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1. Introduction

Minimax inequalities have numerous applications to variational inequalities, while
variational inequalities turn out to be a powerful tool to the solvability of problems
in elasticity and plasticity theory, heat conduction, diffusion theory, optimization
theory, mathematical economics, and others.

Chang and Zhang [1] introduced the notion of the generalized quasiconcavity and
obtained some nonempty intersection theorems and their applications to minimax
inequalities in a linear topological space setting. Recently, Tan [4] extended this
notion to the case of a G-convex space with applications to minimax theorems and
saddle points. Our aim here is to present some G-H-KKM selection theorems and
related applications to minimax inequalities in a G-H-space setting.

Let X be a topological space, P(X) denote the power set of X, and (X), a family
of all nonempty finite subsets of X. Let An denote a standard (n-1) simplex
{el, e2,..., en} of Rn.

Definition 1.1: A triple (X,H,{p}) is called a G-H-space [6] if X is a topological
space and H: (X)P(X)\{O} is a mapping such that:

(i)

(ii)

For each F,G E (X), there exists F1 C F such that F1 C G implies
H(F1) CH(G).
.For F {xi, x2,..., xn} (X), there is a continuous mapping p: An-H(F)
such that for {il,i2,...,ik}C{1,2,...,n}, we have p({eii,ei2,...,eik})C
H({Xil,Xi2,...,Xik}) where {Xil,Xi2,...,Xik C F.
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A subset D of X is called finitely G-H-closed in X if for each A E (X), there exists

A C A such that D(- )H(A) is closed in H(A ).
A subset K of X is said to be compactly closed in X if K(-)L is closed in L for

all compact subsets L of X.
Definition 1.2: Let (X,H,{p}) be a G-H-space and T:X-P(X) a multivalued

mapping. T is called a G-H-KKM mapping if for each {Xl, x2,..., Xn} (X), there
exists {Xil Xi2,..., Xik} C {X1, X2,..., Xn} such that

H({Xil,Xi2,...,xik}) C k
)T(xij for {il,i2,...,ik} C {1,2,...,n}.

j=l

Definition 1.3: Let (X,H, {p}) be a G-H-space and let M1,M2,...,Mn be subsets
of X. A subset {Xl,X2,...,Xn} (X) is said to be a G-H-KKM selection for
M1,M2,...,Mn if for any {Xil, Xi2,...,Xik} C {Xl,X2,...,Xn}, we have

H({Xil, Xi2,...,Xik} C
k

)Mij for {il, i2,...,ik} C {1,2,...,n}.
j-1

This generalizes the notion of a KKM selection in a pseudoconvex space by Joo’
and Kassay [2].

Definition 1.4: Let X be nonempty set and (Y,H,{p}) a G-H-space. Let
f:X Y---,R, e:Y---R and h:XR be functions. The function f is said to be 0-
generalized G-H-quasiconcave (rasp. O-generalized G-H-quasiconvex) in its first
variable x if for each {Xl,X2,...,Xn} (X), there exists {Vl, V2,... Vn} (Y) such that
for each {vii v12,... vik} C {v1, v2,..., vn} and for any Yo H({Vil, vi2,’", Vik}), we
have

min [f(xij Yo) + e(Yo)- h(xij)] < 0
l_j_k

(rasp.
1 _<maxj<_ k[f(xij, YO) + e(Yo) h(xij)] >- 0),

where {il, i2,..., ik) C {1, 2,..., n}.
This generalizes the notion of a 0-generalized quasiconcavity (0-generalized

quasiconvexity) by Chang and Zhang [1].

2. G-H-KKM Theorems and Applications

In this section we first recall and obtain some auxiliary results and then establish
some minimax theorems.
Lemma 2.1: [7] Let (X,H, {p}) be a G-H-space and M1,M2,...,Mn be finitely

G-H-closed subsets of X. Suppose that M1,M2,...,Mn have a G-KKM selection.
Then )= 1Mi O.

Proposition 2.1: Let X be a nonempty set and (Y,H,{p)) a G-H-space. Let
f: X x Y---.R, e:YR and h:XR be functions. Then the following statements are
equivalent:

(a) A mapping T:X-P(Y) defined by

T(x) {y e Y: f(x, y) + e(y) h(x) <_ O}
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(rasp. T(x) {y E Y: f(x,y) + e(y)- h(x) >_ 0}),

is a G-H-KKM mapping.
(b) f is O-generalized G-H-quasiconcave (rasp. O-generalized G-H-quasiconvex)

in its first variable x.
Proof: (a)=:v(b) Since T is G-H-KKM, it implies for each {Xl,X2,...,xn}

and corresponding {vl,v2,...,Vn} (YI that there exist {Xil,Xi2,...,xik} C {xl,x2,...,
xn}, {vii, vi2,..., vik} C {v1, v2,..., vk} and any Yo H({Vil, vi2,"’, vik}) such that

H({Vil, Vi2,..., vik} C
k

.)T(xij)"
j=l

This implies Yo (. k
)T(xij), and as a result, there exists some index m (i < m < k)

j=l
such that Yo T(Xim)" Hence, f(Xim Yo) + e(Yo) h(xim) - 0 (rasp. f(Xim Yo) +
e(Yo)- h(xim >_ 0). It follows that

min k[f(xij Yo) + e(Yo) h(xij)] < 0
l<_j<_

(resp. max k[f(xij Yo) + e(Yo) h(xij)] > 0).
<j<

(b)::v(a) Since f is 0-generalized G-H-quasiconcave (resp. 0-generalized G-H-
quasiconvex) in x, it implies for any {Xl, X2,...,z,} (X) and {Vl, V2,...,v,}
there exist {vii vi2,... Vik} C {v1, v2,..., v}, and any Yo H({Vil, vi2,"’, Vik}) such
that

min k[f(xij Yo) + e(Yo) h(xij)] < 0
l<_j<_

(resp. max k[f(xij Yo) + e(yo) h(x) > 0).
l<j<

It follows that there exists some ind.x m l _< m _< ) such that 0 ta,) C

T(ai). This completes the proof. 1

Theorem 2.1: Let X be a nonempty set and (Y,H,{p}) a G-H-space such that
H(F) is compact for all F (Y). Suppose that I:X x Y---R, e:Y---,R and h:X-R
are functions satisfying the following assumptions:

(i) f is lower semicontinuous in y on compact subsets of Y.
(ii) e is lower semicontinuous on compact subsets of Y.
(iii) f is O-generalized G-H-quasiconcave in x.

(iv) There exists an element xo X such that the set

{y Y: f(xo, y) + e(y) h(xo) <_ 0}

is a compact subset of Y.
Then there exists an element y Y such that

f(x,y )+ e( )-h(x) <_ 0 for all x e X.

Proof." Let us define a mapping T: X---,P(Y) by

T(x) {y Y: f(x, y) + e(y) h(x) <_ 0} for all x X.
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Since f is 0-generalized G-H-quasiconcave, it implies that T(x) is nonempty. It
follows from Proposition 2.1 that T is a G-H-KKM mapping. By (i) and (ii), each
T(x) is finitely G-H-closed, that is, for each A C A E (Y), we have

T(x)( )H(A {y H(A )" f(x, y)+ e(y)- h(x) < O}

{y H(A ): f(x, y) + e(y) < h(x)},

is closed in H(A) by the lower semicontinuity of f and e, so the family
{T(x)’x X} has the finite intersection property by Lemma 2.1. Now applying (iv),
we find that {T(x)(- )T(x0): x X} is a family of compact subsets of Y. Hence,

)T(x) # O. That means, there exists an element y Y such that
xEX

f(x,y )+ e(y )-h(x) 0 for all x E X.

This completes the proof.
For Y compact, Theorem 2.1 reduces to:
Theorem 2.2: Let X be a nonempty set and (Y,H,{p}) a compact G-H-space with

H(F) compact for all F (Y). Suppose that f:X x YR, e" Y--,R and h" X---,R are

functions such that:
(i) f is lower semicontinnous in second variable y.
(ii) e is lower semicontinuous.

(iii) f is O-generalized G-H-quasiconcave in first variable x.
Then there is an element y Y such that

)+ )-h(.) <_ 0 for art X.
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