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In this paper we demonstrate the existence, uniqueness and continuous de-
pendence of a strong solution upon the data, for a mixed problem which
combine classical boundary conditions and an integral condition, such as
the total mass, flux or energy, for a third order parabolic equation. We
present a functional analysis method based on an a priori estimate and on
the density of the range of the operator generated by the studied problem.
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1. Introduction

In the rectangle Q = (0,1) x (0,T), with | < co and T' < oo, we consider the one-dimen-
sional third order parabolic equation

2
Lv:%_%(a(%t)%):f(m,t). (1.1)

Assumption A: We shall assume that

Ja(z,t
¢y < a(x,t) < cl,—ag%’——z < ¢y,

where ¢; > 0, (i =0,1,2).
We pose the following problem for equation (1.1): to determine its solution v in Q
satisfying the initial condition
lu =v(z,0) = ®(z), z€(0,]), (1.2)
and the boundary conditions
Ov(0,t
2D — (e, teT), (13)
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d%u(0,1)
dz?

=J(t), te(0,T), (1.4)

l

/ v(z, t)de = m(t), te(0,T), (1.5)

0

where ®(z), x(t), 9(¢t), m(t), a(z,t) and f(z,t) are known functions.
The data satisfies the following compatibility conditions:

aym

2 l
x(0), 2 ‘I’(O) = 9(0), / O(z)dz = m(0).

0

The first investigation of problems of this type goes back to Cannon [12] and
Batten [2] independently in 1963. The author of [12] proved, with the aid of an
integral equation, the existence and uniqueness of the solution for a mixed problem
which combine Dirichlet and integral conditions for the homogeneous heat equation.
Kamynin [21] extended the result of [12] to the general linear second order parabolic
equation in 1964, by using a system of integral equations.

Along a different line, mixed problems for second order parabolic equations, which
combine classical and integral conditions, were considered by Ionkin [17], Cannon-van
der Hoek [13, 14], Benouar-Yurchuk [3], Yurchuk [25], Cahlon-Kulkarni-Shi [11],
Cannon-Esteva-van der Hoek [15], and Shi [23]. A mixed problem with integral con-
dition for second order pluriparabolic equation has been investigated in Bouziani [7].
Mixed problems with only integral conditions for a 2m-parabolic equation was
studied in Bouziani [6], and for second order parabolic and hyperbolic equations in
Bouziani-Benouar [8, 9].

In this paper, we demonstrate that problem (1.1)-(1.5) possesses a unique strong
solution that depends continuously upon the data. We present a functional analysis
method which is an elaboration of that in Bouziani [4, 5] and Bouziani-Benouar [10].

To achieve the purpose, we reduce the nonhomogeneous boundary conditions (1.3)-
(1.5) to homogeneous conditions, by introducing a new, unknown function u defined
as:

u(z,t) = v(z,t) — U(x, 1),

where

CU.(:c,t)::c( 5 )x(t)+ (m ——)19(t)+ m(t).

Then, the problem can be formulated as follows:

Lu=f—2U=f, (1.6)
lu = u(z,0) = ®(z) — LU = p(z), (1.7)
ou(0,t)
—= =0, (1.8)
0*u(0,t) _ 0, (1.9)

dz?
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l

/ u(z, t)dz = 0. (1.10)

0

Here, we assume that the function ¢, satisfies conditions of the form (1.8)-(1.10),

.., , !
00(0) o P00) _ 10 / o(z)dz = 0. (111)
0

817 61;

Instead of searching for the function v, we search for the function u. So, the strong
solution of problem (1.1)-(1.5) will be given by: v(z,t) = u(z,t) + U(z, t). 0
2. Preliminaries
We employ certain function spaces to investigate our problem. Let L2(0 D),
L%0,T; L%(0,1)) = L*(Q) be the standard functional spaces, || - || 0,0 @and (+,)o o

denote the norm and the scalar product in L*(Q), L2(0,1) be the weighted space of
square integrable functions on (0,/) with the finite norm

[| v L2 2(q, l) / (l—x)u dz,

B%(O, 1) be the Hilbert space defined, for the first time in [6], b
BYO,1): = {u/T ,u € L20,1)},

l
where I u: = !u(f,t)dﬁ, and let L*(0,T; B%(O,l)) be the space of all functions which

are square integrable on (0,7") in the Bochner sense, i.e., Bochner integrable and
satisfying
/ || w || dt < oo.

Problem (1.6)-(1.10) is equivalent to the operator equation
Lu=49%,

where ¥F = (f,p),L =(L,¢) with the domain D(L) consisting of all functions

2. 43 2
2 . dudu 97u 98°u 97u 2
u € LY(Q) with F5,3%, 222 5.3 B0 6 o “>€ L*(Q) and (u) satisfying conditions

(1.8)-(1.10); the operator L is on B into F; B is the Banach space obtained by the
completion of D(L) in the form

Ou(z, 1) ¥
NS e P
L2(0 T;Bio, )0 <r<Th 9 lL2(0.p)
and F is the Hilbert space of the vector-valued functions F = (f, ) with the norm

lulll=
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8302

Oz

1515 = 17130+ -
L2(0,1)

Let L be the closure of the operator L with the domain D(L).
Definition: A solution of the operator equation

Lu=¢%

is called a strong solution of the problem (1.6)-(1.10). "
We now introduce the family of operators p~ 19 and (pe_l> 0 defined by the
formulas

t
1
p. 0= %/ eE(T_t)H(x, r)dr, €>0,
0

T

* 1
(p€_1> 0= —%/ €= Tg(z, 7)dr, €>0,
t

which we use as smoothing operators with respect to ¢. These operators provide the
solutions of the problems

eap§;19+pc_16=0, (2.1)
p.10(z,0)=0 (2.2)
and N
- GM +(po 1)*0 =9, (2.3)
(o7 1)*a(x, T) =0 ’ (2.4)

respectively. They have the following properties.
Lemma 1: For all § € L%(0,T), we have
(@) poto(z,t) € HY(0,T) and p” '0(z,0) = 0;

* *
(@) (oo 1) 0(z,t) € B0, T) and (p. 1) 0(z,T) = 0.
Lemma 2: For all  and all h in L2(Q), we have

/ p W0hdzdt = / 9(p;1) hdedt.

Q Q
3
This lemma states that the operators (pe_ 1) are conjugate to p_~ 1 a
Lemmas 1 and 2 are proved directly by using the definitions of operators p.~ 1 and
%
(). :
Letma 3: For all § € L2(0,T), we have

e 13—3 = %PJ 10+ ¢e ™/ 0(z,0).
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For the proof of the above lemma, it suffices to integrate by parts the expression

-106 0
€ _ar’ 9
Lemma 4: For all 6 € L*(0,T'), we have
(2)
T T
-1
/ " Pe 0|L,(0,l)dt < / 19110, (0,1t
0 0
and
T
/ p 10— alL =0 for e=0;
0
(1)
T 9 T
-1\ 2
/ H(pf ) b L’»(O»l)‘“ < / 19115, (0,1t
0 0
and
T . )
/ H(pc_l) 0—6 lo’ (O,I)dt_’o for e—0.
0
Proof of Lemma 4 is similar to the proof of the lemma of Section 2.18 in [1]. a
We easily get the following lemma.
Lemma 5: If

At)u = -<a(:c t)%) (2.5)

AWp = p AT Hepl M A (T,

then

where A'(t) is the operator of form (2.5) whose coefficient is the first derivative with
respect to t of the corresponding coefficient of A(t).

3. A Priori Estimate and Its Consequences

Theorem 1: Under Assumption A, there exists a positive constant ¢, independent of
u, such that

lullp<cll Lull g (3.1)
Proof: We multiply equation (1.6) by an integro-differential operator

20u
Mu (l—z)‘il'wat—?'fmat

and integrate over 7, where Q™ = (0,{) x (0,7). Consequently,

_ au _ 8u _ 6“ 20“
J: (3.2)

QT
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/ / —(a(:c e (1 —2)7 .2 Qudadt +2 / / 4((1(@ t)au qgg’;d dt.
We know from the integration by parts that

/ / Ou(t - )7, Pdadt = -] / / 24 d:cdt (3.3)

Ouer20u
—2/ 6tq”8td dt_Q// xat d:cdt (3.4)
QT

_ / / %(a(m,t)%)(l—m)“]‘xg;‘dmdt / (- z)a(z, ﬂ(au(x ”)
QT 0
! { I(1~x)a(z,0)(g )d -1 / (-2B 0 g (35)
—2/ /a(z t)g“ gzt‘d:cdt
o

/ / —(a(a; 008 )g2084041 = 5 / / az, )2 Py, (3.6)
QT

Substituting (3.3)-(3.6) into (3.2), we obtain
! 2
Ou(x, T
3// ﬂ’z‘g‘t‘ dxdt+%/ (l—z)a(x,r)( ugw )) dz
0
d ) 2
= //f((l—x)qxaltt 2‘3'3:61; d:cdt+ /(l z)a(z, 0)( )d:l: (3.7

QT

//(1— )“(‘” au)d dt.

Further, by virtue of inequality (2.2) in [6] and the Cauchy inequality, the first
integral on the right-hand side of (3.7) is estimated as follows

/ / (l—z)ﬂ’zm—m’za“)dxdt

g%//fzd:cdt+// rat d:cdt (3.8)
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Substituting (3.8) in (3.7) and using Assumption A, we get

oul? Ou(z, 1) 2
"a? ) (3.9)
120, 7 B)(0,1)) L)
2
<oy (1712 4 ]2 +eq| g
= 0,Q Ox Lf,(o,l) 4 0z 20,7 L2 (0 l)),
i) El o ’
where
max(31%,¢;)
€y = —————
nd min(1,¢,)
—_ ‘%
€4 min(1,¢y)’

We eliminate the last term on the right-hand side of (3.9). To do this we use the
following lemma.

Lemma 6: If f.(r) (i=1,2,3) are nonnegative functions on (0,T), fi(7) and
fo(T) are integrable on (0,T), and f5(7) is nondecreasing on (0,T) then it follows,
from

qrf]+f2Sf3+cq1-f2a

that
T, f1+fy <exp(er).fs,
where
,.
I.f[;= / fl-(t)dt, (i=1,2).
0
The proof of the above lemma is similar to that of Lemma 7.1 in [16]. O

Returning to the proof of Theorem 1, we denote the first term on the left-hand
side of (3.9) by f,(7), the remaining term on the same side on (3.9) by f,(7), and
the sum of two first terms on the right-hand side of (3.9) by f5(7). Consequently,
Lemma 6 implies the inequality

2
au 2 ('?u(x,'r)
at 20, 7 B0,y 10z ez, (3.10)
2
c4T 2 a_<‘0
<ege (Hf”o,QT'l' Oz Lg(O,l))

2

L?,(o,l))’

¢y = cgexp(cyT).

dp
oz

<c, (ufn%m\

where

Since the right-hand side of the above inequality does not depend on 7, in the left-
hand side we take the upper bound with respect to 7 from 0 to 7. Therefore, we
obtain inequality (3.1), where ¢ = c},/z.

Proposition 1: The operator L from B into F is closable.

The proof of this proposition is analogous to the proof of the proposition in [7]. 0O
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Since the points of the graph of L are limits of the sequences of points of the graph
of L, we can extend (3.1) to apply to strong solutions by taking the limits.
Corollary 1: Under Assumption A, there is a constant ¢ > 0, independent of u,
such that
lull p<cliZullp, Vue D). (3.11)

Let R(L) and R(L) denote the set of values taken by L and L, respectively.
Inequality (3.11) implies the following corollary.
Corollary 2: The range R(L) is closed in F, R(L)=R(L) and L~ ! = 1,

where L~ is the extension of L~ by continuity from R(L) to R(L).

4. Solvability of the Problem

Theorem 2: Let Assumptzon A be satisfied and let 6; and ;gt be bounded. Then

for arbitrary f € L}(Q) and E L%(0,1), problem (1.6)-(1.10) admits a unique strong

solutionu=L " 'F=L" l‘f.

Proof: Corollary 1 asserts that, if a strong solution exists, it is unique and depends
continuously on ¥. (If u is considered in the topology of B and ¥ is considered in the
topology of F.) Corollary 2 states that, to prove that (1.6)-(1.10) has a strong solu-
tion for an arbitrary ¥F = (f,¢) € F it is sufficient to show the equality R(L) =
To this end, we need the following proposition.

Proposition 2: Let the assumptions of Theorem 2 hold and let Dy(L) be the set of
all u € D(L) vanishing in a neighborhood of t =0. If, for h € Lz(Q) and for all u €
Dy(L), we have

(Lu, h)LZ(Q) = 0, (41)

then h vanishes almost everywhere in Q).
Proof of the proposition: We can write (4.1) as follows

/ / g—‘t‘-hdxdt:: / / A(t)u - hdzdt. (4.2)
Q Q

Replacing u by the smooth function pe"1

that

0
/ / Pe -hdzdt = / /pc_ Au-hd:cdt+€/ /pe—lA'pC_lu-hd:L'dt. (4.3)
Q Q

Applying Lemma 3 to the left-hand side of (4.3), and Lemma 2 to the obtained

equality, we obtain
du ( -1\
/ il (pC )hd:cdt

/ / Au hdxdt+e / / Ap 1) hdzdt.

The standard 1ntegrat10n by parts with respect to t in the left-hand side of (4.4)

u in (4.2), this yields, from Lemma 5,

(4.4)
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leads to

B(p_
//u- 7i ———Ldzdt = //Au hda:dt
+c/ /A’pE tu( 1) hdzdt. (4.5)

The operator A(t) with boundary conditions (1.8)-(1.10) has, on L%(0,1), the con-
tinuous inverse. Hence,

Ap  tu=Ap A" Au= A Au. (4.6)

Thus, from (4.5) and (4.6), we obtain

// da:dt— //Au hd:cdt+e/ /A Au hdwdt
(4.7)
= //Au.(1+eA:)(p;1) hdzdt.
Q

Defining A ~(t), we apply operator ‘J'i to both sides of A(t)u=g. After this
operation, we get

T
Ou__ 1 _
o= i [ e-etenie (48)
0
We now integrate each term of (4.8) over [0, z] with respect to {&. Consequently,

P 13
A Y(t)g = [ ey [ (€ = n)g(n, t)dn + cg. (4.9)

To compute the constant cg in (4.9), we multiply (4.8) by (I — ) and integrate the
obtained equation over [0,!]. Therefore,

/ (1 - )0 = / L / (= — €)o(c, g (410)

Integration by parts of the left-hand side of (4.10), gives

] G2 [ - ontenae.

Note that for the determination of A, and A7, the corresponding calculations are
not difficult, but they are long. Therefore, we only give the final results of the compu-
tations:
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_(Ba(z,t) i 6a(::: &) _y 1 Oa(z,7) da(z,t) _; 1
ACAu_( 61}26t pe al’at pE (.’E,T) 612 + at pE (a(x’fr))z

da(e, )\ _dae) 1 e\ 1 [ [ aen
( Oz ) at e la(x,T) Oz /a(m,v')(l(m §)Au(¢, )df) (4.11)

2 a\xr a\r, T 1‘
i (a gm(g,tt)pf_l = (Bt’ t)pf— = Eﬁx, ) a(xl, r))d(ml, 7) ( Z Au(g’T)dE)

3“(‘” ) 1 1
¢ a(z,7)

a pe_l)h mlt_)( )*0a(zr _1 h+ / _(g,t){ -1) *38%6&;)

da(e, ) Y o%ale.7) da(6, )Y ( , —1y2e(6)
2ty oe (P ) e ”(a(gt))z( RE )( )=

+a(€1,t) 6a<(9€5’t) Pe *6(1(5,7')}( “1 h(é,r)d§ (4.12)

- *02a(§,r) 1 6a(£,t)( _ *Ba(f,r) _
+2/a(£t( ) ooe Taen o\ Y h(ﬁ»r)dﬁ

The left-hand side of (4.7) shows that the mapping [ f Au-K ( ) hdzdt is a

continuous linear functional of u, where

Koo ) h=(1+en?) (o7t ) R (4.13)

Au;

Consequently, this assertion holds true, if the function K, has the following properties
0K, _ a3K

2 T e 2
e € (@), S € 1(Q) and Tt € 1A(Q),
and satisfies the following conditions:
oK ’K 0*K
K| =0, —6—-5 =0, —* =0 and —* =0. (4.14)
=1 T z =1 Oz r =0 Oz =1

From (4.12), we deduce that the operator A} is bounded on L*(Q). Hence, the
norm of €A} on Lz(Q) is smaller than 1 for sufﬁc1ently small €. So, the operator K,
has the contlnuous inverse operator in L? (@).

From (4.12) and (4.14), we deduce that

1 -1\ 0a(z,T) -1\ _
(I-{-em(pc )—8;— P )hlzzl_o, (4.15)
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(12 ooy A )

=0, (4.16)
o =1
1 _1\"0a(z,T) 32(/)6—1)*71
<I * ea(T’t)(pE ) or ) 9zr | _ . =0, (4.17)
(reiefor T eI L

'z =1

For each fixed = € [0,!] and sufficiently small €, the operator

<I+€a_(_xl’_t)(p€—1)*6a(aa:r))(p€-1>*

has the continuous inverse operator on L%(0,T"). Hence, (4.15)-(4.18) imply that

_o o)

.G —0
a:—l— Ox =1 ’ 6.’!:2 1,-:0—— ’
02(/’5— 1) h
—_—— =0.
2
Oz =1
In other words, (4.15)-(4.18) imply that
o*h o%*h
h = =0, =5 =0, = =0. 4.19
e =1 "ozl _, 8m2x=0 dz? =1 (4.19)
Set
= ((1 ~2)T - 29%2), (4.20)
Differentiating (4.20) with respect to z, we obtain
Oh (72— (I-2)s) € IX(Q),
2
. ? - (-0 e 1*Q), (4.21)
Oh = - 2(1-0)%)e Q).

From (4.20), (4.21), and (4.19), we deduce that the conditions

o

T2 =0,92=0,(I- a:)g—;—

T 0,(1 - z);?-% (4.22)

are met.
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In (4.2), we replace h by its representation (4.20). Consequently,

/ /Bu((l —z)7,2— 2€J’2z)dxdt / /A(t)u((l -2)7 2 — Qﬂ'iz)dmdt

//a(w t)au(l—m) d:cdt

Substituting (2.3) in (4.23) (with # = 2) and integrating by parts (with respect to
z), by taking into account (4.22), we obtain .
o)

P z
/ /%((1 —2)T 2 —2922)dzdt = 6/ /a(x,t)%(l — ) gy it
0 Q

o (4.24)
//a(x t) ( ) ————dzdt.

t

u= “J't<ec7r(p€' 1 >*z) = / eC7T( p. 1 )*zdr (4.25)
0

in relation (4.24), where ¢, is a constant such that c,cy—c, — c%/2co >0, and inte-
grating by parts with respect to ¢ on each term of the right-hand side of the obtained
equality, we obtain, by taking into account (2.4) and due to u € Dy(L) that

82 p—l -
e/ /(l—x)a(:c,t) g—%-——%—-—&——)——dzdt
Q

* \2
= —e/ /(l—w a(.z' t)( ( E;l) Z) dxdt (4.26)
) e T
Q

(4.23)

Putting

ot Oz Oz

//I—x)amt) (c )* ——t—drdt

//(1——r "oz, )02 £ o2 L drdt (4.27)

=~—/(l-z)e i T)(a_”(g;_T_)>
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-1 / / (I—o)e” °7’(C7a(x, -2 t)> (92 dadt
Q

Elementary calculations, starting from (4.26) and (4.27), yield the inequalities

//(l z)a(z, t) ( 520 )Zd:cdt

€C -C
<1 / / (1=z)e ™7 g") dzdt, (4.28)

-1 *z
— / /(l—a:)a(m,t)g—z -%z—dxdt
Q
< ——%(c7c0—c2 602)/ /(l—:c)e (gu) dzdt, (4.29)

Substituting (4.28) and (4.29) into (4.24), we get

and

/ / E_ Z((I —z)T 2z~ 2°J’22)d:ndt

€c
< —%— (c7c0—c2 2)/ /(l—x)e gu) dzdt.

Hence, for sufficiently small ¢ < 1, we have

/ / c7 z((l —2)T 2 —2922)dzdt < 0. (4.30)

Passing to the limit in the above inequality and integrating by parts with respect
to z, we obtain, by Lemma 4, that

/ /ec7t(?rxz)2d:cdt <0
Q

and thus z = 0. Hence, h = 0, which completes the proof. O

Now, we return to the proof of Theorem 2. Since F' is a Hilbert space, we have
that R(L) = F is equivalent to the orthogonality of vector (%,h;) € F to the set
R(L), i.e., if and only if, the relation

dtu Ohg
(Lu,h) +< ) =0, (4.31)
0,Q 0z’ Oz 12(0,1)
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where u runs over B and (h,f) € F, implies that # =0 and hy = 0.
Putting u € Dy(L) in (4.31), we obtain
(LU, h)O,Q = 0.

Hence Proposition 2 implies that # = 0. Thus, (4.31) takes the form

((%u Ok

&= =0, ue D(L).
Oz’ Oz >L¢2,(0,I)

Since the range of the trace operator ¢ is dense in the Hilbert space with the norm

oh
l—aFO 201y from the last equality, it follows that fiy = 0 (we recall that % satisfies
L. (0,1
the compatibility conditions (1.11)). Hence, R(L) is dense in F. O
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