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In this paper, we give existence and uniqueness results for backward stocha-
stic differential equations when the generator has a polynomial growth in
the state variable. We deal with the case of a fixed terminal time, as well
as the case of random terminal time. The need for this type of extension
of the classical existence and uniqueness results comes from the desire to
provide a probabilistic representation of the solutions of semilinear partial
differential equations in the spirit of a nonlinear Feynman-Kac formula.
Indeed, in many applications of interest, the nonlinearity is polynomial,
e.g. the Allen-Cahn equation or the standard nonlinear heat and Schrédin-
ger equations.
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1. Introduction

It is by now well-known that there exists a unique, adapted and square integrable
solution to a backward stochastic differential equation (BSDE for short) of type

T T
Vizer [ s ¥zt~ [ 24w, osisr,
t t

provided that the generator is Lipschitz in both variables y and z. We refer to the
original work of E. Pardoux and S. Peng [13, 14] for the general theory and to
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N. El Karoui, S. Peng and M.-C. Quenez [6] for a survey of the applications of this
theory in finance. Since the first existence and uniqueness result established by E.
Pardoux and S. Peng in 1990, many authors including R.W.R. Darling, E. Pardoux
[5], S. Hamadene (8], M. Kobylanski [9], J.-P. Lepeltier, J. San Martin [10, 11], see
also the references therein, have tried to weaken the Lipschitz assumption on the
generator. Most of these works deal only with real-valued BSDEs [8-11] because of
their dependence on the use of the comparison theorem for BSDEs (see e.g., N. El
Karaoui, S. Peng, M.-C. Quenez [6, Theorem 2.2]). Furthermore, except for [11], the
generator has always been assumed to be at most linear in the state variable. Let us
mention nevertheless, an exception: in [11], J.-P. Lepeletier and J. San Martin
accommodate a growth of the generator of the following type: C(1+ |z | |log
lz| 1), C(1+ x| |log|log|a]| | [)...

On the other hand, one of the most promising field of applications for the theory
of BSDEs is the analysis of elliptic and parabolic partial differential equations (PDEs
for short) and we refer to E. Pardoux [12] for a survey of their relationships. Indeed,
as it was revealed by S. Peng [17] and by E. Pardoux, S. Peng [14] (see also the
contributions of G. Barles, R. Buckdahn, E. Pardoux [1], Ph. Briand [3], E. Pardoux,
F. Pradeilles, Z. Rao [15], E. Pardoux, S. Zhang [16] among others), BSDEs provide
a probabilistic representation of solutions (viscosity solutions in the most general
case) of semilinear PDEs. This provides a generalization to the nonlinear case of the
well known Feynman-Kac formula. In many examples of semilinear PDEs, the
nonlinearity is not of a linear growth (as implied by a global Lipschitz condition) but
instead, it is of a polynomial growth, see e.g. the nonlinear heat equation analyzed by
M. Escobedo, O. Kavian and H. Matano in [7]) or the Allen-Cahn equation (G.
Barles, H.M. Soner, P.E. Souganidis [2]). If one attempts to study these semilinear
PDEs by means of a nonlinear version of the Feynman-Kac formula, alluded to
above, one has to deal with BSDEs whose generators with a nonlinear (through
polynomial) growth. Unfortunately, existence and uniqueness results for the solutions
of BSDEs of this type were not available when we first started this investigation and
filling this gap in the literature was at the origin of this paper..

In order to overcome the difficulties introduced by the polynomial growth of the
generator, we assume that the generator satisfies a kind of monotonicity condition in
the state variable. This condition is very useful in the study of BSDEs with random
terminal time. See the papers by S. Peng [17], R.W.R. Darling, E. Pardoux [5], Ph.
Briand, Y. Hu [4] for attempts in the spirit of our investigation. Even though it
looks rather technical at first, it is especially natural in our context: indeed, it is plain
to check that it is satisfied in all the examples of semilinear PDEs quoted above.

The rest of the paper is organized as follows. In the next section, we introduce
some notation, state our main assumptions, and prove a technical proposition which
will be needed in the sequel. In Section 3, we deal with the case of BSDEs with fixed
terminal time: we prove an existence and uniqueness result and establish some a
priori estimates for the solutions of BSDEs in this context. In Section 4, we consider
the case of BSDEs with random terminal times. BSDEs with random terminal times
play a crucial role in the analysis of the solutions of elliptic semilinear PDEs. They
were first introduced by S. Peng [17] and then studied in a more general framework
by R.W.R. Darling, E. Pardoux [5]. These equations are also considered in [12].
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2. Preliminaries
2.1 Notation and Assumptions

Let (Q,%,P) be a probability space carrying a d-dimensional Brownian motion
(Wi > o and (F,), > o be the filtration generated by (W,), s o- As usual, we assume
that each o-field ¥, has been augmented with the P-null sets to make sure that
(¥F,)¢ >0 is right continuous and complete. For y € RF, we denote by ly| its
Euclidean norm and if z belongs to RFX9, || z|| denotes {tr(zz*)}l/z. For ¢ > 1, we
define the following spaces of processes:

oy, = {1& progressively measurable; 1, € RF; || || $: :[IE sup |9, ] q] < 00},
e lo<t<T

T q/2
® 36, = ¥ progressively measurable; 1, € Rk x4, Nolld=E |:( g | I 2dt> }< oo

and we consider the Banach space ".Bq =¥ S J-Bq endowed with the norm
T q/2
1(Y,2)||4=E [ sup |Yt|‘1]+[E ( / |z, %dt
0<t<T |

We now introduce the generator of our BSDEs. We assume that f is a function de-
fined on Qx[O,T]xIkaIRkXd, with values in R* in such a way that the process
(f(ty:2)); ¢ 0,T is progressively measurable for each (y,z) in R* xR¥ X4, Further-
more, we make the following assumption.
(A1) There exist constants v >0, p€R, C >0 and p > 1 such that P-a.s., we
have:
(1) Vt,Vy, V(Z, zl)’ | f(tay;z) - f(tay’ Z/) | _<_ 8 ” z—2 ” >
(2) Vt,VZ, V(y, yl)’ (y - yl) : (f(ta Y, Z) - f(t’ y,a Z)) < - U | Y- y/ ' 2;
(3) YV Vz, | f(Ly,2)| < | F(50,2)] +C(1+ [y]P)
(4)  Vt,Vz,y—f(t,y,2) is continuous.
We refer to condition (A1)(2) as a monotonicity condition. Our goal is to study
the BSDE

T T
Vo=e+ [ 16y 2)is- [ 24w, ost<T, 1)
t i

when the generator f satisfies the above assumption. In the classical case p =1, the
terminal condition § and the process ( f(t’ovo))te[o,T] are assumed to be square
integrable. In the nonlinear case p > 1, we need stronger integrability conditions on
both £ and (f(t,0,0)), ¢ [0, T} We suppose that:

(A2) ¢ is a Fp-measurable random variable with values in R* such that

T

14
E[]€[2P]+E (/ |f(s,o,0)|2ds) < oo.

0
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Remark: We consider here only the case p > 1, since the case p =1 is treated in
the works of R.W.R. Darling, E. Pardoux [5] and E. Pardoux [12].

2.2 A First A Priori Estimate

We end these preliminaries by establishing an a priori estimate for BSDEs in the case
where € and f(t,0,0) are bounded. The following proposition is a mere generalization
of a result of S. Peng [18, Theorem 2.2] who proved the same result under a stronger
assumption on f namely,

Yty,z, |f(ty,2)| <atv|y| +&]z].

Our contribution is merely to remark that his proof requires only an estimate of
y- f(t,y,%) and thus that the result should still hold true in our context. We include
a proof for the sake of completeness.

Proposition 2.1: Let (Y, 2,)), ¢ [,7] € By be a solution of the BSDE (1). Let us
assume moreover that for each t,y, z,

y-f(ty,2)<alyl +vlyl?+xlyl-|lz], and, || €] o <6

Then, for each € >0, we havve, setting B=¢+20+ k% if e+ 20+ k%> 0, =1
otherwise, o7 2
2 2 o BT

sup |Y,|* < 6% +=5(ePF —1).

OStSTI e il )

Proof: Let us fix t €[0,T]; B will be chosen later in the proof. Applying 1t5’s
formula to 2(* —1) | Y, |2 between t and T, we obtain:

T
A R AL P A
t

T
= |£|2eﬂ(T_t)+2/ eﬂ(s—t)ys'f(svys»Zs)ds_Mtv
t
provided we write M, for 2 Ths-ty .z dW . Using the assumption on (¢, f) it
t t s s s

follows that
T

PR R AL PAY
t
T
sé"’e"T”/ O NalY, | +v|Y, 12 +5]Y,| - |12,] }ds— M,
t

- . . 2 .
Using the inequality 2ab < % + nb2, we obtain, for any € > 0,

T
m|2+/ =061y, 2+ || 2, || 2)ds
t
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T
2
< 5287 1 / TN 1 (4 2w+ %) | Y, | }ds
t

T T
+/ eﬂ(s‘t)||Zs||2ds—2/ Pty . z4w,,
t t

and choosing 8 = € + 2v + k? yields the inequality

T
2
1Y, |2 <6%°T + g—‘ﬁ(eﬂT —1)- 2/ Py . z.aw,.
t

Taking the conditional expectation with respect to ¥, of both sides, we get
immediately that

2
VEE(0,T], |Y,|? <%t 4 2P 1),

which completes the proof. O

3. BSDEs with Fixed Terminal Times

The goal of this section is to study BSDE (1) for fixed (deterministic) terminal time
T under assumptions (Al) and (A2). We first prove uniqueness, then we prove an a
priori estimate and finally we turn to the existence.

3.1 Uniqueness and A Priori Estimates

This subsection is devoted to the proof of uniqueness and to the study of the integra-
bility properties of the solutions of the BSDE (1).

Theorem 3.1: If (A1) (1)-(2) hold, the BSDE (1) has at most one solution in the
space B,.

Proof: Suppose that we have two solutions in the space B,, say (Yl,Zl) and
(Y2,7Z%). Setting 6Y =Y! —Y? and 6Z = Z' — Z? for notational convenience, for
each real number « and for each t € [0,T], taking expectations in It6’s formula gives:

T

E eo‘t|6Yt|2+/ e |62, || *ds
t

T
=E / e {28Y - (f(s,Y, Z}) ~ f(5,Y%,Z%)) —a | Y, | *}ds |
t
The vanishing of the expectation of the stochastic integral is easily justified in view of

Burkholder’s inequality. Using monotonicity of f and the Lipschitz assumption, we
get:
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T
E eatléYt|2+/ e*® || 62, %ds
t
T

T
<E 27/ e** | 6Y, | ||6Zs||ds—(a+2,u)/ e*® | 8Y, | %ds |
t t

Hence, we see that
T
E eat|5yt|2+/ e |62, || %ds
t

T T

< (272 -2u—-a)E / e*®| 6Y | %ds +%[E / e® |62, | %ds |
t t
We conclude the proof of uniqueness by choosing o = 29?2 —2u+1. ]

We close this section with the derivation of some a priori estimates in the space
B,,. These estimates give short proofs of existence an uniqueness in the Lipschitz
context. They were introduced in a “LP framework” by E. El Karoui, S. Peng, M.-C.
Quenez [6] to treat the case of Lipschitz generators.

Proposition 3.2: For ¢ = 1,2, we let (Y',Z2%) € By, be a solution of the BSDE

T T
vi=g¢ 4 / fi(s, YL, Z8)ds — / 7w, 0<t<T,
t t
where (€', f') satisfies assumptions (A1) and (A2) with constants Yoy and C;. Let

e be such that 0 <e <1 and a> (v,)%/e—2u;. Then there ezxists a constant K5,
which depends only on p and on € and such that

T p
E| sup eP*|8Y,|?P + /e“t||§Zt||2dt)
0<t<T
- = 0
T 2p
< KoE| c@PT | 5| 2P 4 /e73|6fs|ds ,
0

where 86 =¢' €26y =Y -Y? $z=2'-2% and 6f. =fY-,Y% 7% -
fA-,Y%,2%).  Moreover, if a> (71)2/6—2u1, we have also, setting v=oa—
(11)%/e +2py,

T P , T »
ot 2 B; apT 2p %s
E oY, |2t | | <P E|*PT 8617+ e2 [8f,lds | |

0 0
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Proof: As usual, we start with Itd’s formula to see that

T T
eo‘t|6Yt|2+/e"‘s||6Z8||2ds:e°‘T|6£|2+2/e"séYs
t t

T
-(fl(s,Yg,zg)—f2(s,Y§,Z§))ds—/ ae®® | 6Ys, | 2ds — M,,
t

where we set M, =2 [Te*§Y .67 dW, for each ¢t €[0,T]. In order to use the
monotonicity of f! and the Lipschitz assumption on f!, we split one term into three
parts, precisely we write

8Y, - (fY(s, YL, 2Y) — f3(s, Y2, 22)) = 6Y - (f1(5, Y}, 2}) - f(5,Y2, Z}))
+6Y, - (FY(s, Y2, ZY) - (s, Y2, Z2D) + 6Y - (F(s, Y2, Z2) — f(5,Y2, 22)),

and the inequality 27, | Y, | - || Z,I| < ((71)%/¢)|Y,|%+¢ || Z,]| implies that

T
6y, |2+ (=) [ e oz, ]|%s
t

T
2
SeaT|6£l2+/ eas{_a_2#1+(761:) }|5Y3|2ds

t

T
+2/ e |6Y,| - |6f,|ds— M,
t

Setting v = a + 21, — (71)%/¢, the previous inequality can be rewritten in the follow-
ing way:

T T
eo‘tléYt|2+(1—5)/ eo‘s||6Zs||2ds+l// e®| 8Y, | %ds
t t

(2)
T
§e°‘T|6§|2—Mt+2/ e |8Y,| - |6f,|ds.
t

Taking the conditional expectation with respect to ¥, of the previous inequality, and
since the conditional expectation of M, vanishes, we deduce that

T
et |8Y,|2<E eaT|5g|2+2/ e |8Y, | - |6f,|ds|F, ¢
0
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Since p > 1, Doob’s maximal inequality implies
T

p
[E[O sup ePat|5Yt|2P]ng[E ePaT|5g|2P»( /e‘”|6Y3|-|6fs|ds)

<t<<T
- = 0

T p
< K B P | 6617 + sup {e@"“)twtlp}( / e‘“/z’sléfslds)
0<t<T 0

where we use the notation K_ for a constant depending only on p and whose value
could be changing from line to line. Due to the inequality ab < a? /24 b? /2, we get

T 2p
[E[ sup epo‘tléYtlzp]SKp eapT|5€|2p*( /e(a/2)s|6fs|ds)
0<t<T A

+%[E [ sup eP|6Y, | 2”],
0<t<T

which gives
T

2p
[E[ sup epa‘wytw]gKPE e“pT|6€|2”«}( /e(a/2)s|6fs|ds) . 3)
0<t<T

0
Now coming back to inequality (2), we have, since ¢ < 1,

T

AR

0
T T

———lig (e“Tl6£|2+2/ e®|6Y, | - |6f3|d3—2/ easays.gzsdws)_

0 0

IN

By Burkhdlder-Davis-Gundy’s inequality, we obtain

T P T i
E ( /eas||6Zs||2ds) <KSE e“PT|6£|2”»( /e“’léYsl-léf,IdS)

0 0

T p/2
+KSE ( /62a3|6Y8|2||6Z3”2ds) .

0

Thus it follows easily that

T 14
( / 1|62, | 2ds)

0
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T

p
< KSH ePT | 6¢ | 2P 4 sup {e(PO‘/”t]éYtl”}( / e(a/z)sléfslds)
0<t<T 0

T P/2
KESE (pa/2)t §Y.|P as || §7 2d
+ P sup {6 l tl } € ” s ” s U

0<tLT
- - 0

which yields the inequality, using one more time the inequality ab < a? /2+ bz/ 2,

T p
( [ ez, st)
0
T

2p
<K e"‘”T'65'2”52‘:‘2T6”“tlm|2"+( / 6("‘“)sws|ds)
- = 0

1
)

T p
(/eo‘s||6Zs||2ds) .
0

Taking into account the upper bound established for E[sup, <, <« 7¢P*|6Y,|2P],
given in (3), we derive from the above inequality, -

T p T 2p
E (/e""lléZSI[zds) < K<E eaPT|55|2P»( /e(a/z)s|6fs|ds) ,

0 0

which concludes the first part of this proposition. For the second assertion, we
simply remark that (2) gives

T
v/e"‘s|6Ys|2ds
0

T T
<|eT|6c|24+2 [ e |6Y_|-|6f.|ds—2 | e*6Y_-6Z dW_ |
S L S S S

0 0

A similar computation gives:

0

T P
vPE ( /eas|6YS|2ds)
0

2p

T

< K°E ¢@PT | §¢ | 2P 4 sup epatléytlw*( / e(a/2)s|5f5|ds)
0<t<T
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T p
+1E / |62, || 2ds
2 s ’
0
which completes the proof using the first part of the proposition already shown and
keeping in mind that if o > (v;)%/e — 24, then v > 0. ]

Corollary 3.3: Under the assumptions and with the notation of the previous pro-
position, there exists a constant K, depending only on p,T,u, and vy, such that

T P T
E| sup |6Yt|2”+(/ ||6Zt||2dt) < KE| |8¢|%P /l6f3|ds
0<t<T A

0

2p

Proof: From the previous proposition, we have (taking ¢ = 1/2)

T
E| sup ePo|sY, |2”+</e°‘t||6Zt||2dt
0<t<T o

T 2p

[e ]

T L
SKE|e* |<5€|2"¢(/~‘«’2 |5fs|d8) )

0

p

and thus

<K, ePToVE| [s¢] 2P

P
e~ PTa"E| sup |6Yt|2p4( H 82, || %dt
0<t<T
Z

|67, |ds)

It is enough to set K = ¢? | *! TK to conclude the proof. 0

Remark: It is easy to verify t that assumptions (A1) (3)-(4) are not needed in the
above proofs of the results of Proposition 3.2 and its corollary.

Corollary 3.4: Let ((Y4,2,))g <1< € Byp be a solution of BSDE (1) and let us
assume that € € L*P and assume also that there exzists a process (f, )0<t<T€
(IR ) such that

V(s,y,2) €[0,T] x RF x Rk %,
v fs9,2) < lyl- 1 f | —plyl®+vlyl- |zl

Then, if 0 <e <1 and a >y /5 —2u, there exists a constant Kp, which depends only
on p and on € such that:
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T p
E| sup ePot|y,|2P4 /e“‘||Zt||2dt
0<t<LT
- - 0
T p
<SKGE [e*PT|€]%P + /efslfslds ,
0

Proof: As usual, we start with 1t0’s formula to see that

T
AR I PAR
t
T T
=eT|¢| 2+2‘/ e*’Y, - f(s,Y,, Z,)ds - / ae®® | Y, | %ds — M,
t t
provided that we set M, = 2f$easYs - Z AW for each t € [0,T]. Using the assump-

tion on y-f(s,y,2) and then the inequality 2y |Y,|- || Z,|| < (¥%/¢)| Ysl2+
el Z, || % we deduce that

T
Y24 (1-e) [ el s
t

T T
2
<eTg)24 [ oozt v, Jdsrz [ )Y, |- 17, 1ds— M,
t t

Since o > 2p — 72/5, the previous inequality implies

T T
eo‘tIYt|2+(l—e)/ eas||ZsH2ds§e°’T|£|2+2/ e\ Y, || fylds—M,.
t t

This inequality is exactly the same as inequality (2). As a consequence, we can
complete the proof of this corollary as that of Proposition 3.2. a

3.2 Existence

In this subsection, we study the existence of solutions for BSDE (1) under
assumptions (Al) and (A2). We shall prove that BSDE (1) has a solution in the
space B, . We may assume, without loss of generality, that the constant u is equal
to 0. In(feed, (Y, 2y, €[0,T] solves BSDE (1) in “.B2p, if and only if, setting for each
tefo,7)

Y, = e_"th, and Z, = e""tZt,
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the process (Y, Z) solves in B, p the following BSDE:
T T

:Z+/ f(s,Ys,Zs)ds—/ Zdw,, 0<t<T,

0 t

where € = e~ HT¢ and f(t,y,2) = e Hf(t ety ettz) +py. Since (€,f) satisfies
assumption (Al) and (A2) with ¥ =7, i =0 and C = Cexp(T{(p—1Du™* +
£~} + | ]|, we shall assume that g = 0 in the remaining of this section.

Our proof is based on the following strategy: first, we solve the problem when the
function f does not depend on the variable z and then we use a fixed point argument
using the a priori estimate given in subsection 3.1, Proposition 3.2 and Corollary 3.3.
The following proposition gives the first step.

Proposition 3.5: Let assumptions (Al) and (A2) hold. Given a process
(Vo <t < in the space 3oy, there exists a unique solution ((Yy,Z,)), clo, 7] I the
space?B to the BSDE

T T
Y, =€+ / f(s, Y,V )ds — / Z AW, 0<t<T. (4)
t i

Proof: We shall write in the sequel h(s,y) in place of f(s,y,V,). Of course, h
satisfies assumption (A1) with the same constants as f and (h(-,0)) belongs to 3,
since f is Lipschtiz with respect to z and the process V belongs to I}Gz What we
would like to do is to construct a sequence of Lipschitz (globally in y unlformly with
respect to (w,s)) functions h, which approximate h and which are monotone.
However, we only manage to construct a sequence for which each h,, is monotone in a
given ball (the radius depends on n). As we will see later in the proof, this “local”
monotonicity is sufficient to obtain the result. This is mainly due to Proposition 2.1
whose key idea can be traced back to a work of S. Peng (18, Theorem 2.2].

We shall use an approximate identity. Let p: R*SR. be a nonnegative C*
function with the unit ball for support and such that [ p(u)du=1 and define for
each integer n > 1, p, (u) =n kp(nu). We denote also, for each integer n, by ©, aC®
function from R¥ to R, suchthat 0<©,<1,0,(u)=1for |u| <nand© (u) =0
as soon as |u| >n+1. We set, moreover,

c e s
n n—é—— otherwise,
[¢]
and,
~ h(s,y) if | h(s,0)| <n,
ha(oy) = R __h(s,y) otherwis
————h(s, e.
(s, 07

Such an Zn satisfies assumption (Al) and moreover we have |[£ | <n and
|%n(s,0)| <n. Finally, we set g(n) =[el/z(n+2C’)\/ 1 +T2]+ 1, where [r] stands

as usual for the integer part of r and we define
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(s 1) = p*(Og() 4 1hn(5 1)) 5 €[0,T]

We first remark that h, (s,y) =0 whenever |y| >q¢(n)+3 and that A (s, -) is
globally Lipschitz with respect to y uniformly in (w,s). Indeed, h, (s, -) is a smooth
function with compact support and thus we have sup Rkl Vh,(sy)] =

yeE

SUp | 4| <q(n)+3| V h,(s,y)|and, from the growth assumption on f (A1) (3), it is
not hard to check that l’l\{n(s, y)| <nA|h(s,0)| +C(1+ |y|P), which implies that

| Vha(s,9) | < (nfn+CO+ 20y 1P+ 0221 [ 19 p(0) | du
As an immediate consequence, the function A, is globally Lipschitz with respect to y

uniformly in (w,s). In addition, |¢,, | <n and |h,(s,0)| <nA |h(s,0)| +2C and
thus Theorem 5.1 in [6] provides a solution (Y™, Z™) to the BSDE

T T
vp=g,+ [ b vDis— [ zaw, ose<T, (5)
t t

which belongs actually to G.Bq for each ¢ > 1. In order to apply Proposition 2.1 we
observe that, for each y,

y-h,(s,y)= /pn(u)@q(n) n (v = u)y - ’Hn(s, y—u)du

= [ 208,y 1= 0y (Fofos =) =T (s, — )}

* / POy 41y = Wy - h(s, — u)du.

Hence, we deduce that, since the function %n(s, -) is monotone (recall that ;=0 in
this section) and in view of the growth assumption on f, we have:

V(s,y) € %[0, T}, y-hy(s,y) <(nA |h(s,0)| +2C)|y]. (6)

This estimate will turn out to be very useful in the sequel. Indeed, we can apply
Proposition 2.1 to BSDE (5) to show that, for each n, choosing ¢ = 1/T,

mpT|yy|5(n+2cyV%/y+T? )

0<t<

On the other hand, inequality (6) allows one to use Corollary 3.4 to obtain, for a
constant K P depending only on p,

T p
sup € | sup w?i%( / ||Z?u2dt)
neN [0<t<T

0
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T 2p
<K, |€|2”+(/{|h(3,0)|+20}d3) : (8)
0

It is worth noting that, thanks to |h(s,0)| < | f(5,0,0)| +v]||V,]||, the right-hand
side of the previous inequality is finite. @We want to prove that the sequence
((Y™,Z™))y converges towards the solution of BSDE (4) and in order to do that we
first show P’:‘hat the sequence ((Y™,Z"))y is a Cauchy sequence in the space B,. This
fact relies mainly on the following property: h, satisfies the monotonicity condition
in the ball radius g(n). Indeed, fix n € N and let us pick y,y’ such that |y| < q(n)
and |y'| < q¢(n). We have:

U =1) (ha(5:9) = ha(5:90) = 0 =0) [ a0y 110 = (o9~

— (y _ yl) . /pn(u)@q(n) + 1(!/' _ u)’i;n(s, Y — u)du.

But, since |y |, |y'| < g¢(n) and since the support of p,, is included in the unit ball,
we get from the fact that ©, ), (¢) =1 assoon as |z | <q(n)+1,

(y=9)(h(5,9) = h,(s,9") = / ()Y —y) - (hn(s,y —u) = h (5,9’ —u))du.

Hence, by the monotonicity of %n, we get

Vy,y' € B(0,9(n)), (y—y'): (hy(s,y) —hy(s,y)) 0. 9)

We now turn to the convergence of ((Y",2"))\. Let us fix two integers m and n
such that m > n. Itd’s formula gives, for each ¢ € [0,T),

T T
0¥, 124 [ 162,01%s = 16612 +2 [ 6, (hyo(5,YT) =l YI)ds
t t
T

—2 / 8Y,-82,dW,,
t

where we have set 6§ =¢,, —¢,, Y =Y -Y" and 6Z=2"—~2Z". We split one
term of the previous inequality into two parts, precisely we write:

6Ys : (hm(s’ Y;n) - hn(s’ Y?))
= 6Ys ' (hm(s?YT) - hm(s’ Y?)) + 6Ys ' (hm(s’ Y?) - hn(s’ Y?))

But in view of the estimate (7), we have |Y7'| <g(m) and |Y7| <¢(n) < q(m).
Thus, using property (9), the first part of the right-hand side of the previous inequali-
ty is non-positive and it follows that
T T
(8124 [ 162,175 < 1661242 [ 18Y, ]+ 1h(s, YD) =5, YD) | ds
t ¢
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T
2 / 5Y,-52,dW,. (10)

t
In particular, we have

T T
E [ 167,1%as|<2E| 18617+ [ 18V, [h(s, YD) =hy(s, YD) | ds |
0 0

and coming back to (10), Burkhélder’s inequality implies

T
E[sm>|5ﬂ|1SKE[I&|”+/ |8 51 T hpn(s, YE) = hp(s, YY) | ds
0 T
0

<t<
T 1/2
+(/ |6Ys|2||6zsn2ds) ,

0

and then using the inequality ab < a%/2 + b%/2 we obtain the following inequality:

T
E{ sup wym]sm-: |6e|2+/ 18, |+ | hyu(5,Y™) = ho(5,Y™) | ds
0<t<T A

T
2
+5E[, qup  16v.) |+ JREARY

0<t<T |

from which we get, for another constant still denoted by K,

T
E| sup |6Yt|2+/ 162, || %ds
0<t<T 5

T
SKE [ |87+ [ 18,1+ [hyls, YD)~ hy(s,¥2) | ds |
0

Obviously, since ¢ € L%P, 8¢ tends to 0 in L% as n,m—oo with m >n. So, we have
only to prove that

T
E / [6Y | - | (5, Y) = h,(5,Y]) | ds | =0, as n—oo.
0

For any nonnegative number k, we write

T
S;n=E|: / 1|y?]+ YT Sk|6Ys| N hy(8,YE) = hy(s, YY) [ ds
0
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T
R?:{ / 1|Y?| + |y;n| Zkl(sYsl ) |hm(s’Yg)—hn(s’Yg)|d37
0

and so with these notations we have

T

0

and hence, the following inequality:

T

E / 16Y, ] - [h(5,Y") = h(s,Y™) | ds
0
T
< KE / sup | h(5,9)—h(s,9)|ds |+ B (11)
ly| <k
0

First we deal with R]' and using Holder’s inequality we get the following upper
bound:

p=-1
T 2p

m
I R TP TNIICE
0

T 2p 2p 2p
E / 16Y,|PF T |k, (s,Y™) = h(s,Y")]| P+ 1ds .
0

2p 2p
Setting A =E [fg [8Y, [P R, (5, YT) —h,(s,YT)|PT 1d.f;jl for notational
convenience, we have
p-1
T 2p P+l
2
Rp< [PAYZI+ YR 20asy 4, 77,
0
and Chebyshev’s inequality yields:
p—1
T 2p p+1
1- n m|\2 ™3
RM < k- P / E[(1y?] + Y7 2P )sy AL 2P
0
p—1 p—1 mP 1
< opp 2P {sup E [ sup |yg|2p]} P pl-py 2P (12)
neN [0<t<T
We have already seen that sup c NIE[sup0 <i<T|YPI 21’] is finite (cf. (8)) and we
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shall prove that A}’ remains bounded as n,m vary. To do this, let us recall that

T 2p 2p
AT = / 16Y, |PFT [ b, (s,Y7) = h (s,¥Y7)|P T 1ds |
0

and using Young’s inequality (ab < ta” + 15 Whenever 14Ll=1) withr=p+1
r 7'* r

and r* = p—;-l we deduce that

AT <

T T
_5—};—][[5 / |6Y | *Pds +;)%IE / | Bp(5, Y 2) = (s, Y7) | 2ds |
0

0

The first part of the last upper bound remains bounded as n,m vary since from (8)
we know that sup N[E[sup0 <t<T | Y7 2P] is finite. Moreover, we derive easily
from the assumption (Al) that™ | A (s,y)| <nA |h(s,0)| +2PC(1+ |y|P), and
then,

| h(s,Y3) = ho(s, YY) | <2|h(s,0)| +2P+1C(1+ |Y]|P),

which yields the inequality, taking into account assumption (A1) (1),

T

El [ Iha(s, Y= h(s,¥D) | s
0

T
<KE| [ 00241V, 1241+ |7 ?)ds |
0

Taking into account (8) and the integrability assumption on both V and f(-,0,0),
we have proved that sup,, ., AT < oo.

Coming back to inequality (12), we get, for a constant &, R}’ < kk®! ~ P, and since
p > 1, R can be made arbitrarily small by choosing k large enough. Thus, in view

of estimate (11), it remains only to check that, for each fixed k£ > 0,

T

E / sup | hyn(5,9) — ho(s,9) | ds
OIyISk

goes to 0 as n tends to infinity uniformly with respect to m to get the convergence of
((Y™,Z™)y in the space B,. But, since h(s, -) is continuous (P-a.s., Vs), h, (s, -) con-
vergences towards h(s, -) uniformly on compact sets. Taking into account that
SUP || <k | h,(s,y)| < |h(s,0)| +2PC(1+ kP), Lebesgue’s Dominated Convergence
Theorem gives the result.

Thus, the sequence ((Y", Z"))N converges towards a progressively measurable
process (Y, Z) in the space B,. Moreover, since (Y™, Z")) is bounded in B, , (see
(8)), Fatou’s lemma implies that (Y, Z) belongs also to the space B,

It remains to verify that (Y,Z) solves BSDE (4) which is nothing but
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T T
Yt=€+/ h(s,Y,)ds—/ ZdW, 0<t<T.
t t

Of course, we want to pass to the limit in BSDE (;)) Let us first notice that £, —¢
in L2P and that, for each ¢ € [0, 7], fZ?dWsaft Z dW ,, since Z™ converges to Z
in the space 352([Rk X d). Actually, we only need to prove that for ¢ € [0,T],

T T
/ h,(s, Y?)ds—>/ h(s,Y,)ds, as n—oo.
t t

For this, we shall see that h_(-,¥Y™) tends to h(-,Y ) in the space L}(Qx[0,T]).
Indeed,

T
E| [ Iho¥D-hY,)]ds
0
T T
<E| [ InfoYD-hevDlds[+H [ 1h6 YD -, ds|
0 0

The first term of the right-hand side of the previous inequality tends to 0 as n goes to
oo by the same argument we use earlier in the proof to see that E[ [ g |6Y, | -
| h(5,YS) = h, (s,Y]) | ds] goes to 0. For the second term, we shall firstly prove
that there exists a converging subsequence. Indeed, since Y™ converges to Y is the
space ¥,, there exists a subsequence (Y 7) such that P-a.s.,

Vte[0,T], Y,i-Y,.

Since h(t, -) is continuous (P-a.s., Vt), P-a.s. (Vt, h(t,Y:j)ﬁh(t,Yt)). Moreover,
since Y € §,, and (Y, )\ is bounded in ¥,, ((8)), it is not hard to check that the
growth assumption on f that

T

sup E / | h(s, Y:j) —h(s,Y,) | %ds | < oo,
ieN 5

and then the result follows by uniform integrability of the sequence. Actually, the
convergence hold for the whole sequence since each subsequence has a converging sub-
sequence. Finally, we can pass to the limit in BSDE (5) and the proof is complete. O

With the help of this proposition, we can now construct a solution (Y, Z) to BSDE
(1). We claim the following result:

Theorem 3.6: Under assumptions (A1) and (A2), BSDE (1) has a unique solution
(Y,Z) in the space B, .

Proof: The uniqueness part of this statement is already proven in Theorem 3.1.
The first step in the proof of the existence is to show the result when T is sufficiently
small. According to Theorem 3.1 and Proposition 3.5, let us define the following
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function @ from B, , into itself. For (U,V)€ B,,, ®(U,V) = (Y,Z) where (Y,2) is
the unique solution in ‘i'sz of the BSDE:

T T
Yt=€+/ f(s,Ys,Vs)ds—f Z AW, 0<t<T.
t t

Next we prove that & is a strict contraction provided that 7T is small enough.
Indeed, if (U, V!) and (U?,V?) are both elements of the space B, , we have,

2p
applying Proposition 3.2 for (Y?, Z') = <I>(U' ') i=1,2,

T p
E| sup |5yt|2p+(/ 162, | %dt
0<tLT
- - 0
T r
- 2 1 2 2
<KE /lf(sY VY= f(s, Y2V |ds | |

0

where Y =Y!—Y? 6§Z2=2'-2% and K_ is a constant depending only on p.
Using the Lipschitz assumption on f, (A1) fl) and Holder’s inequality, we get the
inequality

T p
E| sup |6Y,|%P /||6Zt||2dt
0<tLT
- - 0
T P
<k roe || [ vi-vE) s

0

Hence, if T is such that Kp'szTp < 1, ® is a strict contraction and thus ® has a uni-
que fixed point in the space G.sz which is a unique solution of BSDE (1). The
general case is treated by subdividing the time interval [0,7'] into a finite number of
intervals whose lengths are small enough and using the above existence and unique-
ness result in each of the subintervals. a

4. The Case of Random Terminal Times

In this section, we briefly explain how to extend the results of the previous section to
the case of a random terminal time.

4.1 Notation and Assumptions

Let us recall that (W,), 5 ¢ is a d-dimensional Brownian motion defined on a probabi-
lity space (Q,%,P) and that (%F,), >0 is the complete o- -algebra generated by

Wi > o
Let 7 be a stopping time with respect to (¥,), 5 o and let us assume that 7 is finite
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P-a.s. Let ¢ be a ¥ _-measurable random variable and let f be a function defined on
Qx R, xRF x RF* 4 with values in R* and such that the process (f(-,v, z)) is pro-
gressively measurable for each (y, 2).

We study the following BSDE with the random terminal time 7:

T T
Yt:£+/f(s,Ys,Zs)ds—/stWs, t>0. (13)

tAT tAT

By a solution of this equation we always mean a progressively measurable process
(Y4, Z,)) > o with values in RF x R¥* 9 such that Z,=0if t > 1. Moreover, since T
is finite P-a.s., (13) implies that Y, = £ if t > 7.

We need to introduce a further notation. Let us consider ¢ > 1 and a € R. We
say that a progressively measurable process ¥ with values in R™ belongs to J67(R") if

00 q/2

E / et || 9, || 2dt < 0.

0

Moreover, we say that i belongs to the space 3’;"’ T(R™) if
E | sup /DA™ |4 17| < co.
£>0 ¢

We are going to prove an existence and uniqueness result for BSDE (13) under
assumptions which are very similar to those made in Section 2 for the study of the
case of BSDEs with fixed terminal times. Precisely, we will make in the framework
of random terminal times the following two assumptions:

(A3) There exists constants y >0, p€R, C >0, p>1 and « € {0,1} such that
P-a.s,
(1) Vt,Vy,V(Z, ZI)’ l f(t,y,z) - f(taya Z,) | < Y ” z—2' ” )
2)  VV,Y(u,y), (y—v) (Fty,2) — F(4,y,2) < —ply—vy' 1%
(3)  VeVuVz, | f(by2) | < | F(50,2)] +Cler 191 P)
(4) Vi, Vz,y—f(t,y,2) is continuous.
(A4) ¢ is ¥ _-measurable and there exists a result number p such that p > v —2u

and
. P
E nep"'+{epr+eppr}|§|2p‘< /eP8|f(s,0,0)]2ds)
0
T °
¢( / e(P/z)s|f(s,0,0)|ds) < oo
0

Remark: In the case p < 0, which may occur if 7 is an unbounded stopping time,
our integrability conditions are fulfilled if we assume that
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P

[Ee'"m“w(/e“’“)ﬂf(s,o,on?ds < oo
0

For notational convenience, we will simply write throughout the remainder of the
paper, .‘ffl”" and I}Gfl’ instead of S’Z’ T([Rk) and J-BZ([Rk X d), respectively.

4.2 Existence and Uniqueness

In this section, we deal with the existence and uniqueness of the solutions of BSDE
(13). We state the following proposition.

Proposition 4.1: Under assumptions (A3) and (A4), there ezists at most one
solution of BSDE (13) in the space $5'7 x J65.

Proof: Let (Y!,Z') and (Y2 Z?%) be two solutions of (13) in the space $5'7 x J6.
Let us notice first that Y% =Y2=¢ift>r and Z} = Zf =0 on the set {t>r7}.
Applying 1to’s formula, we get

,
t
AN NSY 1P [ 02,11 %

TAT
r

=2 [ oY, (S5, Y20 ~ 1G5, Y2 ZD)ds

s
tAT

T T
- / pe?* | 6Y | *ds —2 / eP*8Y - 6Z , AW,
tAT tAT

where we have set 8Y = Y1 —Y? and 6Z = Z' — Z?. 1t is worth noting that, since f
is Lipschitz in z and monotone in y, we have, for each € > 0,

V(ty,y',22),2(y —y) - (f(tLy,2) — F(L Y, 7))
S(=2p+7/e)ly—y P +ellz—2|% (14)
Moreover, by Burkhdlder’s inequality, the continuous local martingale

tAT
/ ePS8Y ,- 82, dW,, >0
0

is a uniformly integrable martingale. Indeed,

NE 1/2
El ( / eP%6Y - 67 AW ,)
0 [e.e]
, 1/2
—E / 205 | 6Y | % || 62, || Xds
0



228 P. BRIAND and R. CARMONA

. 1/2
1/2 9
<KE |(, o e107,1%) [eoz,itas) |
0<t<r
== 0
and then,
SNt 1/2 7
pSs . K pt 2 ps 2
E <Z 6, ‘5Z8dWs>oo <oE | sup 1OV, +Ze 162, %ds |,

which is finite, since (6Y,6Z) belongs to the space $5'7 x }£. Due to the inequality
p>v%—=2u, we can choose ¢ such that 0 <e<1 and p>+%/e—2u. Using
inequality (14), we deduce that the expectation of the stochastic integral vanishing, in
view of the above computation, for each ¢, is

.
ELA A6y, o, 12+ () [ )62, ]1%5] <0,
TAT

which gives the desired result. O

Before proving the existence part of the result, let us introduce a sequence of pro-
cesses whose construction is due to R.W.R. Darling and E. Pardoux [5, pp. 1148-
1149]. Let us set A =42/2— u and let (Y™, Z™) be a unique solution of the classical
(the terminal time is deterministic) BSDE on [0, n]:

nAT n
ProE{ e |9, ) + / (2 f(s,e = 2P7 e = 29Zm) _ AP} ds — / Znaw,
TAT t

Since E[e2PAT | £ | 2P] < E[ePPT | € | ?P] and since

r P - P
E (/62’\3|f(s,0,0)|2ds <E /e”’|f(s,0,0)|2ds '

0 0

assumption (A4) and Theorem 3.6 ensure that (Y™, Z™) belongs to the space B,, (on
the interval [0,n]). In view of [12, Proposition 3.1], we have

Y"(rAr)=Y", and, Z"=0o0n {t>r)}.

Since e*"¢ belongs to LZP(QFf), there exists a process (7) in 3{7(2) such that 7, =0 if
t > 7 and

.
e =)+ [ naw,

0
We introduce yet another notation. For each t > n, we set:

Yo =E{ €| F, | =¢,, and, Z7 =1,

and for each nonnegative t:
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Y7 = e_)‘(t/w)??, and, Z} = e =M AT)Z?.

This process satisfies Y, =Y} and Z' =0 on {t> 7} and, moreover, (Y",Z")
solves the BSDE

T T
Y7 = ¢+ / £, (5, Y™ Z7)ds — / 20w, 120, (15)

tAT tAT

where f (t,y,2) =1, ¢ .f(t,y,2) + 1,5 Ay (cf. [5]). We start with a technical
lemma. -
Lemma 4.2: Let assumptions (A3) and (A4) be satisfied. Then, we have, with the

notation
2p

K(& f) = KE| ePPT | €] %P + / P25 £(5,0,0)|ds | |,
0

, P o P
supE supepp(tAT)|Y?|2p+ /6p5|Y?|2d5 + /e”sHZQHst
N [t>0
Z 0 0
< K(&f), (16)
and, also, for o = p — 2,
- P o P
E Supepa(t/\‘r)lct|2p+ /603|<s|2ds + /eas”nSHst
t>0 A o
< KE[ePPT | €| %P]. (17)

Proof: Firstly, let us remark that Zy =n, =0if t > 7 and, since Y = if t > 7,
we have sup, s ge PPTAT) | Y7 | 2P = sup, <t< PP YR 2p Moreover, since

p > 2\, we can find € such that 0 <e <1 and p >~ /6 —2u. Applying Proposition
3.2 (actually a mere extension to deal with bounded stopping times as terminal
times), we get

nAT p nAT 14
E sup eppt|Y?|2p+ (/ eps]Yglzds) +(/ e”8||z?||2ds>
0<t<nAT

0 0
nAT 2p
<KEFE epp(nAT)|Y"(n/\T)l2p+</ elP/2)s lf(s()())lds) .
0
We have Y. , =Yl =e" AR AT (AT | F,. A-} and then we deduce immediately

that, since p/2 — A > 0 and due to Jensen’s inequality

E[eP? "N | Y (n AT | 2] = B[ | E{P/2 VA DA g, Y2
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< E[ePPT | €] 2P]. (18)
Hence, for each integer n,

nAT

E sup eppt|Y:'|2p+(/

p
e’”|Y?|2ds +
0<t<nAT o

nAT p
(/ e‘”IIZ?II2ds) < K(, 1)

0

It remains to prove that we can find the same upper bound for

- P -, p

E sup  ePPL|YT|%P 4 / e | YT %ds | + / P || 27| %ds
nAT<L<t<T
- nAT nAT

But the expectation is over the set {n <7} and coming back to the definition of
(Y,,Z,) for t > n, it is enough to verify that

p
,
E tsg%ep(p—%\)(f NE) 1¢, 127 + / op—2N)s 1¢, ] %ds
- 0
- P
| [ e s | | < KEPT €12

0

in order to get inequality (16) of the lemma and thus to complete the proof, since, in
view of the definition of o, the previous inequality is nothing but inequality (17).
But, for each n, (¢,7n) solves the following BSDE:

n
C=EE1 %, 01— [,dW, 0<t<n,
t

and by Proposition 3.2, since 0 = p —2X > 0,

nAT p
/ e“lcsl%ls)

E sup ep”tICtIZP-I-(
0

0<t<nAT

nAT p
+< / e”un,,u?ds) < KE[eP AT ¢ a1 2P,

0
We have already seen (cf. (18)) that lE[epo(" AT) | ¢ nr | 2P <E[ePPT| €| 2P] and
thus the proof of this rather technical lemma is complete. O

With the help of this useful lemma, we can construct a solution to BSDE (13).
This is the objective of the following theorem.
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Theorem 4.3: Under assumptions (A3) and (A4), BSDE (13) has a unique
solution (Y, Z) in the space $5°7 x 38 which satisfies

P 0o P

)
Elsuper A0y 20 [ ooy, s )+ [ e li2,0% ) < KGED).
- 0 0

Proof: The uniqueness part of this claim is already proven in Proposition 4.1. We
concentrate ourselves on the existence part. We split the proof into the two following
steps: first we show that the sequence ((Y",Z "))N is a Cauchy sequence in the space
$27 x 3£ and then we shall prove that the limiting process is indeed a solution.

Let us first recall that for each integer n, the process (Y, Z") satisfies Y, . =Y}
and Z3; =0 on {t > 7} and moreover solves BSDE (15) whose generator f, is defined
in the following way: f (t,y,2) =1, ¢ .f(t,y,2) +1;5 Ay. If we fix m >n, [t5’s

formula gives, since we have also Y7 \ =Y =Y} =Y/ =e” Alm A T)Cm, for
t<m,
mAT
AL AR
tAT
mAT
= / eP’8Y - (f (s, YT ZT) = f (s, YD, Z27))ds
tAT
mAT mAT
- / peP® | 8Y | 2ds —2 / eP38Y - 6Z AW,
tAT tAT

where we have set Y = Y™ -Y",6Z = Z™ — Z". It follow from the definition of f,,

mAT
L A
tAT
mAT
=92 / e 8Y - (f(s, YT, ZT) — f(s, YT, Z7))ds
tAT
mAT mAT
- / peP® | 8Y | 2ds —2 / eP*8Y - 87 AW,
tAT tAT
mAT
b2 [ 1Y (Y2 - MY D).
tAT

Since p > 72—2,u, we can find an ¢ such that 0 <e <1 and v = p-—72/5+2p>0.
Using inequality (14) with this ¢, we deduce from the previous inequality that
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mAT
ep(t/\‘r)léyt/\fl2+(1_€)/ 6P3”6Z8”2d8
tAT
mAT mAT
< __V/ CPS|§Y3|2ds—2/ eP*8Y - 6z, dW
tAT tAT
mAT
+2/ e”|8Y,| - | f(s,Y™, Z7) = AY" | ds.
(tvn)AT

Now, using the inequality 2ab < wa? + b%/w for the second term of the right-hand
side of the previous inequality, with w <v, we get

, for each t<m, setting
B =min(l —e,v—w) >0,
mAT
DALY ) DAL AL
tAT

<l / eP8| F(s, Y™, Z™) =AY | 2ds (19)
nAE€

mAT
—2/ e’ Y - 6z dW .
tAT
In particular, we have the expectation of the stochastic integral vanish (cf. Lemma
4.2),

AT

m
B[ esisr, 1+ 152, %)
/ |

mAT

<KE e”| f(s, Y7, 27) =AY | %ds |,

nAT

Coming back to inequality (19), Burkholder’s inequality yields

IE[ sup e”t|6Yt|2]
0<t<mAT

mAT

m
< KE / e”’lf(s,Y;‘,Z?)—AY?|2ds+( /
0

AT

nAT

1/2
20| 87,1211 62, | 2ds) .

But, by an argument already used,
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KE ([

NT

1/2
P16y, 1267, || ZdS)

mAT

1/2
1/2
SKIE( sup evt|6Yt|2> (/ e’”II«SZsllzds)
0<t<mAT
- - 0
mAT

-2
SllE sup  ePT|§Y,|? +K°F / P62, | %ds |
2 0<t<mAT 2 5

As a consequence, we obtain the inequality:

mAT

E sup ept|6Yt|2+/ eps{|5ys|2+ ||6ZS||2}ds
0<t<mAT
== 0
mAT
< KE / e | f(s,Y7,27) ~ YT | %ds |,
nAT

and since Y* =Y if t > m, Yi = ¢ on {t > 7} for each i, Z* = Z} =1, as long as
t>m and n, = 0 on {t > 7} we deduce from the previous inequality that

T

o0
E tst;%e EAT) |6y, 12+ /e”s|6Ys|2ds+/ P62, ||%ds |<T,, (20)
0 0

where we have set [, =E[[7  _¢’®| f(5,Y",Z")~AY"|%ds]. But the growth
assumption on f (A3) (3) implies that, up to a constant, I'  is bounded from above
by

,
E| [ e Ur0.0) 2 4et Y2124+ 1 28]+ | V7] ™)as |
nAT
Since, by assumption (A4), E[ [ Te”*| f(s,0,0) | %ds] and E[ke?7] are finite, the first

two terms of the previous upper bound tend to 0 as n goes to co. Moreover, coming
back to the definition of (Y Z n) for t > n, we have

E{/C“{|Y2|2+||Zﬁuz}ds =E| [ e Pge, 2 i, |12
nAT nAT

and by Lemma 4.2 (cf. (17)), the above quantity also tends to 0 with n going to co.
It remains to check that the same holds true for
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T T
E /e”’|Y;'|2pds =E /e("‘“’*)ﬂcslh’ds,

nAT nAT

where (, means !E{e’\"f | F,}. By Jensen’s inequality, it is enough to show the
following:

,
E / P 2’\”)“’[E{e”’\" | €|P|F,}2ds -0, as n—oo.

nAT

If p>2p), since |E[62”AT | €] 2”] <E[ePPT|€|?P] <00 and E[e’T|¢] 2p] < 00,
Lemma 4.1 in [5] gives

i
E / P = PAPIE(PAT | ¢ | P | G 12ds | < oo,
0

from which we get the result.
Now, we deal with the case p < 2p), which implies 0 < 2X < p <2pA < pp. Using
again Jensen’s inequality, we have

r T
E| [ o g p g s |<E| [ EE¢1%19,)ds

nAT nAT

.
<E| [ EE - g2 |3 )as |

nAT

and since p>2), we have E{ePATPIPTePeT|£|2P g ) < (2A-P)P(sAT)
E{eP?T | £]2P|F,}. Hence, it follows that

.
E / elP = PPVELPAT | £ P | F 245

nAT

.
<E| [ oo ¢ g )0

nAT

o0
< E[eppr l€] 2p]/ (2A=p)ps
n

Since 2\ —p <0 and E[eP?T | ¢|2P] < 0o, we complete the proof of the last case.
Thus we have shown that I',, converges to 0 as n tends to co and coming back to in-
equality (20), we get
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T (o)
E tsg%ep(tAT)|6Yt|2+/eps|6Ys|2ds+/ P |62, 2ds -0,
- 0 0

as n tends to oo, uniformly in m. In particular, the sequence ((Y",Z"))N is a
Cauchy sequence in $2'7 x 364 and thus it converges in this space to a process (Y, 7).
Moreover, taking into account inequality (16) of Lemma 4.2, Fatou’s lemma implies

T p o0
E tsg%epp(t/\r)lYtlzpi-(/ep’IYs|2ds »(/eps||Zs||2ds
= 0 0

< K(& ) (21)

It remains to check that the process (Y,Z) solves BSDE (13). To do this, we
follow the discussion of R.W.R. Darling and E. Pardoux [5, pp. 11560-1151]. Let us
pick a real number « such that « < 0A p/2 A pp (this implies that « < p) and let us
fix a nonnegative real number ¢. Since (Y,,Z,) solves BSDE (15), we have, from
Ito’s formula, for n > ¢,

p

, T
ea(t/\r)Y;z = e*TE 4 / eas{f(s’yg,z?)—ayg}ds— / e"SZ?dWs
inT tAT
r
+ / YT — f(s, Y™, Z7)}ds,
nAT

and we want to pass to the limit in this equation knowing that
T oo
E| supe’t A |y, -7 |24 / e | Y, —Y"| 2ds+ / e?* || Z,— Z% || *ds [—0.
t>0
- 0 0

We have, ¢t T)Y:'—eea(t A T)Yt in L2, Moreover, Hélder’s inequality yields
1/2 1/2
T T T
E /e‘”|Y:'—-Yslds <{E /ep3|Y;'—Ys|2ds E /e(za_p)sds
0 0 0
from which we deduce, since 2a < p, that [, e*Y7ds tends to [] . e*°Y ds in

L'. We remark also that [T, e**Z"dW converges to [T, .e**Z dW, in L? since,
because of 2a < p,

2

T T
E / (27— 27,)-dW,| |<E / e

tAT 0

Zn— 27, %ds |

Using Hoélder’s inequality, we have
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.
E| [ e lavr- s, Y0 20 ds

nAT

1/2
,

ST{_E‘(; E /epsl,\yg_f(s,y;‘,z’;)ﬂds )

nAT

and we have already proven that the right-hand side tends to 0 (see the definition of
T',.). It remains to study the term [}, f(s,Y7T,Z7)ds. But, since f is Lipschitz in
z, we have

.
£ [ e 156,020~ 57,2, ds
tAT

1/2
,

Y 2
<Ltg [eriz-z, i)

nAT
and thus this term goes to 0 with n. So now it suffices to show that

T

E / e | f(5, Y™ 2,) = f(s,Y . Z,) | ds |0,
0

to control the limit in the equation. We prove this by showing that each subsequence
has a subsequence for which the above convergence holds. Indeed, if we pick a
subsequence (still denoted by Y™), since we have E[sup, 5, oe” (tAT) Y, —Y7|2]-0,
there exist a subsequence still under the same notation such that P-a.s. (Vt, Y{—-Y,).
By the continuity of the function f, P-a.s. (Vt, f(t,Y},Z,)—f(t,Y,,Z,)). If we
prove that

,
suplE / e‘"’|f(s,Y?,Zs)—f(s,Ys,Zs)|2ds < 00,
N 0
then the sequence |f(-,Y",Z )—f(-,Y ,Z )| will be a uniformly integrable
sequence for the finite measure e*°1, . ds ® dP (remember that o <0) and thus

converge in L!(e*®1, . _ds ® dP), which is the desired result. But from the growth
assumption on f, we have

T

E /eo‘s)f(s,Y';,Zs)—»f(s,Ys,Zs)|2ds
0

.
<KE| [ e (15(5,0,0) 12+ |1 27112+ 112,11 )ds
0
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€
+ KE /e“{m Y™ 2P 4 | Y, | ?P)ds |
0

Since p > a, inequalities (16)-(21), imply that

T

supE /eas{lf(s,0,0)|2+fc+ 120112+ | 2, || 2}ds
0

is finite. Moreover,
T (oo}

E /6“8|Y?|2”ds S[E[ sup e”pt|Y?|2p]/e(°‘“”p)sds.
5 0<t<Lr 5

Since pp > a, we conclude the proof of the convergence of the last term by using the
first part of inequalities (16)-(21). Passing to the limit when n goes to infinity, we
get, for each ¢,

T T

e(tN T)Yt =e*TE+ / e**{f(s,Y,, Z,)—aY }ds — / e**Z dW .
tAT tAT
It then follows by It6’s formula that (Y, Z) solves the BSDE (13). 0
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