
Journal of Applied Mathematics and Stochastic Analysis, :1 (2002), 1-21.15

Printed in the U.S.A. ©2002 by North Atlantic Science Publishing Company  1

A WEAK CONVERGENCE APPROACH TO HYBRID LQG
PROBLEMS WITH INFINITE CONTROL WEIGHTS

G. GEORGE YIN1

Wayne State University
Department of Mathematics

Detroit, MI  48202 US

JIONGMIN YONG2

Fudan University
Laboratory of Mathematics for Nonlinear Sciences

Department of Mathematics
Shanghai 200433 China

(Received June, 2001; Revised December, 2001)

This work is concerned with a class of hybrid LQG (linear quadratic Gaussian)
regulator problems modulated by continuous-time Markov chains.  In contrast to
the traditional LQG models, the systems have both continuous dynamics and
discrete events.  In lieu of a model with constant coefficients, these coefficients
vary with time and exhibit piecewise constant behavior.  At any time , the system�
follows a stochastic differential equation in which the coefficients take one of the
� � possible configurations where  is usually large.  The system may jump to any
of the possible configurations at random times.  Further, the control weight in the
cost functional is allowed to be indefinite.  To reduce the complexity, the Markov
chain is formulated as singularly perturbed with a small parameter.  Our effort is
devoted to solving the limit problem when the small parameter tends to zero via
the framework of weak convergence.  Although the limit system is still modulated
by a Markov chain, it has a much smaller state space and thus, much reduced
complexity.
   LQC Problem, Hybrid Control, Markov Chains, WeakKey words:
Convergence, Indefinite Control Weight.
   93E20, 60F05.AMS subject classifications:

1The research of this author was supported in part by the National Science Foundation under grants DMS-
9877090 and DMS-9971608.
2The research of this author was supported by the NSFC under grant 79790130, the National Distinguished Youth
Science Foundation of China under grant 19725106, the Science Foundation of MOE of China under grant
2000024605, and the Cheung Kong Scholars Programme of MOE of China.  Part of the work was done while this
author was visiting Wayne State University.



2 G. GEORGE YIN and JIONGMIN YONG

1. Introduction

This work is concerned with hybrid LQG (linear quadratic Gaussian) problems which are a
class of LQG regulator problems modulated by continuous-time Markov chains.  Working
with the finite-time horizon  for some , the dynamic system is given by���� � � � �� �

�������
	
��� 
 �� � ����
��� � � � ���������	�

� ��� ����
��� � � � ���������	���� � � ���� ��

��� 
 
�

� �

� �

                   
              ,  

     
�

                                                       
                                                           � ���� 
 �

�����

where , , ,  are matrix-valued functions with appropriate dimensions,� � � � � � � � �� � � � � � �
�� � � � � � is a one-dimensional standard Brownian motion, and  is a continuous-time Markov�
chain.  Our objective is to minimize the cost function
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over  in the set of all admissible controls (see the next section), subject to (1.1), where �� � � "�

denotes the transpose of .  There are at least two main features in the above problem:"
  a continuous-time Markov chain drives the coefficients of the system and���

affects the cost functional, and
��� � � � �  � � � ! the matrices ,  and  are indefinite (not necessarily nonnegative

definite).
 This work is motivated by the recent developments of robust controls [1], stochastic
optimal controls of LQG regulators with indefinite control weight cost [2-4, 15],  and hybrid
control systems [12, 16].  We analyze a class of uncertain linear systems in which the system
coefficients are subject to discrete event disturbances.  The model includes both continuous
dynamics of diffusion type and jump processes; see also [7, 8] and others for references of
jump linear systems.  The study of controls of LQG has received much attention because one
can often approximate a nonlinear system by a linear or piecewise linear system.  The
inclusion of Markov pure jump processes reflects our effort to address the robustness issue
when random fluctuations are taken into consideration.  Unlike a fixed system, these system
coefficients switch among a number of possible configurations.  In practical terms, we are
dealing with a system of equations in lieu of a single equation.  In our formulation, although
the Markov chain has a finite state space, the state space may be very large in many
applications (e.g., stochastic networks).  Thus, the total number of equations to be solved is
large resulting in much computational difficulty.  To reduce the complexity, we note that
among the transition of states, some vary rapidly and others change slowly.  To take advantage
of the contrasts between the rates of changes, we introduce a small parameter .  Thus, the� � �
Markov chain becomes .  The different rates of change are conveniently modeled� ���� 
 ����

using the small parameter  in the generator of the Markov chain which leads to singularly�
perturbed Markovian systems (see the recent results in [12-14]).  The class of LQG problems
then becomes one involving singularly perturbed jump processes.  The problem is similar to
that of [16], but the control weights in the cost functional are indefinite.
 In contrast to the approach used in [16], in this paper we do not work with the HJB
(Hamilton-Jacobi-Bellman) equations.  Instead, our effort is to use weak convergence methods
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to derive limit control problems.  Because it is purely probabilistic, we can deal with time-
varying generators with fewer restrictions.  For instance, if the singularly perturbed Markov
chain under consideration includes only recurrent states, we only require that the generators be
bounded and Borel measurable (no smoothness is required).  Our main effort is devoted to
showing that there is an associated limit problem corresponding to the problem involving
singularly perturbed Markov chain with indefinite control weights, obtained by aggregating
the states in each weakly irreducible class into one state.  We derive the limit system that is
still an LQG problem modulated by a continuous-time Markov chain with indefinite control
weights where the total number of configurations for the limit problem is substantially re-
duced.
 After determining the limit systems, the rest of the paper is arranged as follows. Section 2
presents the formation of the problem together with the conditions needed in the subsequent
asymptotic analysis.  Section 3 is devoted to the weak convergence of the dynamic systems
and the convergence of the cost function.  For ease of presentation, our focus in Sections 2 and
3 is on the dominating part of the generator corresponding to a Markov chain with  weakly#
irreducible classes.  Section 4 gives the results for the case that additional transient states are
also included.  Finally, further remarks are made in Section 5.
 Before proceeding, a word of notation is in order.  For simplicity, we use  to denote a$
generic positive constant whose value may change for different appearances; the convention
$ � $ 
 $ $$ 
 $ % % and  is understood.  We use  to denote the gradient of  with respect


to the variable  and use  to denote a norm in an appropriate space.
 & � &

2.  Formulation

2.1  Singularly Perturbed Markov Chains

Let  be a complete probability space.  For the small valued parameter , let� � � � � �� � �P
� � � ��� � � � � � � be a Markov chain defined on  that takes on values in a finite state space P
of  points.  Suppose that the generator  of  is given by� ' � � � � � �� ��
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 Recall that for a nonstationary (time inhomogeneous) Markov chain , a matrix-valued����
function  with , is a generator of  if' � � �1���� �2 ' ��� 
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We say that  or the corresponding Markov chain is weakly irreducible if the system of' ���
equations

� � ����' ��� 
 � ��� 
 � ���6�,   �

has a unique nonnegative solution where  denotes a -dimensional column vector with all�. .
components equal to .  The unique solution  is termed a quasi-stationary distribution.� ����
 The model (2.1) is motivated by the consideration of time-scale separation. In lieu of two-
time scales, multi-time scales can be considered with minor modifications but with more
complicated notation.  By a first glance, it seems that the generator (2.1) is confined to fixed
forms of functions  and .  That is, the forms of decomposition or partition of' � � � ' � � �

) *

' � � � ' � � � ' � � �
) ) * into  and the form of  do not vary with respect to time.  This restriction

-

can, however, be removed by introducing another level of time-varying function.  That is,
assume the structure of (2.1) changes with respect to time , but the change is also Markovian.�
To do so, one can define a combined process , whereas  itself is also� 	 � 	� ���� 
 � ���� ���� ���
a continuous-time Markov chain with finite state space  (with  states).  Then the�	 	�
generator (2.1) for the process  will take  many possible forms.  At any time , with��

	��� � �
	 	 � 	 ���� 
 � 
 ���9 �� � ��� ���  dictated by the Markov chain , the generator of 	 	

�

takes the form (2.1) with  and .  It can be shown that the com-' ��� 
 ' ��� ' ��� 
 ' ���
) ) * *

	 	

bined process again has a generator that is of the form (2.1).  Thus the model we are con-
sidering is sufficiently general.  Note that it is also possible to consider a system in which
	� � � is replaced by a diffusion process.  In that case, one obtains a switching diffusion
process; for some of the recent work along this line, see [6] and the references therein.  For
other related results and references concerning singularly perturbed Markov chains, see [12-
14].
 It is clear that the dominating part of the generator  is given by  due to the' � � � ' � � �

)�

presence of the scaling 1/ .  We first concentrate on the case of inclusion of  classes of� #
weakly irreducible states only.  (The case regarding inclusion of additional transient states will
be discussed in Section 4.)  Assume that  takes the form' � � �

)
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Hereafter, diag  denotes a block diagonal matrix with matrix entries �< �9 �< � < �9 �<� # � #

with the appropriate dimensions.  We will need the following assumption.

  Functions  and  � � ' � � �1���� �2 ' � � �1���� �2 �- 
 ��9 �#�* )
A1 � �

�, � � , �
-


 
 - -

are Borel measurable and bounded, and are themselves generators of some Markov

chains.  Moreover, for each , and each  is weakly� � ���� � - 
 ��9 �#�' ���
)
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irreducible.
 In view of , the state space admits the decomposition:' ���
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such that  is the state space of a Markov chain with the generator � � �- -� -�
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By examining the structure of , we can aggregate the states in each  as one state.' ���
)
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Define  if .  The following results hold; proofs can be found in� � �5 ��� 
 - ��� �� �
-

Theorems 7.28 and 7.30 of [12] respectively.
 Lemma 2.1:  Suppose  is satisfied.  Then the following assertions hold.�� ��
  For  , and for all , then as ,�-� - 
 ��9 �#� . 
 ��9 �� � � � � @ ���� � A �- �

�� �

�     �
�

-.
-
.

�

�B � ��� 
 � 5 ��� ���� ���	� A �� � 
 � ��

  where  is the solution of� � � � 
��� 
 � � ��9 � ���� �� #
�, #

� � � � �
�
��� 
 ���' ��� ��� 
 C 	-D7� �9 � ��

5 ,  � � �� #

���E�

' ��� 
 	-D7� ����9 � ����' ���	-D7� �9 � ��
5 *
 
 � �� #

� �� #

  is the quasi-stationary distribution corresponding to , for ,
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and  is the initial distribution of the Markov chain.C 
 �B � ��� 
 �� �� -.
�, �� � 
�

�--� A � � � � � � � � ���� � � ���� �5 5 As ,  converges weakly to  in , where  is the� � ��
� �

space real-valued functions that are right continuous have left limits endowed with
the Skorohod topology.  The limit  is a Markov chain with generator �5 ��� ' ���

5

given by  and state space .���E� 
 ���9 �#�
5
�

 Remark 2.2:  Various asymptotic properties of singularly perturbed Markov chains can be
found in [12].  We will not dwell on them here.

2.2  Formulation

In addition to the complete probability space  and the singularly perturbed Markov� � � �� � P
chain  given above, suppose that a one-dimensional standard Brownian motion  is��� � � �� � �
defined on .  Let  and  be the natural filtrations generated by � � � � � � � � �� � �� � � �P �

� ��( � �( �
�

and by , respectively.  Let ��� � �� � � �� ���� �� ��
�

and  be the set of all processes  such that� � 
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F
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�
5 5 and (resp.  adapted.  We consider the following� � �
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   MinimizeProblem LQG :�
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In the above,  is an -valued state process,  is an -valued control process,
 � � � �� � �� 
 
F I

� � � �� � � � � �� � � � � � � � � � �  � � � , , , ,  are matrix-valued functions of proper dimensions
defined on , and  is a matrix.  We would like to study the limit of the above problem as� !
� A �.  To this end, we need the following additional assumption.
 ) The following conditions hold.�A2

  , ,  are matrix-valued�D� � ���� 1 A � �� 1 A  1 A� 
 � 
 � 
F, F F, I I, I

functions,  and  are symmetric for each , and� � �  � � 
 ����9 ��� � �
! � 
F, F is symmetric.

  The Brownian motion  and the Markov chain  are independent. �J� �� � � � � ���

  The problem given by (2.7) and (2.8) is uniquely solvable.  The control �K� ����
given in a feedback form is

���� 
 5 ��� �
 ��� � � � ���� �� ���L�� � � �� , for each  and �

where  is a suitable function.�� � �
   The solvability of LQG problems with indefinite control weights is treated inRemark 2.3:
[2] for deterministic coefficient cases and was further dealt with in [3, 4] for random
coefficient cases.  For further discussions related to this and the associated forward-backward
stochastic differential equations, we refer the reader to [3, 4, 15] and the references therein.
For the problem we are considering, we can work with each  in a way similar to� ��
equations (6) and (7) of [16] due to the piecewise constant nature of the coefficients and the
independence between the Brownian motion and the Markov chains.  See also [12, Sections
A.4 and A.5, pp. 309-325] for discussions on HJB equations and optimal controls for jump
processes.
 For ease of presentation, we have assumed the solvability of the hybrid LQG problem.  If
' ��� 
 ' ' ��� 
 ' � �K�
) ) * * and , independent of time, a sufficient condition for A2) part  can be
given as follows:  For each , the Riccati equation� 
 ��9 ��

�����������

B ��� � � B ��� �� � � � � � � B ��� � � �� � B ��� ��� � � � � �
�

5 �B ��� �� � � � �� � B ��� �� � ��� � � � � � � B ��� �� � ��

, �� � �
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�

� � � � � �
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�

,  
,

admits a unique solution.  Moreover, the function  given in (2.9) can be specified as� �� � � �

� � � � � � � � � � ���� � 
 � � � � � � � B ��� �� � �� �� � � B ��� � � � � � B ��� ��� ��� 5� � �� � � ,
������

� � ���� ���

which is well-defined and bounded.  [Note that for time-varying  and , similar' � � � ' � � �
) *

Riccati equations for  can also be derived, but require much more involved notation.]B ��� �� �
In fact, by combining and modifying the approaches in [2] and [16] together with the use of
[12, Appendix], (A2) part  holds if the system of Riccati equations admits a solution.�K�
Then, we may further proceed to derive the bounds on  and obtain its convergence to aB ��� �� �
limit that is a solution of a limit Riccati equation.  Nevertheless, such an approach is not the
focus of this paper; we assume the solvability instead.
 Another alternative determining the solvability of LQG problems is to consider �� � � ���

and use the topology of weak convergence in the space of square integrable functions for the
control sequence.  One can then work with the triple  and proceed with�
 � � �� � � ��� � � ��5� � ��
the weak convergence analysis.  Except for not using relaxation, the process is similar to
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working with a relaxed control formulation (see [9, 12]).  As far as the weak convergence part
is concerned, the argument is similar to the argument in this paper.
 Lemma 2.4:  Let  and  hold.  For any , let  ,�� �� �� �� �
� � � , �� � � � ���� �� 
 � �F

�
�

then the state process  satisfies the following estimates
 � � � 1�

� � &
 ��� & 3 $ � � &
 ��� & 3 $� ������  sup , and     sup
� � ���� � � � ���� �� �

� �� :

 Proof:  The proof is standard; for example, see [15]. �

 In what follows, we use  and  to denote the corresponding conditional expectations� ��
� �

�

with respect to  and , respectively.� ��
� �

�

 Lemma 2.5:  Assume  and  hold.  Suppose  is a bounded -valued function�� �� �� �� 7�
� 
F

together with bounded derivatives.  Denote  with< ��� 
 < ��� ����� �
-. -. �

< ��� � 
 M 5 ���M �-. � 
 � � � �
-
.� 
� � � �-. -

Then for any , ,- 
 ��9 �N . 
 ��9 ��-

sup ,  as 
� / � 3 �

� 7�
 � �� 
 � �< � �	 A � A �� ����6�

� �� �� �� �� �� �
�   �

�

�
-.

�

� � �� � � � �

where  is the solution of .
 � � � ���H��

 Proof:  Pick a .  For any , partition  into subintervals of equal� � ����� � � ���� � ������

length  (without loss of generality, assume that  is an integer, otherwise, we� ��5 �5� � 
 �O
can always take its integer part.)  Denote the partition boundaries by  for� 
 PP

�5� �

� 3 P 3  � �.  Define

7 � � 
 ����:�) 7�
 ����� � ���� ��
7�
 �� ��� � �� �� ��� 3 P 3  � ��

�
�

��
�

�� �

P5� P P� �


 � � 
 ���� �) 
 ���� � ���� ��

 �� �� � �� �� ��� 3 P 3  � �

�
�

��
�

�� �

P5� P P� � . 5

In the above, we have assumed a “perfect" division of intervals.  Generally, the length of the
last interval in the subdivision may be shorter than the others so a modification may be
necessary.  However, for notational simplicity, we ignore the end-interval modification here
and henceforth.
 It follows that

� 7�
 � �� 
 � �< � �	 3 $� �7�
 � �� 5 7 � �� 
 � �< � �	)  

� � � �� � � �� � � �� � � �� � � �� � � �
� �        � �

� �

� �
-. -.

� �

� � � � � ��� � � � � � � � �

� $� 7 � � �
 � � 5 
 � ��< � �	 ����E�) )  

� �� �� �� �� �� �
�    �
�

�
-.

�

� �� �� � � � �
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� $� 7 � � 
 � �< � �	) )  .

� �� �� �� �� �� �
�    �
�

�
-.

�

� � �� � � �

We first show that the first two terms on the right-hand side of (2.16) do not contribute
anything to the limit.  For the next to the last term of (2.16), noting the boundedness of < � ��

-. �

and , we have7 � �) � �

� 7 � � �
 � � 5 
 � ��< � �	) )  

� �� �� �� �� �� �
�    �
�

�
-.

�

� �� �� � � � �

3 $ � &
 � � 5 
 � � & 	 ����G�)�    �
�

�� �� � �


 $ � &
 � � 5 
 �� � & 	 � $ � &
 � � 5 
 ��� & 	� 
P
 �

�

�

P5�
� �

�

�

  � �              P� �

P

�

� � � �� � � �

3 $ � 5 � �	 � $ 	� 
P
 �

�

�

P5�

�

�

  � �           

  

     P� �

P

�

� � � �


 Q � � A � A ��� ��5�  as 

Note in the above that we have used Lemma 2.4 and the fact that for ,� � �� �� �P P� �

� &
 � � 5 
 �� � & 3 $� 5 � ��� �� �P5� P5�
�

In a similar way, using Lemma 2.4, we also have

� &
 � � & / 0 � &
 � � 5 
 �� � & 3 $� 5 � � �� � �� � �� : �
P5� P5�, and 

Thus, for the first term on the right-hand side of (2.16), using the boundedness of � &
 � � &� � :

and the Lipschitz continuity of , we have7� � �

� �7�
 � �� 5 7 � �� 
 � �< � �	)  

� �� �� �� �� �� �
�    �
�

�
-.

�

� � ��� � � � �

3 $� &7�
 � �� 5 7 � � & &
 � � & 	 ���� �)�    �
�

� �� ��� � � � 8

3 $ � &7�
 � �� 5 7 � � & � &
 � � & 	)�    �
�

�O� : �O� :� ��� � � �
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 $ � &
 � � 5 
 �� � & 	 � $ � &
 � � 5 
 ��� & 	� 
P
 �

�

�

P5�
: :

�

�

  � �              P� �

P

�� �� � � �� � � �


 Q � � A � A ��� ����5 ��  as 

In view of (2.17) and (2.18), we need only examine the last term in (2.16).

� 7 � � 
 � �< � �	) )  

� �� �� �� �� �� �
�    �
�

�
-.

�

� � �� � � �


 �� �
 � �� 7 � �7 � � 
 � � �R� �	 	R�) ) ) )� �        � R

� �

� �� � � � �� � � � � � �

where

� � � � � �� � ��R� � 
 �R� � � �R� ��� �

with

� � 
�
� � � � � � � � � �� .� � �
 � �R�
 � � �R�� � � �
 �

-�R� � 
 M 5 �R�M� � � �
-. -. - -.

� � 
 � 
 � 
�
� � � � � � � � � �� . . .

- - -
� � �� � �R�
 � � �R�� � � �� ��R� � 
 5 � �M � � � �R�M� � � �

- -. - -
.

Similar to [12, Theorem 7.29], it can be shown

� �       � R

� �

-
S�� �R� � & �8��	 	R A � A � - 
 ����� � � � ��  as , for 

By the independence of  and , for ,�� � � � � � 8 3 3 R� ��

� � � �              � R � R

� � � �

8�� �R� � & � 
 �� �R� � & �8��8 3 �	 	R� � � � � � � �� � � �


 �� �R� � & � ��	 	R� �       � R

� �

� � � � �� �


 �� �R� � & � ��	 	R � �� �R� � & � ��	 	R� � � �              � R � R

� � � �

� �� � � � � � � � � �� � � �

A � A �� as �

 Using the boundedness of  and interchanging the orders of integrations lead to7 � � �) �
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� 
 � � 7 � �7 �R� 
 �R� �R� �	 	R) ) ) )� �        � R

� �

� �� � � � �� � � � �


 � 
 � � 7 � �7 �R� 
 �R� �	R	) ) ) )� �        � �

�

� �

�

� � � �� � � �

� 
 � � 7 � �� 7 �R� 
 �R� �R� �	R 	) ) ) )� �            �

�

� �

P3  � �
/ � 3 �

�

�

� � � ��
�

�

� � � � �        
� �� �� �
	 

�
P� �

P� �

P

 


 � 
 � � 7 � �� 7 �R� 
 �R��� �R� � & �	R 	) ) ) )� �    

   

       �

�

� �

P3  � �
/ � 3 �

�

�

�
� � � �� �

�

�

� � � � � �      
� �� �� �
	 

�
P� �

P� �

P

P5�

A � A �� as �

Examining the estimates obtained thus far, they also hold uniformly in .  Therefore,� � ���� ��
the lemma is proved. �

 Focusing on the feedback control of the form given in (A2), we use � ��� 
�

5 � ����
 ���� �� � . As mentioned above, the hybrid feature presents many difficulties.  If we
proceed with an approach of dynamic programming, we need to solve a system of HJB
equations (in fact,  equations).  Since  represents the number of states of the Markov� �
chain, which is usually very large, the computational task could become a formidable one.
Even with today's computing power, the amount of computation may be too large to be
feasible.  It is thus necessary to find viable alternatives. Using the idea of decomposition and
aggregation (see related discussions in [10]), we aggregate the states in each weakly
irreducible class as one state.  This leads to an associated limit problem or reduced problem,
which is an average with respect to the quasi-stationary distribution of the singularly perturbed
Markov chain. Our approach is purely probabilistic.  Rather than working with HJB equations,
we concentrate on probability measures and derive the limit results via weak convergence
methods.
 Associated with , there is a limit problem.  We denote it as follows.��

   Minimize�� Problem:
� �
� � 
5�

����L�

� 
��� �� � ���� � ��� ����  � ���� ��� �����
���	� � 
�� � !
�� �
5 5 5 5   

� �� �
	 

�     �
�

� ��
� �

�

� � � � � �

subject to

	
��� 
 � � ���� 5 � � ���� ��� ����	� � ��� ����
���	�����5 5 5 55
� � � � � �


��� 
 
� ������
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� �5 5��� 
 �

where for each ,- � 
 ���9 �#�
5
�

� � � � � � � 
���-�  �-� ���-� 
 � ��� �  � � ��� �� ���� �������

#

-
 � .
 �

�

-. -. -.
� -

.
� �  -

� �-� 5 � �-� ���-� 
 �� � � 5 � � � ��� �� ���� ������� � � � � 
� �#

-
 � .
 �

�

-. -. -.
-
.  

-

where  satisfies�
5
���-�

� �
5 5
���-� ���-� 
�

����6�� �#

-
 � .
 �

�

-. -. -. -. -. -.
� -
.  

-

��� � 5 � � � ��� ����� � 5 � � � ��� �� ����� � � � � � � � 


  Note that for a suitable function ,  represents the average withRemark 2.6: T � � � T � � �
5

respect to the quasi-stationary distributions  for .
 -��� - 
 ��9 �#

3.  Weak Convergence Analysis

This section is divided into three parts:  tightness, weak convergence of , and�
 � � �� � � ��5� ��
the convergence of the cost functions.

3.1  Tightness

To prove the tightness of , using the  bound in Lemma 2.4, we have
 � � �� a priori

&
 �� � 8� 5 
 ��� & 3 � �� � �R�� 5 � � �R�� �R� �R���
 �R�	R� � � � � ��

�� 8

�

�

     

� �� �� �� �� �� �
�      � � � �

� � ��� �R�� 5 � � �R�� �R� �R���
 �R�	��R�  .

� �� �� �� �� �� �
�       �� 8
�

�

� � � �� � � �

By virtue of Lemma 2.4 and the assumptions on , , and , it is easily seen that� � � � � � �R� �� � � �

�� �� � �R�� 5 � � �R�� �R� �R���
 �R�	R 3 $8 �6���� � � � �
�

�� 8

�

�

� 

� �� �� �� �� �� �
�      � � � �

and, by using the assumptions on , , the independence of  and , and the�� � � � � �� � � � � �� � ��

well-known results of Ito calculus,



12 G. GEORGE YIN and JIONGMIN YONG

�� ��� �R�� 5 � � �R�� �R� �R���
 �R�	��R�� � � � �
�

�� 8

�

�

  

� �� �� �� �� �� �
�      � � � �

3 �� &�� �R�� 5 � � �R�� �R� �R�� & &
 �R� & 	R �6� �� � � � �
�

�� 8

�

� � 2�       � � � �

3 $8�

Thus, (3.1) and (3.2) imply

lim lim sup
8 A � A ��

�� &
 �� � 8� 5 
 ��� & 
 �� �6�6�� � �
�

�

The tightness criteria (see [5, Section 3.8, p. 132]) yield that  is tight in �
 � � �� � ���� ��� F
�

where  denotes the space of -valued functions that are right continuous, have left� ���� �F F
� 


limits, and are endowed with the Skorohod topology (see [5, p. 122]).  Moreover, the weak
convergence of  implies that  is also tight.  Furthermore, the well-known� �5 5� � � � � � ��� �

Cramer-Wold device implies that  is tight in .  We summarize the´ ��
 � � �� � � �� � ���� �5� �� F� �
�

above discussion with the following theorem.
 Theorem 3.1:  Under  and ,  is tight in .  Moreover,�� �� �� �� �
 � � �� � ���� �� F

�

��
 � � �� � � ��� � ���� �5� ��  is tight in .F� �
�

 Remark 3.2: In fact, the full capacity of assumptions (A1) and (A2) is not needed.  What is
essential is that the continuous-time Markov chain has a finite state space with bounded and
measurable generators, , , etc. are all well defined, and that  and  are� � � � � � �� � � � � �� � ��

independent.

3.2  Weak Convergence

In view of Prohorov's theorem, the previously established tightness allows us to extract weakly
convergent subsequences.  By virtue of the martingale average techniques (see [9]), we
proceed th characterize the limit process.
 Theorem 3.3:  Assume that the conditions of Theorem  are satisfied.  Then6��
�
 � � �� � � �� �
� � �� � � �� 
� � �5 5� �� � converges weakly to  such that  is the solution of the
stochastic differential equation .������
   We use the martingale averaging techniques to resolve the problem. Let usProof:
consider the pair .  The sequence  is tight.  Extract a weakly�
 � � �� � � �� ��
 � � �� � � ���5 5� � � �� �
convergent subsequence and still denote it by .  By virtue of the Skorohod�
 � � �� � � ��5� ��
representation (see [5, p. 102]), we may assume without changing notation that
�
 � � �� � � �� �
� � �� � � ��5 5� �� � converges to  w.p.l and the convergence is uniform on any
bounded time interval.  To obtain the desired convergence result, we need to show the weak
limit  is the solution of a martingale problem with generator , where�
� � �� � � ��5� �

�%�
�-� 

�6�:�

% �
�-� �� �-� 5 � �-� ���-��
 � 
 ���-� % �
�-� ���-�
 � ' ���%�
� � ��-��
5 5 5


 


� � ��

�� � �

for each ,  is a suitable function, and- � 
 ���9 �#� %� � �
5
�
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' ���%�
� � ��-� 
 + ���%�
�.� 
 + ����%�
�.� 5 %�
�-���
5 5 5� �

.� .�
5 5

-. -.

.4 -

� �

It suffices to show that for each , any positive integer , any  (the- � %� � �-� � �
5
� � �

�

collection of  functions with compact support), any bounded and continuous functions��

U � � �-� 3 � 8�� ( � � 3 � 3 � � 8� � � with , ,  and , the following equation holds:� �

� U �
�� �� �� ���%�
�� � 8�� �� � 8�� 5 %�
���� ����5 5 5��
�

� � �


 �

� � �

�6�>�

5 %�
�R�� �R��	R� 
 ��5�       �� 8
�

� �

 To begin, we consider the process indexed by .  With the  chosen above, define� %� � �

% �
� � 
 %�
�-�M � � �6�E��

#

-
 �
� � � -� � ��
� �-

 for each 

Since the joint process  is Markov with generator  given by�
 � � �� � � ��� � �� �

� � � � � � ��% �
� � 
 % �
� � �� � � 5 � � � ��� ��
� � �



�6�G�
� 
 ��� � 5 � � � ��� �� % �
� ���� � 5 � � � ��� ��
 � ' ���% �
� � �� ��

�
� � � �



� � � � � � � � � ��

for each ,� ��

% �
 �� � 8�� �� � 8�� 5 % �
 ���� ���� 5 % �
 �R�� �R��	R� � �

�� 8

�

� � � � � � �� � � ��       

is a martingale. Thus,

� U �
 �� �� �� �� % �
 �� � 8�� �� � 8�� 5 % �
 ���� ����5��
�

� � �
� � � � � �


 �

� �� � �[

�6�H�

5 % �
 �R�� �R��	R�
 ���        �� 8
�

�� �� � �

 By the weak convergence of  to , the definition (3.6), and the�
 � � �� � � �� �
� � �� � � ��5 5� �� �
Skorohod representation,

� U �
 �� �� �� ���% �
 �� � 8�� �� � 8�� 5 % �
 ���� �����5��
�

� � �
� � � � � �


 �

� �� � �

�6�L�
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A � U �
�� �� �� ���%�
�� � 8�� �� � 8�� 5 %�
���� ����� A ��5 5 5��
�

� � �


 �

� � � � as 

To proceed, note that since ,  is -measurable and� 3 � U �
 �� �� �� ��5
� � � �

� �� � �

� U �
 �� �� �� �� % �
 �R�� �R��	R5 5��
�

� � �
� � � �


 �

�� 8

�

�� � � 
� �� �
	 

�        


 � U �
 �� �� �� �� � % �
 �R�� �R��	R �5��
�

� � �
� � � � � �


 �
�

�� 8

�

�� � �  
� �� �
	 


�         

where  denotes the conditioning on the -algebra generated by .  The expression�� �
� �� �

� U �
 �� �� �� �� � % �
 �R�� �R�� �� � �R�� 5 � � �R�� �R� �R���
 �R�	R5��
�

� � �
� � � � � � � � �


 �
� 


�� 8

�

� �� � � � � � 
� �� �
	 


�       
can be rewritten as

� U �
 �� �� �� ��5��
�

� � �
� �


 �

�

, % �
 �R�� � �� � � 5 � � � �R� ��
 �R�M 	R
� �� �
� �
� �#

-
 � .
 �

� �� 8

�

� �

 -. -. -. -. � �R�
 �    

-

-.
�      � �

� �� � � � � �


 � U �
 �� �� �� ��5��
�

� � �
� �


 �

�

�6����

, % �
 �R��-� �� � � 5 � � � �R� ��
 �R� �R�M 	R�    � �#

-
 � .
 �

� �� 8

�


 -. -. -.
� -

. � �R�
 -�5

- �        � �
�� � � � 
 �

� % �
 �R�� �� �#

-
 � .
 �

� �� 8

�

� �

 -.   

- �      � �

, �� � � 5 � � � �R� ��
 �R��M 5 �R�M �	R �� � � � 
-. -. -. � �R�
 � � �R�
 -�
-
. 5�

� � �� �
-. �

 By the weak convergence of  to , the Skorohod representa-�
 � � �� � � �� �
� � �� � � ��5 5� �� �
tion, the boundedness of , and Lemma 2.5, for each  and ,%� � � - 
 ��9 �� . 
 ��9 ��-
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� % �
 �R�� � �� � � 5 � � � �R� ��
 �R��M 5 �R�M �	R  

� �� �� �� �� �� �
�      �� 8
�

� � -

 .-. -. -. -. � �R�
 � � �R�
 -�5

�

� �
� � �� � � � � 
� �

-.

A � A �� as �

Thus the term in the second double sums on the right in (3.10) goes to 0.  As for the term in
the first double sums on the right in (3.10), since  converges weakly to�5 � � ��

�5 � � � M M,  converges to .  Then, by virtue of the Skorohod� �R�
 -� � �R�
 -�5 5� ��

representation, as ,� A �

� U �
 �� �� �� ��5��
�

� � �
� �


 �

�

, % �
 �R��-� �� � � 5 � � � �R� ��
 �R� �R�M 	R
� �� �
� �
� �#

-
 � .
 �

� �� 8

�


 -. -. -.
� -

. � �R�
 -�5  
- �       � �

�� � � � 
 �

A � U �
�� �� �� �� �6����5��
�

� � �


 �

�

, % 
 R �-� �� � � 5 � � � �R� ��
�R� �R�M 	R
� �� �
� �
� �#

-
 � .
 �

� �� 8

�


 -. -. -.
� -

. � �R�
 -�5   ( ( )
- �        � � � � 
 �


 � U �
�� �� �� �� % �
�R��-� � � �R�� 5 � � �R�� �R� �R��
�R�	R5 5 5 5��
� � �

-
 �

�� 8

�



�� � � � �  ,

� �� �
� �
�      

where  is defined by (2.22).� � �R�� 5 � � �R�� �R� �R��5 5 5� � � �
 Next, for the covariance of the diffusion (the second order term in the operator), we have

� U �
 �� �� �� ��5��
�

� � �
� �


 �

�

, 
 �R� ��� � 5 � � � �R� �� % �
 �R�� � 
��
	
�        �� 8
�

� � �
-. -. -. -.



� �� � � � �

, ��� � 5 � � � �R� ��
 �R�M 	R� � � �-. -. -. � �R�
 �
�

� ��
-. �


 � U �
 �� �� �� ��5��
�

� � �
� �


 �

�

, 
 �R� ��� � 5 � � � �R� �� % �
 �R��-� 
��
	
�        �� 8
�

� �
-. -. -. 
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, ��� 5 � � � �R� ��
 �R� �R�M 	R� � � � 
-. -. -.
-
. � �R�
 -�5�

��

� 
 �R� ��� � 5 � � � �R� �� % �
 �R�� ���� � 5 � � � �R� ��
 �R��       �� 8
�

� � �
-. - - -. -. -. -.



� � �� � � � � � � � �

, �M 
 � 5 �R�M �	R �6����� �R� � �R�
 -�-.
-
. 5� �� �� 
 �,

and

� U �
 �� �� �� �� 
 �R� ��� � 5 � � � �R� �� % �
 �R�� �5��
�

� � �
� � � �


 �

� � �
-. -. -. -.

� � � � � �


, ��� � 5 � � � �R� ��
 �R��M 
 � 5 �R�M �	R� � � � � 
-. -. -. -.� �R� � �R�
 -�
-
. 5�

� �� � �
A � A �� as �

Thus, we need only consider the remaining terms in (3.12).  It follows that as ,� A �

� U �
 �� �� �� �� 
 �R� ��� � 5 � � � �R� �� % �
 �R��-�5� � ��

�

� � �
� � � �
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�

� �
-. -. -. 

� � � � �
    

- �         

, ��� � 5 � � � �R� ��
 �R��M 	R� � � �-. -. -. � �R�
 �
�

� ��
-. �

A � U �
�� �� �� �� 
�R� ��� � 5 � � � �R� �� % �
�R��-�5� � ��

�

� � �
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 �

# � �� 8

�

� �
-. -. -. 

� � � � �
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- �        
, ��� 5 � � � �R� ��
�R� �R�M 	R� � � � 
-. -. -.

-
. � �R�
 -�5� �


 � U �
�� �� �� �� 
 �R� �R� �R�� % �
�R��-� �R��
�R�	R� �6��6�5 5 5 5��
�

� � �


 �

�� 8

�

� �


� � � ��         

 For the jump term, the block diagonal structure of  and definition (3.6) imply that' ���
)

' ���% �
� � �� � 
 � 
 �
) � � � � for each  and each 

so
' ���% �
� � �� � 
 ' ���% �
� � �� �� �6��:�*� � �� �

Using (2.1) and (3.14),
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� U �
 �� �� �� �� ' �R�% �
 �R�� � �� �	R M5��
�

� � �
� � � �

� �
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�� 8

�

�
-. � �R�
 �� � 

� �� �
� �
�       

�
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-
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�
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�
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�       
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Again, using Lemma 2.5,

� ' �R�% �
 �R�� � �� ��M 5 �RM � �6��>�* 

� �� �� �� �� �� �
�        �� 8
�

� -
-. � �R�
 � � �R�
 -�. 5

�

�
� � �� 
� �

-.

A � A �� as �

Moreover,

� & �' �R�%�
 �R�� � ��-� �R�M* �        �� 8
�

-
. � �R�-�5�

�
 �

5 ' �R�%�
 �R�� � ��-� �R�M �	R & �6�� �
5 �

�
 - �
. � �R�
 -�5� 6

A � A �� as �

 Combining all the estimates above, we find that  converges weakly to�
 � � �� � � ��5� ��
�
� � �� � � �� �
� � �� � � ��5 5� � such that  is the solution of the martingale problem which has a
unique solution with operator (3.4).  The desired result thus follows. �

3.3  Convergence of the Cost Function

We next demonstrate the following result about the convergence of the cost function.
 Theorem 3.4:  Under the conditions of Theorem , as ,  converges to6�6 A � � �
� �� ��

� �
� �5� .
 Proof:  By virtue of weak convergence, the Skorohod representation, and the dominated
convergence theorem, it is easily seen that for the terminal cost

�
 �� � !
 �� � A �
�� � !
�� � A ��� �
� � � �
� �  as �

As for the running cost,

� �          � �

� �

� �

#

-
 � .
 �

�

-. � ���
 �

� �
-

-.

 ��� � � ����
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In the proof of Lemma 2.5, by replacing  by  and carrying out similar estimates, the last7�
� 

term in (3.17) becomes

� 
 ��� � � �
 ����M 5 ���M �	�    

� �� �� �� �� �� �� �
� �#

-
 � .
 �

� �
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-. � ���
 � � ���
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�

-
�

-.
�     � �

� � �� 
� �

A � A �� as �

For the term in the second line of (3.17), the weak convergence of  to  and the� �5 5� � � � � ��

Skorohod representation imply that , and that, as ,M A M A �� ���
 -� � ���
 -�5 5� �� �

� 
 ��� � � �
 ��� ���M 	�� �#

-
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 -�5    

-
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Similarly, as ,� A �

� 
 ��� ��� ����  � ����  � ���� ��� ����
 ���	��     �
�

� � �

�

� � � � � �� � � � � �

A � 
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 � 
��� ��� ����  � ���� ��� ����
���	��5 5 5�       �
�

� �

�

� � � � �

Finally, as in the argument given in [12, Section 9.4], for any , the limit of the� �
 8 �-.
cost function depends only on .  This establishes our assertion.- �

5
� �

4.  Inclusion of Transient States
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In this section, we present the results for the generator  corresponding to the Markov' ���
)

chains that include additional transient states.  Suppose that the dominating part of the
generator  has the form' ���

)

' ��� 
 � �:���
)

' ���
)

' ���
)

;

' ���
)

' ��� ' ��� ' ��� ' ���
) ) ) )

� �� �� �� �� �� �� �� �
	 


�

�

N

� � N

V V V V

The state space  can now be decomposed as�

� � � � � � �
 � �9 � � = 9 = � �9 � � = � �9 � ��� �� N� N� V� V�� N V

�:���

 = 9 = = �� � �� N V

where  for , denote the states corresponding to the states� � �- -� -�
 � �9 � �� - 
 ��9 �#
-

belonging to the th weakly irreducible class, and  denotes the set of- 
 � �9 � �� � �- V� V�V

transient states.  In lieu of (A1), assume (A1  below.W�

  (A1) holds.  Furthermore,  is Hurwitz (i.e., all eigenvalues have� � ' ���
)

A1�
V

negative real parts.)  For , there exist constant matrices ,- 
 ��9 �# X �- � , �
V 
 V -

X � � ��� � � � � �
) )

V
� , � � , �
 
V V V V, and a matrix-valued function  such that  is

Lipschitz continuous and,

' ��� 
 � ���X ' ��� 
 � ���X �
) )) )P

V V
V

V V and, 

 Motivation for using condition (A1  for the transient states can be found in [14]. DefineW�

D ��� 
 5 ' ���' ��� - 
 ��9 �#�
) )

� �

5� -

V V- -�  for 

Denote the the component of  by .  Then it can be shown, as in [13, 14], for. D ��� D ���� �- -�.

each , and each ,   and , i.e.,� � ���� � - 
 ��9 �# . 
 ��9 �� � D ��� ( � D ��� 
 �� V � �
N
-
 �-�. -�.

�
the  are probabilities.  In fact,  is the transition probability from the transientD ��� D ���� �-�. -�.

state  to the weakly irreducible class .  Furthermore, condition (A1  implies that. ��-
W

D ��� 
 D � Y� �- -  is independent of .  To define an aggregated process, we need to introduce , a
random variable uniformly distributed on  that is independent of .  For each����� � � ���

. 
 ��9 �� YV ., define an integer-valued random variable  by

Y 
 M � �M. ��3 Y 3 D � �D / Y 3 D � D �� �. � �. � �. � �.� � � �

� 9 � NM ��D � 9 � D / Y 3 ��� �. � �.� #5�

Corresponding to each , we combine all the  states of  into one state and- 
 ��9 �# �- -�
define

�
� �

�
5 ��� 
 �:�6�

-� ��� � �
Y � ��� 
 8 �

�
�

�� if 
if 

-

. V.
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In this case, it can be shown, as in [14], the probability that the Markov chain is in the
transient class goes to 0.  Moreover, we can still obtain the weak convergence of  to�5 � � ��

� �5 5� � � � � �, where  is a continuous-time Markov chain generated by

' ��� 
 � ����9 � �����' ��� � �9 � � � ' ����D �9 �D ��
5 * *diag diag
 
 � �� N �� ��

� � � �� # � #

using the partition

' ��� 
* ' ��� ' ���* *

' ��� ' ���* *
 �
�� ��

�� ��

with , , , and' ��� � ' ��� � ' ��� �* * *�� �� ����5� �, ��5� � ��5� �, � � , ��5� �
 
 
V V V V V V

' ��� �*�� � , �
 V V .  In addition, similar to [16], to obtain asymptotic optimal controls of the
underlying systems, one can ignore the transient states.  We obtain the following results.
 Theorem 4.1:  Assume  and .  Then the conclusions of Theorem , Theorem�� � � �� �� 6��W

6�6 6�: and Theorem  continue to hold.

5.  Further Remarks

In the previous sections, we demonstrated convergence of the original problem .  Compared��

with the results obtained in [16], we treated nonstationary Markov chains and indefinite
control weights.  As far as the techniques are concerned, we have used a purely probabilistic
approach via the weak convergence method and martingale averaging formulation in lieu of
solving HJB equations.
 The significance of this study is that the Markov chain involved in  usually has a large��

state space, whereas the number of states of the Markov chain in the limit problem  is��

substantially reduced.  This is achieved by aggregating the states in each weakly irreducible
class  into one state so the total number of states in the limit process  becomes .  To� �-

5 � � � #
solve the original problem via a dynamic programming approach, one needs to solve a system
of Riccati equations with the total number of equations being ; whereas in the limit problem,�
the total number of equations to be solved is reduced to .  If , the amount of effort is# # Z �
substantially reduced.
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