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1. Introduction

Minimax inequalities have numerous applications to variational inequalities, while
variational inequalities turn out to be a powerful tool to the solvability of problems
in elasticity and plasticity theory, heat conduction, diffusion theory, optimization
theory, mathematical economics, and others.

Chang and Zhang [1] introduced the notion of the generalized quasiconcavity and
obtained some nonempty intersection theorems and their applications to minimax
inequalities in a linear topological space setting. Recently, Tan [4] extended this
notion to the case of a G-convex space with applications to minimax theorems and
saddle points. Our aim here is to present some G-H-KKM selection theorems and
related applications to minimax inequalities in a G-H-space setting.

Let X be a topological space, P(X) denote the power set of X, and (X), a family
of all nonempty finite subsets of X. Let A™ denote a standard (n—1) simplex
{ey,€9,...,€,} of R™.

Definition 1.1: A triple (X, H,{p}) is called a G-H-space [6] if X is a topological
space and H:(X)—P(X)\{0} is a mapping such that:

) For each F,G €(X), there exists F; C F such that F; CG implies
H(F,)C H(G).

()  For F ={zy,z,,..,2,} € (X), there is a continuous mapping p: A"—H(F)
such that for {i1,i2,...,ik} C {1,2,...,n}, we have p({e;1,€;0,.€;1}) C
H({x;1,2;9,...,x;}), where {z,1,2,9,..,2;;] C F.
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A subset D of X is called finitely G-H-closed in X if for each A € (X), there exists
A C A such that D( 7 )H(A) is closed in H(4).

A subset K of X is said to be compactly closed in X if K( 7 )L is closed in L for
all compact subsets L of X.

Definition 1.2: Let (X,H,{p}) be a G-H-space and T:X—P(X) a multivalued
mapping. T is called a G-H-KKM mapping if for each {x,,z,,...,z,} € (X), there
exists {21, %;9,..., %1} C {xy,2y,...,2,} such that

H({l'il,xi2,...,$ik}) C ( k )T(:L'”) for {il,i2,...,ik} C {1,2,...,"}.
j=1

Definition 1.3: Let (X, H,{p}) be a G-H-space and let M, M,,..., M be subsets
of X. A subset {z,,z,,..,z,} €(X) is said to be a G-H-KKM selection for
M, M,,..,M_ if for any {z;,2;9,..,2;;} C {zy,2q,...,2,}, we have

H({2;1, 29023 }) C ( _ k 1)MU for {i1,42,...,ik} C {1,2,...,n}.
] =

This generalizes the notion of a KKM selection in a pseudoconvex space by Joo’
and Kassay [2].

Definition 1.4: Let X be nonempty set and (Y,H,{p}) a G-H-space. Let
f:XxY—R, eeY—R and h: X—R be functions. The function f is said to be 0-
generalized G-H-quasiconcave (resp. 0-generalized G-H-quasiconvez) in its first
variable z if for each {z,,2z,,...,z,,} € (X), there exists {v;,v,,...,v,} € (Y) such that
flor each {v;1,v4,...,9;1} C{vy,vg,..,v,} and for any y, € H({v;1,v,9,..,v;1}), We

ave

1 gmgl% k[f(l',',', Yo) + €(yo) — h(z;;)] <0

(resp. mnax (@i ¥0) + e(yo) — h(z;)] 2 0),

where {i1,12,...,ik} C {1,2,...,n}.
This generalizes the notion of a 0-generalized quasiconcavity (0-generalized
quasiconvexity) by Chang and Zhang [1].

2. G-H-KKM Theorems and Applications

In this section we first recall and obtain some auxiliary results and then establish
some minimax theorems.

Lemma 2.1: [7] Let (X,H,{p}) be a G-H-space and M, M,,.., M be finitely
G-H-closed subsets of X. Suppose that M,M,,.., M, have a G-KKM selection.
Then (7)2_ M, #0.

Proposition 2.1: Let X be a nonempty set and (Y,H,{p}) a G-H-space. Let
f:XxY—-R, eeY—R and h: X—R be functions. Then the following statements are
equivalent:

(a) A mapping T: X—P(Y) defined by

T(z)={y €Y:f(z,y)+e(y) — h(z) <0}
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(resp. T(x) = {y € Y: f(z,y) +e(y) — h(z) > 0}),

1s a G-H-KKM mapping.
(b) f is 0-generalized G-H-quasiconcave (resp. 0-generalized G-H-quasiconvez)
in its first variable x.
Proof: (a)=>(b) Since T is G-H-KKM, it implies for each {zy,z,,...,z,} € (X)
and corresponding {vy,v,,...,v,} € (Y) that there exist {z;;,;9,...,2;1} C {xy,25,...,
.} {vi1y V00 o v} C {v1,vg,.., v} and any y, € H({v,q,v,9,...,v;;}) such that

H({v;1,v;91- - v35}) C ( j%)T(‘cij)'

This implies y, € ( )T(:c ;)» and as a result, there exists some index m (i <m < k)

such that y, € T(.r ) Hence, f(z;.,¥0)+e(yg) — h(x;,,) <0 (resp. f(x;,., %)+
e(yo) — h(z;,,) > 0). It follows that

1 <mm [f(zt]’yo) + e(yo) h(ng)] <0

(resp. ) én;usc k[f(mij’ Yo) + (o) — h(z;;)] > 0).

(0)=(a) Since f is O-generalized G-H-quasiconcave (resp. 0-generalized G-H-
quasiconvex) in z, it implies for any {z,,z,,...,z,} € (X) and {vy,v,,..,,v,} € (Y),
there exist {v,1,v;9,...,v;5} C {vy,v5,..,9,}, and any y, € H({v;,v,9...,v;%}) such
that

L _<1:an% k[f( 1],1/0) + e(yo) h(mzj)] <0

(resp. max [f(:c”,yo) +e(yq) — h(z) > 0).

It follows that there exists some index m (1 < m < k) such that y, € T(z,,) C ( __)
T(x;;). This completes the proof.

Theorem 2.1: Let X be a nonempty set and (Y,H,{p}) a G-H-space such that
H(F) is compact for all F € (Y). Suppose that f: X xY—R, e:Y—R and h: X—R
are functions satisfying the following assumptions:

(?) f is lower semicontinuous in y on compact subsets of Y.

(i) e is lower semicontinuous on compact subsets of Y.

(iit)  f is 0-generalized G-H-quasiconcave in .

(iv)  There exists an element zy € X such that the set

{y € Y: f(z,y) +e(y) — h(zp) < 0}

ts a compact subset of Y.
Then there exists an elementy €Y such that

f(z,y)+e(y)—h(z) <0 for all z € X.
Proof: Let us define a mapping T: X—P(Y) by

T(z)={y€Y:f(z,y)+e(y)— h(z) <0} for all z € X.
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Since f is 0O-generalized G-H-quasiconcave, it implies that T'(z) is nonempty. It
follows from Proposition 2.1 that T is a G-H-KKM mapping. By (¢) and (i7), each
T(z) is finitely G-H-closed, that is, for each 4 C A € (Y), we have

T(z)(7)H(A) ={y € H(A): f(z,y) +e(y) — h(z) < 0}
={y € H(4): f(z,y) +e(y) < h(z)},

is closed in H(A) by the lower semicontinuity of f and e, so the family
{T(z):z € X} has the finite intersection property by Lemma 2.1. Now applying (iv),
we find that {T'(z)( 7 )T (zy):x € X} is a family of compact subsets of Y. Hence,

(z ;X)T(:c) # 0. That means, there exists an element y ey such that

f(z,y)+e(y)—h(z)<0forall z € X.

This completes the proof.

For Y compact, Theorem 2.1 reduces to:

Theorem 2.2: Let X be a nonempty set and (Y, H,{p}) a compact G-H-space with
H(F) compact for all F € (Y). Suppose that f: XxY—R, e:Y—R and h: X—R are
functions such that:

(7)  f is lower semicontinuous in second variable y.

(79) e is lower semicontinuous.

(743)  f is 0-generalized G-H-quasiconcave in first variable .

Then there is an element y € Y such that

f(my)+ely)—h(z) <0 forallz € X.
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