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In this paper we demonstrate the existence, uniqueness and continuous de-
pendence of a strong solution upon the data, for a mixed problem which
combine classical boundary conditions and an integral condition, such as
the total mass, flux or energy, for a third order parabolic equation. We
present a functional analysis method based on an a priori estimate and on
the density of the range of the operator generated by the studied problem.
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1. Introduction

In the rectangle Q (0, l)x (0, T), with < oe and T < oe, we consider the one-dimen-
sional third order parabolic equation

Ot Ox2 a(x, t) f(x,t). (1.1)

Assumption A: We shall assume that

Oa(x,t)
co < a(x, t) <_ Cl, Ot <-- c2’

where c > O, (i O, 1, 2).
We pose the following problem for equation (1.1)" to determine its solution v in Q

satisfying the initial condition

, v(, o) (), e (o, ), (1.2)

and the boundary conditions

Ov(O,t) x(t), G (O,T), (1.3)
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O:v(O,t) o(), (o, ), (1.4)

v(x, t)dx
0

-.(t), t (0, T), (1.5)

where O(x), x(t), O(t), re(t), a(x, t) and f(x, t)are known functions.
The data satisfies the following compatibility conditions:

() /o(o) x(o), o(o), (.)d. n(O).Ox Ox2

0

The first investigation of problems of this type goes back to Cannon [12] and
Batten [2] independently in 1963. The author of [12] proved, with the aid of an

integral equation, the existence and uniqueness of the solution for a mixed problem
which combine Dirichlet and integral conditions for the homogeneous heat equation.
Kamynin [21] extended the result of [12] to the general linear second order parabolic
equation in 1964, by using a system of integral equations.

Along a different line, mixed problems for second order parabolic equations, which
combine classical and integral conditions, were considered by Ionkin [17], Cannon-van
der Hoek [13, 14], Benouar-Yurchuk [3], Yurchuk [25], Cahlon-Kulkarni-Shi [11],
Cannon-Esteva-van der Hoek [15], and Shi [23]. A mixed problem with integral con-
dition for second order pluriparabolic equation has been investigated in Bouziani [7].
Mixed problems with only integral conditions for a 2m-parabolic equation was
studied in Bouziani [6], and for second order parabolic and hyperbolic equations in
Bouziani-Benouar [8, 9].

In this paper, we demonstrate that problem (1.1)-(1.5) possesses a unique strong
solution that depends continuously upon the data. We present a functional analysis
method which is an elaboration of that in Bouziani [4, 5] and nouziani-nenouar [10].
To achieve the purpose, we reduce the nonhomogeneous boundary conditions (1.3)-

(1.5) to homogeneous conditions, by introducing a new, unknown function u defined
as"

,,(, t) (, t) (, t),
where

Then, the problem can be formulated as follows:

o(t) + .(t).

Lu f Lq.L f (1.6)

o(0,t)
(1.7)

--0, (1.9)

0, (1.8)
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u(x, t)dx O.
0

(1.10)

Here, we assume that the function , satisfies conditions of the form (1.8)-(1.10),
i.e.,

O,(o) = 0
02(0)

0 and / (x)dx 0 (1 11)Oz Ox
0

Instead of searching for the function v, we search for the function u. So, the strong
solution of problem (1.1)-(1.5) will be given by" v(x,t)- u(x,t)+ q_l.(x,t). E]

2. Prehminaries

We employ certain function spaces to investigate our problem. Let L2(0,/),
L2(0, T; n2(0,1)) L2(Q) be the standard functional spaces, I] I] o,Q and (., ")O,Q
denote the norm and the scalar product in L2(Q), L2(O,1) be the weighted space of
square integrable functions on (0,1) with the finite norm

II II 2
2 (o ,)" J (g )2d’

0

B(0, l) be the Hilbert space defined, for the first time in [61, by

B(O. )" {./%u e (o. ) }.

where zfxu: f u(, t)d, and let L2(O, T; BI(o, 1)) be the space of all functions which
x

are square integrable on (0, T) in the Bochner sense, i.e., Bochner integrable and
satisfying

T
2 dt<cx.II , II (o,)

0

Problem (1.6)-(1.10) is equivalent to the operator equation

where =(f,p),L=(,e) with the domain D(L) consisting of all functions

u E L2(Q) with Ou Ou O2u oau 02 03u u E L2(Q) and (u) satisfying conditionsOt ’Ox’ Ox2’ Ox3’ OtOx’ OtOx2

(1.8)-(1.10); the operator L is on B into F; B is the Banach space obtained by the
completion of D(L) in the form

iI0 11 +sup ii0 , ,  11- L2(O,T;B(O,I))O . T OX L(O,l)
and F is the Hilbert space of the vector-valued functions ff (f, ) with the norm
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Let L be the closure of the operator L with the domain D(L ).
Definition: A solution of the operator equation

Lu-

is called a strong solution of the problem (1.6)-(1.10). ,
We now introduce the family of operators p 10 and (p-1)0 defined by the

formulas

p 10 l_( i el-d(r t)O(x’ v)dr, e > O,
0

T

which we use as smoothing operators with respect to t. These operators provide the
solutions of the problems

and

(gfle-- 10
r Oq -t- Pc- 10 0, (2.1)

fl-10(X, 0)--0 (2.2)

)* ),O(p-1 0- 0t ),-t-(p--1 0--0,

(,o<-- o(,, T) 0 (2.4)

respectively. They have the following properties.
Lemma 1" For all 0 L2(0, T), we have
(i) fl-- 10(X, t) E HI(o, T) and p[- 10(x, O) O;

Lii) (p2 1)10(X,t) E HI(O,T)and(fl:l)*o(x,T)-O.
emma r all 0 and all tt in L2(), havwe

l /
This lemma states that the operators Pc-- are conjugate to p-1.
Lemmas 1 and 2 are proved directly y using the definitions of operators p 1 and

0
Lemma 3: For all 0 L2(0, T), we have

fl-- (O -t 10 }e tie ,0).0 PJ +- O(x
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For the proof of the above lemma, it suffices to integrate by parts the expression
-100
P 0--g"
Lemma 4: For all 0 G L2(0, T), we have
(i)

and

T T

j <- j IiO II
o o

T

i I1’:’- ’’--+
o

(ii)

and

T T

Proof of Lemma 4 is similar to the proof of the lemma of Section 2.18 in [1].
We easily get the following lemma.
Lemma 5: If

then
A(t)p[- 1 p[- 1A(7) + cp- 1A’(v)p- 1,

(2.5)

where A’(t) is the operator of form (2.5) whose coefficient is the first derivative with
respect to t of the corresponding coefficient of A(t).

3. A Priori Estimate and Its Consequences

Theorem 1"
u, such that

Under Assumption A, there exists a positive constant c, independent of

II- II B < II L II F.
Proof: We multiply equation (1.6) by an integro-differential operator

Ou 20umu (1- x)x- 2zO
and integrate over Qr, where Qr (0, l) x (0, v). Consequently,

-( --- x-O-{axd
Q Q Q (.2)
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We know from the integration by parts that

(3.3)

2

lj (0.) dx 1/2i (.2 (1-x)a(x,O) -x) Ot
o Qr

(3.4)

(3.6)

Substituting (3.3)-(3.6) into (3.2), we obtain

Qr o

Further, by virtue of inequality (2.2) in [6] and the Cauchy inequality, the first
integral on the right-hand side of (3.7) is estimated as follows

20U)dxdt
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Substituting (3.8)in (3.7) and using Assumption A, we get

L2(0, r; B12(0, l)) -- Ox L2(O, l)

2 Q7-+
O

+C4
2(0,/))

c f [[ o, r(o,) 2(o,;
where

max(3/2, c

min(1, c0)

(3.9)

c2
C4 -min(1,c0)"

We eliminate the last term on the right-hand side of (3.9). To do this we use the
following lemma.
Lemma 6: If fi(7") (i: 1,2,3) are nonnegalive functions on (0, T), fl(7-) and

f2(7") are integrable on (0, T), and f3(7") is nondecreasing on (0, T) then it follows,
from

T7-f + f2 <- f3 + cT7-f,
that

Y + _< x(c).,
where

7"f / fi(t)dt, (i-1,2).
o

The proof of the above lemma is similar to that of Lemma 7.1 in [16]. l:i
Returning to the proof of Theorem 1, we denote the first term on the left-hand

side of (3.9) by fl(r), the remaining term on the same side on (3.9) by f2(v), and
the sum of two first terms on the right-hand side of (3.9) by f3(r). Consequently,
Lemma 6 implies the inequality

-0-{ L2(O,7";BI(o,t)) + Oz L2(o,t) (3.10)

c4[’_ o,2 + 112 )(o, )

where
c5 c3exp(c4T).

Since the right-hand side of the above inequality does not depend on r, in the left-
hand side we take the upper bound with respect to - from 0 to T. Therefore, we
obtain inequality (3 1) where c- c1/2

Proposition 1" The operalor L from B into F is closable.
The proof of this proposition is analogous to the proof of the proposition in [7].
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Since the points of the graph of L are limits of the sequences of points of the graph
of L, we can extend (3.1) to apply to strong solutions by taking the limits.

Corollary 1" Under Assumption A, there is a constant c > O, independent of u,
such that

I] u I] B -- c II L u II F, Vu G D(L). (3.11)

Let R(L) and R(L) denote the set of values taken by L and L, respectively.
Inequality (3.11) implies the following corollary.
Corollary 2: The range R() is closed in F, R(L)-R() and ,-1_ L-1

where L-1 is the extension of L-1 by continuity from R(L) to R(L).

4. Solvability of the Problem

Theorem 2: Let Assumption A be satisfied and let Oa and be bounded. Then
o L2a(O 1), roblem (1 6)-(1 10) admits a unique strongfor arbitrary f E L2(Q) and-x p

solution u - ay L- 13.
Proof: Corollary 1 asserts that, if a strong solution exists, it is unique and depends

continuously on 3. (If u is considered in the topology of B and is considered in the
topology of F.) Corollary 2 states that, to prove that (1.6)-(1.10) has a strong solu-
tion for an arbitrary Y- (f,o) F it is sufficient to show the equality R(L)- F.
To this end, we need the following proposition.

Proposition 2: Let the assumptions of Theorem 2 hold and let Do(L be the set of
all u D(L) vanishing in a neighborhood of t O. If, for h L2(Q) and for all u

Do(L), we have

(u,h)L2(Q)-0, (4.1)

then h vanishes almost everywhere in Q.
Proof of the proposition: We can write (4.1) as follows

//-OU.hdxdt- //A(t)u.hdxdt. (4.2)

Replacing u by the smooth function p u in (4.2), this yields, from Lemma 5,
that

-1

Ot
Q

-1XA p u. hdxdt. (4.3)

Applying Lemma 3 to the left-hand side of (4.3), and Lemma 2 to the obtained
equality, we obtain

Q (4.4)

1)* 1)*
Q Q

The sandard integration by parts with respect to in the left-hand side of (4.4)
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leads to

hdxdt

Q A

lu hdxdt. (4.5)

The operator A(t) with boundary conditions (1.8)-(1.10) has, on L2(0,/), the con-

tinuous inverse. Hence,

-1u 1A p A’p A 1Au- AAu. (4.6)

Thus, from (4.5) and (4.6), we obtain

Defining A-l(t), we apply operator 2 to both sides of A(t)u- g.
operation, we get

O__u_u 1 i (x )g(, t)d.Ox --a(x,t)
o

After this

(4.8)

We now integrate each term of (4.8) over [0, x] with respect to . Consequently,

A l(t)g a(c, t) ( r)g(, t)d0 + c6. (4.9)
0 0

To compute the constant c6 in (4.9), we multiply (4.8) by (1- x) and integrate the
obtained equation over [0,/]. Therefore,

x

a(x, t) i (x )g(, t)d.
o o o

(4.10)

Integration by parts of the left-hand side of (4.10), gives

X

1 S (l- x)dx I (x- )g(, t)d.
o o

Note that for the determination of A( and A2, the corresponding calculations are

not difficult, but they are long. Therefore, we only give the final results of the compu-
tations"
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(a(x, "r))2

)(i
x

((ga(x,’))
2

Oa(x,t)p[-1 1 02a(x, r) 1
\ gt a(x, ’) (gx2 a(x, r)

0

(4.11)

( Oa(x, lOa(x T) 1 11(92a(x, 1 t)
p[_ Au(,+2 \ OxcOt p Ot Ox a(x, ’) a(x, r)

o

A p h-

(a(x, t) 1
Ot p- --, v

1 cga(,t)(p[-1*c92a(,,r 1 (ga(, t) )2( *

a(, t) o 00 + 2(a(,t)): O J ) 0a(,3_7 )

1 Oa(, t)(p__ 1 )*Oa(, T) }(/9:1 )*h(, v)d (4.12)+a(,t) O Or

i 1 ((p--l’*O2_a(,_r) 1 Oa(,t)(pj l*Oa(,V)pj1 *

x

The lea-hand side of (4.7)shows that the mapping f fAu. K(p21 dd is a
continuous linear %notional of u, where

1).K(pC -(I + cA:)(p . (4.1a)

Consequently, this assertion holds true, if the function K( has the following properties

(gKe L2
(92K (93K

Ox E (Q),
Ox2 G L2(Q)and

oX3
G L2(Q),

and satisfies the following conditions:

O, OKe 0 0 and 0. (4.14)gelx-I x--l Ox2 x-O C9x2 x-’l

From (4.12), we deduce that the operator A is bounded on L2(Q). Hence, the
norm of cA on L2(Q) is smaller than 1 for sufficiently small c. So, the operator K
has the continuous inverse operator in L2(Q).

From (4.12)and (4.14), we deduce that

I+a(x,t) (9" p--1 l=t-o, (4.15)



Third Order Parabolic Equation With a Nonlocal Boundary Condition 191

I + ea(, t)( pJ 1
07" Ox x

( 1. t)(pj )*Oa(x,7")) 02(p[-1)*h
I + ea(x, 07" Ox2

-0, (4.16)
=l

-0, (4.17)
=0

I-- (xl, t)( *

a Or Ox2
-0. (4.18)

For each fixed x E [0, l] and sufficiently small , the operator

e 1 l)*0a(;c, 7") 1)*
has the continuous inverse operator on L2(0, T). Hence, (4.15)-(4.18) imply that

0 p-I h 02 pl
pl h]x=l-- 0, Ox Ox2X: x:O

=l

In other words, (4.15)-(4.18)imply that

Set

(4.19)

(4.20)

Differentiating (4.20) with respect to x, we obtain

Oh
0-- (zz -(l- x)z) L2(Q),

02h --(1 Oz L2

Ox x)- (Q),

OZ3

(4.21)

From (4.20), (4.21), and (4.19), we deduce that the conditions

Oz] o ’(-z]rz o,z o, (-) x
(4.22)

are met.
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In (4.2), we replace h by its representation (4.20). Consequently,

(4.23)

Substituting (2.3) in (4.23) (with 0- z) and integrating by parts (with respect to
x), by taking into account (4.22), we obtain

1 )*z02(p
dxdti i((.-x)xz-2J’z)dxdt --i i a(x’t)(l-x)

Putting

/ I)*z
dxdt.Ox

1 1 )*
0

(4.24)

(4.25)

in relation (4.24), where c7 is a constant such that c7co- c2 -c/2co >_ O, and inte-
grating by parts with respect to t on each term of the right-hand side of the obtained
equality, we obtain, by taking into account (2.4) and due to u E Do(L that

(- OxOt .dxdt

i/- (- )’a(, ) dd

tOu Ou dxd(l x)e CTta,(x .Ox OxOt (4.27)

2 (,T) dx

0
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Elementary calculations, starting from (4.26) and (4.27), yield the inequalities

02(p- l )*z
dxdtOxOt

and

ec cTt{Ou)dxdt,<- /
Q,

1)*z
dxdtOxOt

<_- cco c2

Substituting (4.28) and (4.29)into (4.24), we get

(4.28)

(4.29)

Hence, for sufficiently small _< 1, we have

l ’ (4.30)

Passing to the limit in the above inequality and integrating by parts with respect
to x, we obtain, by Lemma 4, that

ecT’(xz)2dxdt
<_ 0

and thus z- 0. Hence, h- 0, which completes the proof.
Now, we return to the proof of Theorem 2. Since F is a Hilbert space, we have

that R(L)-F is equivalent to the orthogonality of vector (h, ho)E F to the set
R(L), i.e., if and only if, the relation

(u,h)o,Q +(Ou Oh) =0, (4.31)OX OX L2(0 l)
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where u runs over B and (, h0) E F, implies that tt 0 and 0 0.
Putting u Do(L in (4.31), we obtain

(u, )0, 0.

Hence Proposition 2 implies that h 0. Thus, (4.31) takes the form

(Ou Oh__o O, u D(L).(X’ OX ]L(O,l)

Since the range of the trace operator is dense in the Hilbert space with the norm

""11-]] 2 ,from the last equality, it follows that 0 =0 (we recall that t0 satisfies
L.(O,l)

the compatibility conditions (1.11)). Hence, R(L)is dense in F. [:]
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