Equation
(3.2) is also satisfied, it suffices to prove that I > 0 on R. We write, for brevity,

and observe that

1 1 *1 1 )(x), x , (3 17)A(x)-(1[ ’] [_1/2,]

/ eitxA(x) csxdx

1 ei(t- )xA(x)dx + ei(t + )XA(x)dx-2
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tE,

where sincx-(sinx)/x for x # 0, and sinc0- 1. Here we might take @-{0}, so

that Equation (3.3) is satisfied, as we have seen in Section 1.
Because w*-w, we have q- w,w,O, and the estimator for q (cf. Equation (3.4))

will be
n

(, ) Y( u)( .), (, ) e s:.
k-1

(3.19)

Note that the factor 16 is due to the fact that the design density is uniform on

[-2,2] x [-2,2]. It follows that (see Equation (3.9))
n

(v’)(, t) @(w)(, t) Y(+

n
isUk e

itV [2
27r Tt

k=l

(3.2o)

with as in Equation (3. lS).
We do not need " or " for the computation of the estimator 0M of actual

interest. In fact, we see from Equations (3.14) and (2.11) that

( 1 )2/(:x:) -h-E116 i(sU +t
yke k Vk)

OM(, ) () (t)

(1-]--)+(1- ]--])+dsdt- 16 Yk{ eisUk(
4-:, s)\

-M
(3.21)

4. Speed of Convergence in the Hausdorff Metric

Although under the current assumptions the integrated mean square error

II O^a-O II 2 is not in general well-defined (el. Equation (3.8)), we might employ

II 0-0 II s fonows from Equation (3.7). As we have argued in the introduction,
however, we prefer to use the Hausdorff metric, which for our purposes is more sensi-
tive than an integral metric. In order to obtain a speed of convergence some further
assumptions are needed. Most of these assumptions seem to be specific for the regres-
sion model, and are not needed in the errors-in-variables model, where both w and 0
are probability densities and the data X1,... Xn are a random sample from the den-
sity p w,O (see Chandrawansa, et al. [2] for d 1). It is not uncommon for convo-

lution in a regression model to assume that both the input signal and the kernel have
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bounded support, which is precisely the most important of the extra conditions that
will be needed here. In a practical situation (e.g., the picture restoration model) this
condition is naturally satisfied. We will also assume the error variable to be bound-
ed, although this condition could be weakened at the price of a lower rate. An
assumption about the degree of ill-posedness of this deconvolution problem is inevit-
able if a speed of convergence is to be obtained. We will assume the convolution
operator to be finitely smoothing. The infinitely smoothing case could be dealt with
in a similar manner.

Further assumptions: The model satisfies

where the signals in O
some known 0

(4.1)

have support contained in a hyperrectangle [-7, cr]d
The convolution kernel

for

w has support in [-or, (7] d, (4.2)

where cr can be taken to be the same as in Equation (4.1). We will assume the convo-
lution operator to be finitely smoothing, which can be described in a couple of ways
in this multivariate setting. Here, we will adopt the requirement that there exists

/21,’",//d > 0 such that

liminf 1-’[ kd= 1 tk]Uk[ (t) > 0. (4.3)
Itll Itdl---,

The larger the exponents, the smaller the rate will be that we can derive. Therefore,
one should choose the u,...,ud as small as possible. Finally, we assume the bounded-
hess of the error variable, i.e.,

IEI <_ fl < c, (4.4)

where it is not important that the number/3 be known.
It follows immediately from Equations (4.1) and (4.2) that w.O has support in

[-2or, 2cr]d. For the density f we will now take the uniform density

so that our.. estimators in Equations (3.4), (3.10) and (3.14) simplify a_.ccordingly.
Because^ 0M and 0M are continuous, moreover, we have d%(OM, OM) <_
II Ou- Oi II II II denotes the supremum norm. It follows that

d]ro(OM, O) <- II OM --OM II + d(OM, O). (4.6)

By Equations (3.15) and (2.13), we have

d:g(OM, O (), as M---oc, (4.7)

so that our main concern now will be the first term on the right-hand side in Equa-
tion (4.6). From Equations (2.12), (3.9), (3.13) and (3.14), we see that, for any
O<M<oo,



Controlling the Gibbs Phenomenon in Noisy Deconvolution 11

II O M- II oo II /lP P II oo

te[-M,M]

fi(t)- p(t) h (1 Ital)
+

k=l
M dr.

At this point, we need the following result. For any fixed 7 > 0, we have

(4.s)

sup p(t) v ---n--e, as (4.9)
[-n"/, n"/]d

The proof is very similar to the one for univariate empirical characteristic functions
in Chandrawansa et al. [2], and is deferred to the Appendix. Exploiting Equation
(4.3), which entails (z-- z1 + ...-+-d),

sup
() P() + /Uvlog n as noe, (4.10)

e [- n"l,n’l]d
V (t) a’s’O n

and choosing M: M(n) n"r, .we obtain
M(n) d

( ){0jr () }]l OM--OM ]l oo a.s0 n +’rUv/logn 1 M-(n) ds

asa.s.( rt

(4.11)

For the same choice of M, the distance in Equation (4.7) will be of order
O(n-’r/2), as n-+oo. The best choice of 7 will make the two terms on the right-hand
side of Equation (4.6) of (approximately) the same order, which leads to taking
7 1/(2 + 2d + 1). Summarizing, we have proved our main result.

Theorem 3: Under the assumptions of Section 3 and Section 4, we have

d:}fa(e"M(n),e --a.s.O(n-1/(4’+4d+2)/logn), as n--+oo, (4.12)

provided that we take M(n): n1/(2’ + 2d + 1) and where z b,1 q- q- b’d
Example: Returning once again to the examples of Sections 1 and 3, it is easy to

see from Equations (1.3)and (3.18)that w satisfies Equations (4.2) and (4.3), with

1 ’2 2, respectively. Hence, the indicator in Equation (1.2) can be recovered
from the blurred convolution at a rate O(n- 1/lSx/log n).

Remarks: Rates in the literature do not easily compare with ours. Most authors
not only employ the L2-norm, but also compute the rate over smoothness subclasses
in L2 (Fan [4]). The class of interest to us is clearly not a smoothness class, and as
mentioned above, the L2-norm is not sensitive to the Gibbs phenomenon. In fact,
without Cesgro averaging, the bias term would not converge at all in the Hausdorff
metric employed here, but it would still converge in the L2 norm.

Results closest to ours are certain sup-norm rates for input signals that are at least
continuous. In the case of estimating a one-dimensional density, whose k-th deriva-
tive satisfies a Lipschitz condition of order c, the optimal rate in the sup-norm is of

( + )/C +order n- + 1), apart from a logarithmic factor. For a survey of this
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kind of results, see Schipper [12].
Referring to our model, if 0 E Oa happens to be uniformly continuous, it has been

shown in van Rooij and Ruymgaart [11] that

d(OM’O) -( M ,as M---,oe. (4.1)

Since there will be no change in the order of magnitude of II OM(, --OM( )II in
Equation (4.11), we now arrive at the better rate

d(OM(),O) ..((n 1/(2u + 2d + )log n), as n---,oe, (4.14)

provided that we take M(n) n1/(2u + 2d + 2). In order to compare with the result in
the preceding paragraph, we should take d 1 and formally set u 0 so that we
obtain the rate n-/4, apart from a logarithmic factor. This corresponds to k- 0

1/3and c- 1 above, yielding a rate n apart from the logarithm. We cannot ex-
plain this discrepancy except by conjecturing that Cesgro averaging may not be desir-
able if it is not really necessary, like in the continuous case. It might also be possible
that other averaging techniques might lead to better results, particularly for the bias
term.

Our estimators are one-step linear estimators. Hall [] suggested that better rates
might be obtained by first eliminating the discontinuous part (change "points" can be
rather precisely estimated, see Hinkley [6]), and then estimating the remaining
smooth part. Wavelet methods, as mentioned in the introduction, might be promis-
ing, but studying wavelet expansions in the Itausdorff metric might lead to difficult-
ies.
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Appendix

In order to prove Equation (4.9), let us take if: {k.n
v+1/2jn + 1}d, 3--[0, n-7]d, and consider

1 1

2:k- Ln+j/ 1,...,

n]p: e sup (t)- p(t) >_ v ----n-., (A.1)
[-n", n3’]d

for some A > O. We obviously have

{ A’/!g n/
t (A.2)

+ max sup I(+s)--()--[#(+s)--p()]l >V--fi-- --’Pnl +pn2,
t zf sel

and according to the Borel-Cantelli lemma it suffices to show that a sufficiently large
A > 0 exists such that o

n Pnj < for j- 1, 2.
It suffices to prove the lemma for the real parts of " and p, since the proof for the

imaginary parts is similar. Hence, we let

(t): (4a)d n

n E Ylccs((t’Zl))’p(t): 4a)dzYcs((t’Z))’t d. (A.3)
k=l

Combining the boundedness of w (see Equation (3.2)) with the integrability of 0 (see
the definition of ) or conversely, with Equation (3.4), it is clear that Y assumes

values in a bounded interval independent of Nd. Hence Hoeffding’s [7] inequality
applies to Pnl and yields
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d(1/2 + 3’)
Pnl < an exp( A2b log n), (A.4)

for some a, b E (0, oc). Apparently, we have
o 1

E P,I < oc, for any > {d(21-+ 7)/b}.
n--1

(A.5)

Applying the mean value theorem and exploiting the fact that Y and Z are bounded,
we easily see that

1

sup I(t + 8)- (t)- [p(t + )- p(t)] _< cn 2, (A.6)

for some number c E (0, cx)) which is independent of t. This trivially entails that

Pn2- 0 for all n > 2, provided ,that we choose > 2c/v/log2 and Equation (4.9)
follows.


