
Journal of Applied Mathematics and Stochastic Analysis, 13:3 (2000), 207-238.

BSDEs WITH POLYNOMIAL
GROWTH GENERATORS

PHILIPPE BRIAND
Universit Rennes 1, IRMAR
35 02 Rennes Cedex, France
pbriand@maths, univ-rennesl.fr

RENt CARMONA
Princeton University, Statistics 8J Operations Research

Princeton, NJ 085 USA
rcarmona @chelsea.princeton. edu

(Received July, 1998; Revised July, 1999)

In this paper, we give existence and uniqueness results for backward stocha-
stic differential equations when the generator has a polynomial growth in
the state variable. We deal with the case of a fixed terminal time, as well
as the case of random terminal time. The need for this type of extension
of the classical existence and uniqueness results comes from the desire to
provide a probabilistic representation of the solutions of semilinear partial
differential equations in the spirit of a nonlinear Feynman-Kac formula.
Indeed, in many applications of interest, the nonlinearity is polynomial,
e.g. the Allen-Cahn equation or the standard nonlinear heat and SchrSdin-
ger equations.
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1. Introduction

It is by now well-known that there exists a unique, adapted and square integrable
solution to a backward stochastic differential equation (BSDE for short) of type

T T

Yt--t- / f(s, Ys, Zs)ds- J ZsdWs, O<_t<_T,

provided that the generator is Lipschitz in both variables y and z. We refer to the
original work of E. Pardoux and S. Peng [13, 14] for the general theory and to
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N. E1 Karoui, S. Peng and M.-C. Quenez [6] for a survey of the applications of this
theory in finance. Since the first existence and uniqueness result established by E.
Pardoux and S. Peng in 1990, many authors including R.W.R. Darling, E. Pardoux
[5], S. Hamadene [8], M. Kobylanski [9], J.-P. Lepeltier, J. San Martin [10, 11], see

also the references therein, have tried to weaken the Lipschitz assumption on the
generator. Most of these works deal only with real-valued BSDEs [8-11] because of
their dependence on the use of the comparison theorem for BSDEs (see e.g., N. E1
Karaoui, S. Peng, M.-C. Quenez [6, Theorem 2.2]). Furthermore, except for [11], the
generator has always been assumed to be at most linear in the state variable. Let us
mention nevertheless, an exception: in [11], J.-P. Lepeletier and J. San Martin
accommodate a growth of the generator of the following type: C(1 + Ixl log

On the other hand, one of the most promising field of applications for the theory
of BSDEs is the analysis of elliptic and parabolic partial differential equations (PDEs
for short) and we refer to E. Pardoux [12] for a survey of their relationships. Indeed,
as it was revealed by S. Peng [17] and by E. Pardoux, S. Peng [14] (see also the
contributions of G. Barles, R. Buckdahn, E. Pardoux [1], Ph. Briand [3], E. Pardoux,
F. Pradeilles, Z. Rao [15], E. Pardoux, S. Zhang [16] among others), BSDEs provide
a probabilistic representation of solutions (viscosity solutions in the most general
case) of semilinear PDEs. This provides a generalization to the nonlinear case of the
well known Feynman-Kac formula. In many examples of semilinear PDEs, the
nonlinearity is not of a linear growth (as implied by a global Lipschitz condition) but
instead, it is of a polynomial growth, see e.g. the nonlinear heat equation analyzed by
M. Escobedo, O. Kavian and H. Matano in [7]) or the Allen-Cahn equation (G.
Barles, H.M. SoBer, P.E. Souganidis [2]). If one attempts to study these semilinear
PDEs by means of a nonlinear version of the Feynman-Kac formula, alluded to
above, one has to deal with BSDEs whose generators with a nonlinear (through
polynomial) growth. Unfortunately, existence and uniqueness results for the solutions
of BSDEs of this type were not available when we first started this investigation and
filling this gap in the literature was at the origin of this paper..

In order to overcome the difficulties introduced by the polynomial growth of the
generator, we assume that the generator satisfies a kind of monotonicity condition in
the state variable. This condition is very useful in the study of BSDEs with random
terminal time. See the papers by S. Peng [17], R.W.R. Darling, E. Pardoux [5], Ph.
Briand, Y. Hu [4] for attempts in the spirit of our investigation. Even though it
looks rather technical at first, it is especially natural in our context: indeed, it is plain
to check that it is satisfied in all the examples of semilinear PDEs quoted above.

The rest of the paper is organized as follows. In the next section, we introduce
some notation, state our main assumptions, and prove a technical proposition which
will be needed in the sequel. In Section 3, we deal with the case of BSDEs with fixed
terminal time" we prove an existence and uniqueness result and establish some a

priori estimates for the solutions of BSDEs in this context. In Section 4, we consider
the case of BSDEs with random terminal times. BSDEs with random terminal times
play a crucial role in the analysis of the solutions of elliptic semilinear PDEs. They
were first introduced by S. Peng [17] and then studied in a more general framework
by R.W.R. Darling, E. Pardoux [5]. These equations are also considered in [12].
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2. Prehminaries

2.1 Notation and Assumptions

Let (f,,P) be a probability space carrying a d-dimensional Brownian motion

(Wt)t > 0, and (t)t > 0 be the filtration generated by (Wt) > 0" As usual, we assume
that ech a-field -has been augmented with the P-null-sets to make sure that
(t)t >0 is right continuous and complete. For y E Nk, we denote by yl its
Eucli&an norm and if z belongs to Nk x d, II II denotes {tr(zz*)}1/2. For q > 1, we
define the following spaces of processes:

q progressively measurable; t e Rk; II II }q 4 sup I q <

q progressively measurable; Ct e Rk X d; II II g: e f II t I[ 2at <
0

and we consider the Banach space Jq- 5q x J{q endowed with the norm

I(/II II

We now introduce the generator of our BSDEs. We assume that f is a function de-
fined on flx[0, T]xN/xNxd, with values in N in such a way that the process
(f(t’Y’Z))t e I0,T] is progressively measurable for each (y,z)in N/Cx N x d. Further-
more, we make the following assumption.

(A1) There exist constants 7_>0, #EN, C_>0 and p>l such that P-a.s., we
have:
(1) Yt, Vy, Y(z,z’), If(t,y,z)-f(t,y,z’)] <_ 711z-z’ll;
(2) Vt, Vz, V(y, y’), (y y’). (f(t, y, z) f(t, y’, z)) <_ # y v’l 2;
(3) Vt, Vy, Vz, f(t,v,z) < f(t,O,z) +C(1 + vl");
(4) Vt, Vz, yf(t, y, z) is continuous.

We refer to condition (A1)(2) as a monotonicity condition. Our goal is to study
the BSDE

T T

Yt ( + / f(s, Ys, Z)ds- / ZdW, O <_ t <_ T, (1)

when the generator f satisfies the above assumption. In the classical case p- 1, the
terminal condition ( and the process (f(t,O,O)) e i0,T] are assumed to be square
integrable. In the nonlinear case p > 1, we need stronger integrability conditions on

both and (f(t,O,O)) e [0, T]" We suppose that:
(A2) is a T-measurable random variable with values in N/ such that

E[ ,I :p] + E If(s, o, o) =ds < oc.

0
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lmark: We consider here only the case p > 1, since the case p- 1 is treated in
the works of R.W.R. Darling, E. Pardoux [5] and E. Pardoux [12].

2.2 A First A Priori Estimate

We end these preliminaries by establishing an a priori estimate for BSDEs in the case
where and f(t, 0, 0) are bounded. The following proposition is a mere generalization
of a result of S. Peng [18, Theorem 2.2] who proved the same result under a stronger
assumption on f namely,

Vt, y,z, If(t,y,z) <_a+uly +xllz]l.

Our contribution is merely to remark that his proof requires only an estimate of
y. f(t, y,z) and thus that the result should still hold true in our context. We include
a proof for the sake of completeness.

Proposition 2.1" Let ((Yt, Zt))t e [,T] E 2 be a solution of the BSDE (1). Let us
assume moreover that for each t, y, z,

Then, .for each > O, we havre, setting + 2v + x2 if e + 2v + t
2 > 0, /3 1

otherwise,
sup [Yt[ 2 < 62eT+-(eT-1).0<t<T

Proofi Let us fix t E [0, T]; fl will be chosen later in the proof.
formula to ez(s -t)lYs 12 between t and T, we obtain:

Applying ItG’s

T

Ytl 2 + j e(s-t)(lys
2 + II II 2)

T

2eZ(T-t) + 2 / e3(s -t)Ys f(s, Ys, Zs)ds- Mr,

provided we write M for 2 f e(s-t)Y
s ZsdWs. Using the assumption on (,f)it

follows that
T

Ytl 2 + / eZ(S- t)(f[gs 2 + II Zs II 2)ds

T

< 62e3T + 2 j ez(s -t){c [Ys + u Ys + ]Ys II II )ds- Mt.

a2Using the inequality 2ab <_ --0- + r/b2, we obtain, for any > 0,

T

y ]2 + f e(s-t)(lys 12 -4- II Zs II 2)d
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T

_< 6eT + e(, t){_ + + +

T T

t)Ys. ZsdWs,

and choosing/3 + 2u + n2 yields the inequality

T

a2(eT / eZ(sYt <_ 52eT --- 1)- 2 )Y ZsdWs.

Taking the conditional
immediately that

expectation with respect to t of both sides,

Vt E [0, T], a2(eOT 1),[Yt[ 2 _< 62eoT + t3
which completes the proof.

we get

3. BSDEs with Fixed Terminal Times

The goal of this section is to study BSDE (1) for fixed (deterministic) terminal time
T under assumptions (A1) and (A2). We first prove uniqueness, then we prove an a

priori estimate and finally we turn to the existence.

3.1 Uniqueness and A Priori Estimates

This subsection is devoted to the proof of uniqueness and to the study of the integra-
bility properties of the solutions of the BSDE (1).

Theorem 3.1: If (A1) (1)-(2) hold, the BSDE (1) has at most one solution in the
space %2"

Proof: Suppose that we have two solutions in the space %2, say (Y1,Z1) and
(Y2, Z2). Setting 5Y- yl_ y2 and 5Z- Z1- Z2 for notational convenience, for
each real number a and for each t E [0, T], taking expectations in It’s formula gives:

=E (f(s, Yls,Zls)- f(s, r2s, Z2s) -a 6Ys 12}ds1.
The vanishing of the expectation of the stochastic integral is easily justified in view of
BurkhSlder’s inequality. Using monotonicity of f and the Lipschitz assumption, we

get"
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<_ 2/ e Y II z II d-( + 2) e Y 2ds

Hence, we see that

_< (272- 2/- a)lE elY [ds + II z II 2ds

We conclude the proof of uniqueness by choosing a 272- 2# + 1. VI

We close this section with the derivation of some a priori estimates in the space

%2p" These estimates give short proofs of existence an uniqueness in the Lipschitz
context. They were introduced in a "Lp framework" by E. E1 Karoui, S. Peng, M.-C.
Quenez [6] to treat the case of Lipschitz geper.ators.

Proposition 3.2: For i- 1,2, we let (Y*,Z*) E J32p be a solution of the BSDE

T T

ZdWs, O<_t<_T,

where (i, fi) satisfies assumptions (A1) and (A2) with constants 7i,#i and Ci. Let
be such that 0 < e < 1 and a > (,.?,l)2/e 2#1 Then there exists a constant Ke

which depends only on p and on e and such that

sup ePtl,sY 12p + et II 5zt II 2dr
O<t<T

where 5- 1_ 2,5Y yl_ y2, 5Z- Z1- Z2 and 5f fl(., y2., Z2).
f2(.,y2.,Z2). Moreover, if a>(71)2/-2#1, we have also, setting u-a-

)/+( 21,

K; [[z ecPT 2p
c

: et Yt 2dt <_ 51 + e-ffs sfs ds

0 0
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Proof: As usual, we start with ItS"s formula to see that

T T

T

(f(, y], z) f(, y2, z2))d / 1eY Ud Mr,

where we set M --2fTecsSYs. SZsdWs for each E [0, T]. In order to use the
monotonicity of fl and the Lipschitz assumption on fl, we split one term into three
parts, precisely we write

5Ys" (fl(s,Y,Z)- f2(s, Y2s, Z2s)) 5Ys" (fl(s, yls,zls)- fl(s, Y2s,Zls))

+ 5Ys" (fl(s, Ys, zls)- fl(s, Ys, Zs)) + 5Ys" (fl(s, Ys,Z2s)- f2(s,

and the inequality 271 Ys II Zs II _< ((ya)/z)I Y 12 + I[ z ][2 implies that

T

etl6Yt [2 + (1 ) / e=s [I 6Zs II d

T

) 6Ye 12ds

T

+2f e16Yl 16flds-Mt.

Setting u-a + 2/t1 --(71)2/e, the previous inequality can be rewritten in the follow-
ing way:

T T

T

-Mt+2/ "ISYI" Iflds.

(2)

Taking the conditional expectation with respect to t of the previous inequality, and
since the conditional expectation of M vanishes, we deduce that

{ / }tl5Ytl=<_: eT15512+2 elSYl" I5fldslt
0
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Since p > 1, Doob’s maximal inequality implies

[0<<sup r ] _< ’? . I
0

< Kp: ePaT 512P +sup {e(Pa/2)t sYt P

0<t<T
0

where we use the notation Kp for a constant depending only on p and whose value
could be changing from line to line. Due to the inequality ab <_ a2/2 + b2/2, we get

0

which gives

Now coming back to inequality (2), we have, since < 1,

By Burkh61der-Davis-Gundy’s inequality, we obtain

I(/ )’I I {/
0 0

+ KR 2sl,Ys 12 II ,z= II 23=
0

Thus it follows easily that

0



BSDEs with Polynomial Growth Generators

I (/< KvE ePTlslUP + sup {e(P/U)tlGYtlp} e(/U)lGf
0<t<T

0

+ K;E sup {e(Pa/)tlYt]P} eUS II az II d
o<t<T

0

which yields the inequality, using one more time the inequality ab <_ a2/2 -k-b2/2,

II z II d
0

<_ KepEIecPT 12P / sup
O<_t<T

ePct sYt 2P + e(/2)s 6fs ds

0

215

Taking into account the upper bound established for [V[suPo < < TePatlYtl2P],
given in (3), we derive from the above inequality,

" II Zs II 2d <_ It";[F" ecpT 6 2P e(C/2)s fs ds

0 0

which concludes the first part of this proposition.
simply remark that (2) gives

For the second assertion, we

T

v / e’16Ys 12ds
0

<_ eT 65 + 2 ecs 6Ys fs Ida- 2 easYs 6ZsdWs

0 0

A similar computation gives"

vPlY ecs Ys 2ds
0

<_ l(pE ePT 6 2p + sup ePt 6Yt 2p e(/2) Gf ds
o<t<T

0
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which completes the proof using the first part of the proposition already shown and
keeping in mind that if a > (’)’1)2/- 2#1 then v > 0. El

Corollary 3.3: Under the assumptions and with the notation of the previous pro-
position, there exists a constant K, depending only on p,T, #1 and 71 such that

gt 2p II z II 2dr _< K= I@l 2p f ds

0 0

Proof: From the previous proposition, we have (taking 1/2)

sup eP’tl6y = * II zz, II 2dr
<t<T

0

< KpE_ ePTI@I2P e-lfs ds

0

and thus

e pTo sup I6Y, =’ II 6z, II 2d*
<t<T

0

< KpepT( +E_ 161 = Ifs ds

0

It is enough to set K- ePIITKp to conclude the proof. El
Remark: It is easy to verify that assumptions (A1) (3)-(4) are not needed in the

above proofs of the results of Proposition 3.2 and its corollary.
Corollary 3.4: Let ((Yt, Zt))o < < T E 62p be a solution of BSDE (1) and let us

assume thai L2p and assum- also lhal lhere exists a process (ft)o<t< T
2p(k) such thai

V(s, y, z) E [0, T] x Ik x I/ x d,

y.f(,y,z) lyl’lfsl-lyl2+lyl "llzll.

", which depends onlyThen, if 0 < < 1 and a > 72/ 2#, there exists a constanl K p
on p and on such that:
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sup ePat Y 2p + eat II zt II 2dt
0<t<T

0

Kp_ PTII 2p+ elfs [d
0

Proof: As usual, we start with It’s formula to see that

T

etlYt 12 + / e II Z II 2d

T T

provided that we set M 2 f TteasYs ZsdWs for each E [0, T]. Using the assump-
tion on y. f(s,y,z) and then the inequality 27[Ys [1Zs [[ < (72/c)[Ys [2 +
II zs [I 2, we deduce that

T

earlY 2 + (1 ) / eas IIs 112ds

T T

<eaTl,12+ eaS{-a-2p+-}lYs[ds+2 easlYs[ Ifslds-Mt.

Since a >_ 2#- 72/, the previous inequality implies

T T

eat lY 12 +(1 )/ eas II z II 2d Z 2 + 2 J eas[Ys ]. fs ds Mt"

This inequality is exactly the same as inequality (2). As a consequence, we can

complete the proof of this corollary as that of Proposition 3.2.

3.2 Existence

In this subsection, we study the existence of solutions for BSDE (1) under
assumptions (A1) and (A2). We shall prove that BSDE (1) has a solution in the
space %p. We may assume, without loss of generality, that the constant # is equal
to 0. Indeed, (Yt, Zt)t [0, T] solves BSDE (1) in %2p, if and only if, setting for each
t e [0, T],

ff"t e- PtYt, and 2 e Ptzt,
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the process (Y, Z) solves in %2p the following BSDE"
T T

gt- + f(,Y,Z)- ze,
0

O<_t<_T,

where e-uT and ?(t,y,z)- e-utf(t,e’ty, eptz)+#y. Since (,f) satisfies
assumption (A1) and (A2) with -7, -0 and -Cexp(T{(p-1)#++
It- })+ Itt I, we shall assume that It 0 in the remaining of this section.

Our proof is based on the following strategy: first, we solve the problem when the
function f does not depend on the variable z and then we use a fixed point argument
using the a priori estimate given in subsection 3.1, Proposition 3.2 and Corollary 3.3.
The following proposition gives the first step.

Proposition 3.5: Let assumptions (A1) and (A2) hold. Given a process
(Vt)o <t<_ T in the space 2p, there exists a unique solution ((Yt, Zt))t [O,T] in the

space-2p to the BSDE

0 <_ t _< T. (4)

Proof: We shall write in the sequel h(s,y) in place of f(s,y, Vs). Of course, h
satisfies assumption (A1) with the same constants as f and (h(. ,0)) belongs to 2p
since f is Lipschtiz with respect to z and the process V belongs to :E2p. What we
would like to do is to construct a sequence of Lipschitz (globally in y uniformly with
respect to (w,s)) functions hn which approximate h and which are monotone.
However, we only manage to construct a sequence for which each hn is monotone in a

given ball (the radius depends on n). As we will see later in the proof, this "local"
monotonicity is sufficient to obtain the result. This is mainly due to Proposition 2.1
whose key idea can be traced back to a work of S. Peng [18, Theorem 2.2].
We shall use an approximate identity. Let p:Rk--+ be a nonnegative (

function with the unit ball for support and such that fp(u)du- 1 and define for
each integer n >_ 1, pn(u) nkp(nu). We denote also, for each integer n, by On a e
function from k to + such that0_<On_<l,On(u)-l for ul _<nandOn(u)-0
as soon as ul _> n + 1. We set, moreover,

and,

if

otherwise,

/

I h(s, y) if h(,, 0) <
hn(s’ Y) I _n_ .h(s, y) otherwise.

h(s,O)

Such an hn satisfies assumption (A1) and moreover we have I ,,I _< n and

gn(,,0) < . Finally, we set q(n) -[el/2(n + 2C)v/1 + T2]+ 1, where Jr] stands

as usual for the integer part of r and we define
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h,(,. p,,(O,/+ h,(,. )) [0,].

We first remark that hn(s,y -0 whenever yl >_ q(n) + 3 and that hn(s .) is
globally Lipschitz with respect to y uniformly in (c0, s). Indeed, hn(s is a smooth
function with compact support and thus we have sup Ekl hn(s,y)

yE

sup lul < q(n)+3 Vh’(s’y)[and’ from the growth assumption on f (A1) (3), it is

not hard to check that Ih,(s,y) <_ n A Ih(s,O) + C(1 + ylP), which implies that

Vh(s,y) <_(n{n+C(l+2p-llylP))+C2P-a)/ Vp(u)]du.

As an immediate consequence, the function hn is globally Lipschitz with respect to y
uniformly in (co, s). In addition, In _< n and Ihn(s,O) <_ n A Ih(s,O) + 2C and
thus Theorem 5.1 in [6] provides a solution (Yn, Z’) to the BSDE

T T

O<_t<_T, (5)

which belongs actually to Zjq for each q > 1. In order to apply Proposition 2.1 we
observe that, for each y,

’hn(s,Y)- ,On(U)q(n)+l(9-u)9"hn(S, 9-u)du

f()oq(/+( )" {h(, )- h(, )}e-- fln(Vt)Oq(n) + l(y t)y. ha(8 t)dt.

Hence, we deduce that, since the function hn(s is monotone (recall that #- 0 in
this section) and in view of the growth assumption on f, we have"

V(s, y) x [0, T], y. h,(s, y) 5 (n A h(s, 0)] + 2C) y l. (6)

This estimate will turn out to be very useful in the sequel. Indeed, we can apply
Proposition 2.1 to BSDE (5) to show that, for each n, choosing c l/T,

sup Y <_ (n + 2C)el/2v/l + T2. (7)
0<t<T

On the other hand, inequality (6) allows one to use Corollary 3.4 to obtain, for a

constant Kp depending only on p,

sup =
hEN

sup Yl " II Z II 2dr
0<t<T

0
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<_ Kp 151 = { h(,0)[ + 2C}ds
0

(8)

It is worth noting that, thanks to h(s,O) <_ f(s,O,O) / II Vs II, the right-hand
side of the previous inequality is finite. We want to prove that the sequence
((.Yn, Zn))Nconverges towards the solution of BSDE (4) and in order to do that we
first show-that the sequence ((Yn, Zn))N is a Cauchy sequence in the space %2" This
fact relies mainly on the following property: hn satisfies the monotonicity condition
in the ball radius q(n). Indeed, fix n G N and let us pick y,y’ such that Yl <_ q(n)
and y’l G q(n). We have:

(y y’)" (hn(8, y hn(8, y’)) (y y’). fln(U)Oq(n) + l(y t)hn(8, y u)du

--(y--y’)" Pn(U)Oq(n)+l(Y’-U)hn(s,y’-u)du.
But, since Yl, Y’I < q(n) and since the support of Pn is included in the unit ball,
we get from the fact that Oq(n)+ l(X) 1 as soon as Ix G q(n) + 1,

( V). ((,) (, V)) ] (u)( V). ((, ) (,V- ))d.

Hence, by the monotonicity of ha, we get

Vy, y’ ( B(0, q(n)), (y y’) (hn(s y) hn(s y’)) <_ O.

We now turn to the convergence of ((Yn, Zn))N. Let us fix two integers m and n
such that m >_ n. It’s formula gives, for each t [0, T],

T T

6Yt 2+ / II 6Zs ll 2ds 2+2/ 5Ys (hm(s, yn) hn(s, Yns ))ds

T

2 / 6Ys 6ZsdWs,

where we have set 5- m-n, bY- ym_ yn and 6Z- Zm- Zn.
term of the previous inequality into two parts, precisely we write:

We split one

5ys (hm(S, yn) hn(s yy))

5Ys" (hm(s, yn) hm(s yy)) + Ys" (hm(s, YY) hn(s, YY))"

But in view of the estimate (7), we have Y’I _< q(m) and YI _< q()_< q(m).
Thus, using property (9), the first part of the right-hand side of the previous inequali-
ty is non-positive and it follows that

T T

IYt + / II z, II 2d I12 + 2 / IY, l" Ibm(S, Y’)- hn(s, Y)lds
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In particular, we have

T

-2/ 5Ys’SZsdWs. (10)

[I z [I d 2 I1 = + 6Y ibm(s, Y) ha(s, Y’) ds

0 0

and coming back to (10), BurkhSlder’s inequality implies

[ /16Y 121 <_ KE 1 2 + 6Ys hm(s, Y) hn(s, Y) ds

0

16ys [2 II 5Zs I[ 2ds
0

and then using the inequality ab <_ a2/2 + b2/2 we obtain the following inequality:

I /
0

+ 21-IF O<t<zSUp Syt [2 +_UE [I Z II 2ds
0

from which we get, for another constant still denoted by K,

/1sup 6Yt + II 6Zs [[ 2ds
O<t<T

0

II12 + I6Y. hm(s, YY)- hu(s, Y’) ds

0

Obviously, since C L2p, 6, tends to 0 in L2 as n,m---<x with m >_ n.
only to prove that

So, we have

I6Y h(s,Y’)- hn(s,Y’)lds --*0, as n--,o.

0

For any nonnegative number k, we write

Snm l lynl + YI _< k 6Ys hm(s’ Y’2) hn(s, Y) ds

0
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inl / yml >_klY hm(s,g)-h(s,g’)lds1,
and so with these notations we have

6Ys hm(s, Y) hn(s, yr) ds1- Stun + Rmn

and hence, the following inequality:

0

<_ kE sup hm(s,y)- h(s,y) ds + R. (11)
lul <k

First we deal with Rnm and using H61der’s inequality we get the following upper
bound: p- 1

Rnm < E llysn + iN,hi >kd8
0

15Y p + 11 h.(s, Y2)- hn(s, Y2) p +lds
0

2p 2p

Setting Anm = foT IYs p 41 hm(s, yr)_ hn(s,y,2) lp+lds
convenience, we have

p--1

n + gm > k)ds An 2pR (IY
0

p+l
2p

for notational

and Chebyshev’s inequality yields"
p-1

m
2/)Rmn <_k1 P ffz (IYns + IYl)P ds An

o

p-1

< 2PT 2p sup E [ sup
hEN O<t<T

p-1 p+l

(12)

We have already seen that SUPn E N-[suPo <_t <_ T Y’I 2p] is finite (of. (8)) and we



BSDEs with Polynomial Growth Generators 223

shall prove that AnTM remains bounded as n, m vary. To do this, let us recall that

A-E
2p 2p

Sys p + ibm(s, yr) hn(s yr) p +lds

lr

_
and using Young’s inequality (ab < a + br

and r* p-t-1
we deduce that

whenever +4-1) with r-p+l
r

Anm< llE-p+
P 1: [hm(s, V’)- hn(s Y’2) 12dsSYs 2pds +p-t-

0

The first part of the last upper bound remains bounded as n, m vary since from (8)
we know that SUPn e NE[suP0 < < T[ Y 2p] is finite Moreover, we derive easily
from the assumption (A1) tat- hn(s,y) <_hA his, O) +2PC(l+ ylP), and
then,

Ihm(s, yr)-hn(S,Y2) <_2lh(s,O)[ q-2p +lC(lq- ]Ysnip),

which yields the inequality,taking into account assumption (A1) (1),

Ibm(s, Y)- hn(s Y’2) 12ds
0

{ f(s, 0, 0) 12 + II Vs II + 1 + [Y[2p)ds
0

Taking into account (8) and the integrability assumption on both V and f(.,0,0),
we have proved that SUPn < mAr

Coming back to inequa]]ty (12), we get, for a constant , RnTM _< kI -P, and since
p > 1, RnTM can be made arbitrarily small by choosing k large enough. Thus, in view
of estimate (11), it remains only to check that, for each fixed k > 0,

I osup
l<k

goes to 0 as n tends to infinity uniformly with respect to m to get the convergence of
((yn, Zn)N in the space %2" But, since h(s,. is continuous (P-a.s., Vs), hn(s," con-

vergences towards h(s,.) uniformly on compact sets. Taking into account that

suP ly[ < k[hn(s,y)[ <_ h(s,0) + 2PC(1 + kP), Lebesgue’s Dominated Convergence
Theorerff gives the result.

Thus, the sequence ((Yn, Zn))N converges towards a progressively measurable
process (Y,Z) in the space %2" Moreover, since (Yn, Zn))N is bounded in %2p (see
(8)), Fatou’s lemma implies that (Y,Z) belongs also to the space %2p"

It remains to verify that (Y,Z) solves BSDE (4) which is nothing but
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Yt
T T

Of course, we want to pass to the limit in BSDE (5. Let us first notice that n
in L2p and that, for each t e [0, T], f TtzydWs--- f[ZsdWs, since Zn converges to Z
in the space 2(kx d). Actually, we only need to prove that for t E [0, T],

T T

i hn(s’Yy)ds--’i h(s, Ys)ds, as ncxz.

For this, we shall see that hn(.,Yn.) tends to h(.,Y.) in the space LI([0, T]).

I/ h,,(, y) h(,
0

Indeed,

<_ h(s, Y) h(s, Y) ds + h(s, YT) h(o, Y,)I do.

0 0

The first term of the right-hand side of the previous inequality tends to 0 as n goes to
cxz by the same argument we use earlier in the proof to see that _[fTo 16Ys I"
Ihm(s,Y)-hn(s,Y)lds goes to 0. For the second term, we shall firstly prove
that there exists a converging subsequne.nce. Indeed, since yn converges to Y is the
space 3’2, there exists a subsequence (Y J) such that P-a.s.,

njvt 6 [o, T], Yt -Yt.
n

Since h(t,.)is continuous (P-a.s., Vt), e-a.s. (Vt, h(t, Yt’)---h(t, Yt) ). Moreover,
since Y E 3’2p and (Yn)N is bounded in 3’2p ((8)), it is not hard to check that the
growth assumption on f that

I/sup - h(s,
n

2dsYs J) h(s, Y.)l < ,
jeN o

and then the result follows by uniform integrability of the sequence. Actually, the
convergence hold for the whole sequence since each subsequence has a converging sub-
sequence. Finally, we can pass to the limit in BSDE (5) and the proof is complete. V1

With the help of this proposition, we can now construct a solution (Y, Z) to BSDE
(1). We claim the following result:

Theorem 3.6: Under assumptions (A1) and (A2), BSDE (1) has a unique solution
(Y, Z) in the space aJJ32p.

Proof: The uniqueness part of this statement is already proven in Theorem 3.1.
The first step in the proof of the existence is to show the result when T is sufficiently
small. According to Theorem 3.1 and Proposition 3.5, let us define the following
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function (I) from %2p into itself. For (U, V)6 2p, O(U, V)- (Y,Z) where (Y,Z)is
the unique solution in %2p of the BSDE:

T T

Yt + / f(s, Ys, Vs)ds- / ZsdWs, O

_
t

_
T.

Next we prove that (I) is a strict contraction provided that T is small enough.
Indeed, if (U1,V1) and (U2, V.2) .are both elements of the space %2p, we have,
applying Proposition 3.2 for (Y, Z) -p(Ui, Yi), i- 1, 2,

sup 16Yt 2p I] 6Zt I] 2dr
O<t<T

0

< KpE If(s, Y2s, V) f(s, Y2s, V2s ds

0

where 5Y--yl_y2, 5Z =_ Z1 -Z2 and K, is a constant depending only on p
Using the Lipschitz assumption on f, (A1)ll), and H61der’s inequality, we get the

sup Yt II zt [I 2dr
O<t<T

0

<_ Kp72pTp[[:

inequality

Hence, if T is such that Kp’)’2pTp < 1, (I) is a strict contraction and thus (I) has a uni-
que fixed point in the space ’2p which is a unique solution of BSDE (1). The
general case is treated by subdividing the time interval [0, T] into a finite number of
intervals whose lengths are small enough and using the above existence and unique-
ness result in each of the subintervals. !-1

4. The Case of Random Terminal Times

In this section, we briefly explain how to extend the results of the previous section to
the case of a random terminal time.

4.1 Notation and Assumptions

Let us recall that (Wt) > 0 is a d-dimensional Brownian motion defined on a probabi-
lity space (f,,[P) ant that (5t)t> 0 is the complete r-algebra generated by
(Wt)t>o.

Let-7 be a stopping time with respect to (t)t > o and let us assume that - is finite
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-a.s. Let be a St.-measurable random variable and let f be a function defined on
x + x kxk x/ with values in k and such that the process (f(. ,y,z)) is pro-

gressively measurable for each (y,z).
We study the following BSDE with the random terminal time v"

tA- tA"

t>_0. (13)

By a solution of this equation we always mean a progressively measurable process
((Yt, Zt))t > 0 with values in Rk Rk d such that Z -0 if t > r. Moreover, since r
is finite P-.s., (13) implies that Yt- if t >_ r.

We need to introduce a further notation. Let us consider q > 1 and a E . We
say that a progressively measurable process with values in n belongs to (’) if

Moreover, we say that belongs to the space fq (n) if

supe q/2)a(t ^ ) Ct q] < oo.
t_>0

We are going to prove an existence and uniqueness result for BSDE (13) under
assumptions which are very similar to those made in Section 2 for the study of the
case of BSDEs with fixed terminal times. Precisely, we will make in the framework
of random terminal times the following two assumptions:

(A3)

(A4)

There exists constants 7 >_ 0, # E , C >_ 0, p > 1 and {0, 1} such that
P-a.s
(1) Vt, Vy, V(z,z’), f(,,z)- f(t,y,z’) <_ 7 II z- z’ II;
(2) Vt, Vz, V(y,y’), (y-y’).(f(t,y,z)- f(t,y’,z)) <_
(3) Vt, Vy, Vz, If(t,y,z)l < If(t,O,z)l +C(+ lyl);
(4) Vt, Vz, yHf(t, y, z) is continuous.
{ is r-measurable and there exists a result number p such that p > 72- 2#
and

eP" + {ep + ePP} 12p ePlf(s, O, 0) 12ds
0

e(P/2) f(s, o, 0) lds
0

Pemark: In the case p < 0, which may occur if - is an unbounded stopping time,
our integrability conditions are fulfilled if we assume that



BSDEs with Polynomial Growth Generators 227

: e"r](I 2p e("/2)S f(s,O,O) 12ds
0

For notational convenience, we will simply write throughout the remainder of the
paper qP’ and 3qp instead of qP’ )and ), respectively.

4.2 Existence and Uniqueness

In this section, we deal with the existence and uniqueness of the solutions of BSDE
(13). We state the following proposition.

Proposition 4.1: Under assumptions (A3) and (A4), there exists at mosl one
solution of BSDE (13) in the space ,r x 3.

Proof: Let (Y1,Z1) and (Y2, Z2) be two solutions of (13) in the space f’rx 3.
Let us notice first that Y-Yt2- if t>_v and Z-Z-0 on the set {t>v}.
Applying It’s formula, we get

ep(t A 2ds

2f ePSSYs.(f(s,Y],Zs)-f(s,Y,Z))ds
tar

7"

tar tAr

where we have set 5Y- yl_ y2 and 5Z- Z1- Z2. It is worth noting that, since f
is Lipschitz in z and monotone in y, we have, for each > 0,

V(t, y, y’, z, z’), 2(y y’) (f(t, y, z) f(t, y’, z’))

(14)

Moreover, by BurkhSlder’s inequality, the continuous local martingale

ePSSYs 5ZsdWs, >_ 0

0

is a uniformly integrable martingale. Indeed,
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< KE sup ePt SYt 2 1/2

0<t<7.
s

and then,

sup ePt 6Yt ]2 + ePS ]1 6Zs I] 2dseSY 5ZdW <_ ---E o < < r
0 0

which is finite, since (SY, SZ) belongs to the space Y’7.. Due to the inequality
p > 72- 2, we can choose such that 0 < < 1 and p > 72/- 2#. Using
inequality (14), we deduce that the expectation of the stochastic integral vanishing, in
view of the above computation, for each t, is

7"

E[eP( A
^7. [2 + (1-)/ eps II 5Z, 11 ads] <- O,

which gives the desired result, rl

Before proving the existence part of the result, let us introduce a sequence of pro-
cesses whose construction is due to R.W.R. Darling and E. Pardoux [5, pp. 1148-
1149]. Let us set ,- 72/2-# and let (n,n) be a unique solution of the classical
(the terminal time is deterministic) BSDE on [0, hi:

Since [dv 1512] < [0 2] and since

E e2mlf(s, O, 0) 2ds _< r ePlf(s, O, 0) 12ds
0 0

assumption (A4) and Theorem 3.6 ensure that (yn, Zn) belongs to the space %2p (on
the interval [0, hi). In view of [12, Proposition 3.1], we have

Yn(v A T") Yt, and, Z O on {t>-}.

Since e7. belongs to L2p(7.), there exists a process (/)in 3E such that
t>r and

-_ E[-] + f ’sdW
0

We introduce yet another notation. For each > n, we set:

-0 if

f E{e’ t (t, and, 2 t,

and for each nonnegative t:
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Y e-’(t ^ 3.)f, and, Ztn c- (t ^ r)2.
n n n r) and, (yn,This process satisfies Yt A 3. Yt and Z 0 on {t > moreover Zn)

solves the BSDE

V + fn(s Vs, ZsdW, t>0 (15)
tA tA

where fn(t,y, z) I < nf(t,y, z) + I > ,ly (cf. [5]). We start with a technical
lemma.
Lemma 4.2: Let assumptions (A3) and (A4) be satisfied. Then, we have, with the

notation

K(, f) IE ePP3" 2p + e(P/2)s f(s,O,O) ds

0

supE supepp(t ^3")[ n l2p+ ePs n l2ds
N o_>o Yt Ys

5K(,f), (16)

and, also, for cr- p- 2,

- supepcr(t ^ r) t 2p 4- eaS s 2ds
t>0

0 0

(17)

Proofi Firstly, let us remark that Z-qt-0 ift>- and, since Y-ift>_r,
we have suPt>0epp(r ^3.)[Yt 12p suP0<t<

n, 3.eppt y 12p Moreover, since

p > 2,, we can find c such that 0 < c < 1 and p > 72/e- 2#. Applying Proposition
3.2 (actually a mere extension to deal with bounded stopping times as terminal

times), we get

12dm +  llz 112sup pp* Y’ + d’ Y
O<t<nA3"

0 0

<KE epp(n A 3")[ yn( A T) 2p

__
e(p/2) f(s, O, 0)[ ds

We have YnnA3" ----yn_n - ,(nA r)F{e,Xrln ^ r} and then we deduce immediately
that, since p/2- , > 0 and due to Jensen’s inequality

E[epp(n A .)ly.(n A r) 2p] E[IE{e(p/2 z)(" A) . A 3.} 12p]
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Hence, for each integer n,

(18)

sup
0<t<^

ePPt Y’ 2p + eP Yn12ds +
0

s II Zs II 2d < K(,f).
0

It remains to prove that we can find the same upper bound for

sup epptly[p + epSly12ds + os II Z II 2d
n^r<t<r

nA" nA"

But the expectation is over the set {n < v} and coming back to the definition of
(Yn, Zn) for t > n, it is enough to verify that

F supep(p-2)(^)ICt]2p/ e(p-2)slcs 12d8
o

0

+ (0- )s II II 2d g[" 2]
0

in order to get inequality (16) of the lemma and thus to complete the proof, since, in
view of the definition of r, the previous inequality is nothing but inequality (17).
But, for each n, ((, r/) solves the following BSDE:

and by Proposition 3.2, since a p- 2 > 0,

O <_t <_n,

sup ept (t 2p + S ( 12ds
0<t<nAr

0

+ II II 2ds <_ K[(n^ )1. ^.

0

We have already seen (of. (18)) that f_[ep(nA r) l(n A r 2p] --< [P 12p] and
thus the proof of this rather technical lemma is complete. El

With the help of this useful lemma, we can construct a solution to BSDE (13).
This is the objective of the following theorem.
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Theorem 4.3: Under assumptions (A3) and (A4), BSDE (13) has a unique
solution (Y,Z) in the space f,r ] which satisfies

sup epo(t ^ r) Yt 2P epS Ys 288 + epS II Zs II 2ds <_ K(, f).
>_o 0 0

Proofi The uniqueness part of this claim is already proven in Proposition 4.1. We
concentrate ourselves on the existence part. We split the proof into the two following
steps: first we show that the sequence ((Yn, ZU))N is a Cauchy sequence in the space, r x ] and then we shall prove that the limiting process is indeed a solution.

Let us first recall that for each integer n, the process (yn, Zn) satisfies yntAr Yt
and Z- 0 on {t > v} and moreover solves BSDE (15) whose generator fn is defined
in the following way: fn(t,y,z)- 1 < nf(t,y,z)+ i > nay. If we fix m > n, It’s

formula gives, since we have also YmmA v Ym_m YnmA v ----Ynm e -A(m A ’)m, for
t<_m,

mar
@p(t A r) Y 2S

tA’r

mAy

2 / epS6ys. (fro(s, yms, Z) fn(s, ys,n Z2))ds

mA- mA"

tA- tA"

where we have set 6Y ym_ yn, 6Z Zm- Zn. It follow from the definition of fn,

mA"

ep(t A -)lSy A
2 -I- / e" II II

tAr

mA"

2 / ePs6Ys (f(s, yn, Zn) f(s, Y’, Z))ds

mAr mAr

-/ PePs]6Ys[2ds-2/ ePs6Ys.ZsdWs
tAr tAr

rnA "
+ 2 J 1s > nePS6Ys (f(s, Y, Zy) AY)ds.

A "r

Since p>72-2#, we can find an e such that O<e< 1 and -p-72/e+2#>O.
Using inequality (14) with this e, we deduce from the previous inequality that
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mAT

) # eP II 6z II d
tAT

mAr mAr

tAr tar

rnA"

+ 2 / e16Y If(s, Y’, z’) AY’#lds.
(tVn) Ar

Now, using the inequality 2ab <_ wa2+ b2/w for the second term of the right-hand
side of the previous inequality, with w < u, we get, for each t_< m, setting
fl min(1 e,u- w) > 0,

mAc-

tAr

m A "r: : f(s, Y’#, z’)- AY’ eds
nag

(19)

rnA"

2 : ePS6Ys" 6zsdWs.

In particular, we have the expectation of the stochastic integral vanish (cf. Lemma
4.2),

IE :{ g, = / II z, II }d
0

Ps f(s Y, Z)- AY’12ds
nAT

Coming back to inequality (19), BurkhSlder’s inequality yields

< KE

O<_t<_rnAv

eP f(s, Y, Zr)- AY12ds +
nAT

m A T )1/21f e2P’I6Y 12 II 6Z II 2ds
0

But, by an argument already used,
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KIV
0

< KE
O<t<mAv

O<_t<_mAr

As a consequence, we obtain the inequality"

0<t<mAr

< KE co’If(s, Y2, Z2)- AYr ads

and since yn yp if _> m, Y on {t _> r} for each i, Zn Zp r/t as long as

t >_ m and r/t- 0 on {t > r} we deduce from the previous inequality that

IV supep(t ^’)laYtl + eP* aY, d8 + eP* II az, II =d, rn, (20)
t>0

0 0

where we have set r- :[f " ^e f(s, Ys,n zr) "Y2 [Uds]. But the growth
assumption on I (A3) (3) implies that, up to a constant, F, is bounded from above
by

co*{ I/(s, 0, 0) 12 + + YI 2 + II Z2 II 2 + YI2P)ds

knAr

Since, by assumption (A4) E[f o If(,,O,O) lUd] nd [pr] finite, the
two terms of the previousppsr bound tend to 0 as n goes to . Moreover, coming
back to the definition of (Yn, Zn) for > n, we have

nAr nAr

and by Lemma 4.2 (cf. (17)), the above quantity also tends to 0 with n going to
It remains to check that the same holds true for
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where 4 means
following:

By Jensen’s inequality, it is enough to show the

nAT

If p > 2pA, since E[e2prl12P <_ E[ePPrl12P < cx and -[eP’l 12p] < ,
Lemma 4.1 in [5] gives

0

from which we get the result.
Now, we deal with the case # _< 2pA, which implies 0 < 2A < # _< 2pA < pp. Using

again Jensen’s inequality, we have

e(p- 2"xP)E{eP’xrlIPl}2ds <_ I e2p’X’l12Pl}ds
LnAr n

<_ x-p)preppr 12p s}ds

and since p > 2A, we have E{e(2,x p)prepprl12pls}

_
e(2,X- p)p(s A r)

F{epp’l12pl}. Hence, it follows that

nA"

LnAv

Since 2A-p < 0 and F[ePPrII2P < c, we complete the proof of the last case.
Thus we have shown that 1"n converges to 0 as n tends to c and coming back to in-
equality (20), we get



BSDEs with Polynomial Growth Generators 235

supep(t ^r)[6Y [2 2

[ >_ o
+

o
eI6Y d /

o

o II z II 2d -0,

as n tends to cx, uniformly in m. In particular, the sequence ((Yn, Zn))N is a

Cauchy sequence in qP’ r r.p
"2 "2 and thus it converges in this space to a process (Y, Z).

Moreover, taking into account inequality (16) of Lemma 4.2, Fatou’s lemma implies

IV supepp(t ^ rl Yt 2p eps y 12ds eps ll z [I 2ds
t>0

s s

0 0

<_K(,f). (21)

It remains to check that the process (Y,Z) solves BSDE (13). To do this, we
follow the discussion of R.W.R. Darling and E. Pardoux [5, pp. 1150-1151]. Let us

pick a real number a such that a < 0 A p/2 A pp (this implies that a < p) and let us
fix a nonnegative real number t. Since (Yn, Zn) solves BSDE (15), we have, from
ItS’s formula, for n >_ t,

7" 7"

e ZsdWs

tar tar

+ f es{AYr-f(s, yn n,,z,))d,
nA’r

and we want to pass to the limit in this equation knowing that

IV supep(tAr) lYt hi2 n n

It>_o
-Yt +

o
IY-Y 2d+

o
PIIZ,-ZII2d0,

We have, ea(t r)yea(tA r)Y in L2. Moreover, H61der’s inequality yields

from which we deduce, since 2a < p, that fr s n
re Ysds tends to fr as

A A re Ysds in

r eszn r as L2L1 We remark also that ft r s dWs converges to f re ZsdWs in since,
because of 2a < p,

tar 0

Using HSlder’s inequality, we have
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" Y- .f(s, Y, Z)lds
LnAv_

V/p
i
2a - eP AY- f(s, Yy, zy) d

and we have already proven that the right-hand side tends to 0 (see the definition of
Fn). It remains to study the term f ’^ 7.f(s, Yy, Zr)ds. But, since f is Lipschitz in
z, we have

E elf(s, Yns, Zr)- f(s, yn,,
t^-

and thus this term goes to 0 with n. So now it suffices to show that

eo f(s, yr, Zs f(s, Ys, Z) ds -0,
0

to control the limit in the equation. We prove this by showing that each subsequence
has a subsequence for which the above convergence holds. Indeed, if we pick a

Oe#(t A -) y n12subsequence (still denoted by yn), since we have E[supt > -Yt ]--0,
there exist a subsequence still under the same notation sucti that F-a.s. (Vt, YrYt).
By the continuity of the function f, -.s. (Vt, f(t,Y,Zt)f(t, Yt, Zt)). If we
prove that

supE e" f(s, Y, Zs)- f(s, Ys, Z,) uds < ,
N o

then the sequence f(’,Yn.,z.)- f(.,Y.,Z.)l will be a uniformly integrable
sequence for the finite measure eaSls < 7.ds(R)d (remember that c < 0) and thus
converge in Ll(eaSls < rds (R)dP), whicl7 is the desired result. But from the growth
assumption on f, we h-ave

[/ ]E elf(s, Yns, Zs)- f(s, Ys, Zs)] 2ds
0

< K_ ecs{tf(s,O,O) / II zZ II a / II z II }d
0
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+ KE {,+ YYl 2p+ [Y 12p}ds
0

Since p > , inequalities (16)-(21), imply that

sup/
N

eCS{]f(s,O,O)[ 2-}- m-+- ]] Z [I 2 + I[ Zs [[ 2}ds
0

is finite. Moreover,

e Yn 2pds E 0<t<7.supePPt Y
2p e(- PP)ds.

13 0

Since pp > a, we conclude the proof of the convergence of the last term by using the
first part of inequalities (16)-(21). Passing to the limit when n goes to infinity, we

get, for each t,

7" 7.
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It then follows by It6’s formula that (Y,Z) solves the BSDE (13).
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