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1. Introduction

In this article, we prove the existence, uniqueness and continuous dependence on a solution
of a class of nonclassical hyperbolic partial differential equations with nonlocal boundary and
initial conditions. Results are obtained by using a functional analysis method based on an a
priori estimate and on the density of the range of the operator corresponding to the abstract
formulation of the considered problem. The precise statement of the problem is of the form:

Let b>0, 7T,>0 (p=1,2) and Q: = {(z,t1,t2) eER*:0<z<b, 0<t; < Ty, 0<
ty < Ty}, Find a function (z,t,t2) — v(x,t1,t2), Where (x,t1,t2) € Q, satisfying the
equation

Lo = 320 — D (a(x,t1,1) ) = f(x,11, 1), (1.1)
the initial conditions
b =v(x,0,t) = B, ta), (x,t2) € (0,0) x (0,T%),
lv: = v(x,t1,0) = U(x, 1), (z,t1) € (0,0) x (0,T1), 2
the integral condition
b
[ vz, t1,t)dx = E(ty, t2) (t1,t2) € (0,T7) x (0,T%), (1.3)

0

and one of the following boundary conditions:

7‘%(%2’“) = p(ti,t2), (t2,t2) € (0,T1) x (0,T3), (1.4a)
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be}U(JJ,tl,tQ)dCL‘ = X(tl,tQ), (tl,t2> S (07T1) X (O,Tg), (14b)

where a, f,®, U, F, nand x are given functions.

Mixed problems with integral conditions for parabolic equations are studied by different
method in Batten [1], Cannon [14], Kamynin [22], lonkin [19], Cannon and van der Hoek
[17, 18], Yurchuk [25], Benouar and Yurchuk [2], Cahlon, Kulkarni, and Shi [15], Cannon,
Esteva, and van der Hoek [16], Byszewski [11], Lin [23], Shi [24], Bouziani [3-5], Bouziani-
Benouar [7], Jones, Jumarhon, McKee, and Scott [19], and Jumarhon and McKee [20]. A
mixed problem with integral condition for a second order pluriparabolic equation has been
investigated by Bouziani [6]. Nonlocal nonlinear hyperbolic problems were studied by
Byszewski [9-11], by Byszewski and Lakshmikantham [12], and by Byszewski and
Papageorgiou [13]. A mixed problem with integral conditions for a second order classical
hyperbolic equation has been treated under growth conditions in Bouziani and Benouar [8].
The results of the paper are generalizations of those given in [8-12]. These findings are also
continuations of those obtained by the author in [8].

The paper is organized as follows. In Section 2, we state three assumptions on the func-
tions involved in problem (1.1)-(1.4) and we reduce the posed problem to one with
homogeneous boundary conditions. In addition, we present an abstract formulation of the
considered problem and we define the strong solution of the problem. In Section 3, the
uniqueness and continuous dependence of the solution are established. Finally, in Section 4
we prove the existence of the strong solution and offer remarks on its generalizations.

2. Preliminaries

First, we begin with the following assumptions on function a:
Assumption Al:

. 0 .0 _ N )
cogagcl,a—zgc%a—t‘igc;; (p=1,2)InQ.

Assumption A2:

da d%a d%a _ . 9% d%a .
CL S G CSSWZZ)SC&WSC?@—LQLm, o = €8

Pa a th )
908 o = C 1IN Q.
In Assumptions A1-A2, we assume that ¢; (i = 0,...,9) are positive constants. We also,
assume that the functions ® and W satisfy the following:
Assumption A3: Functions ® and W satisfy the compatibility conditions:

b b
[ ®(z,t2)dx = E(0,t2), [ U(z,t1)dz = E(t1,0),
0 0
25(0,4,) 2U(0,t1)

oz U(Oa t?)v “or /.L(t],O)

b b
[ 2®(z,to)dx = x(0,t2), [ ¥ (x,t;)dx = x(t1,0), respectively |,
0 0
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and
& (z,0) = ¥(x,0)
where z € (0,b),t, € [0,T,](p = 1,2).

Let us reduce problem (1.1)-(1.3) and (1.4a) [respectively (1.4b)] with nonhomogeneous
boundary conditions (1.3), (1.4a) [respectively (1.4b)] to an equivalent problem with
homogeneous conditions by assuming that we are able to find a function v = wu(x,t;,ts)
defined as follows:

’U,(.I‘, tl ) t?) = ’U(JI, t17 t2) - U(:L‘a tl) t?)a
where
Uz, t1,t2): = 5;(2b — 3x)u(t, ta) + %E(tl,b)
[U(x,t1,t2): = §(— 18bx? + 120%x + 1) E(ty, t5) — Z(32® — 2bx) x(t1,t2), respectively].

Consequently, we have to find a function (z,t1,t3) — u(z, t1,t2), which is a solution of the
problem

Lu=f(x,ty,t) — LU = f, (2.1)
bu=u(x,0,ty) = ®(x,ts) — (LU = @(x,ts),
(2.2)
bou = u(x,t1,0) = U(x, t1) — LU = o(x, t1),
b
[ u(z,t1,t2)dx = 0, (2.3)
0
QulOints) — (2.4a)
b
[ zu(z,ty,t2)dx = 0, respectively | . (2.4b)
0

We assume that the functions ¢ and ¢ satisfy conditions of the form (2.3), (2.4a)
[respectively (2.4b)], i.e.:
Assumption A3’:

b b
[ (z,0)dz =0, W =0 lf xo(z,0)dz =0, respectively],
0 0

b ‘ b
[ ¢(z,0)dz =0, w =0 [f x)(z,0)dx = 0, respectively]
0 0

and
@(zv O) = 1/)(957 0)

In order to write down an abstract formulation of the problem we will need suitable
function spaces. Let B1(0,b) be a Hilbert space defined by the author in general form in [3].
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Here, we reformulate the author's definition. For this purpose, let C(0,b) be the vector
space of continuous functions with compact support in (0,b). Since such functions are
Lebesgue integrable with respect to dz, we can define on Cy(0, b) the bilinear form (( -, -))
given by

((u,w)) beu T,wdz, (2.5)

where
Tou: = Ofru(g,t)df

We recall that (( -, -)) is a scalar product on Cy(0,b) for which Cy(0,b) is not complete.
We denote by B}(0,b) a completion of Cy(0,b) for a scalar product defined by (2.5). The
norm of function w in B1(0, b) is defined by

| piopy = (w,u)? = | Tow || 20p)-

Lemma 1: For z € (0,b), we have

lall 3s0n < 5 1wl 22

Proof: See Corollary 1 for m = 1 in Bouziani [3].

The spaces L?((0,7T}), L*(0,b)), L*((0,T,), B(0,b)), H'((0,T,), L*(0,b)),
H'((0,T,), B3(0,b)) (p=1,2), L*((0,T1) x (0,T3), B3(0,b)) are defined as usual.

To problems (2.1)-(2.3), (2.4a) [(2.4D), respectively] we assign the operator L =
(L, 41,45) with the domain D(L) consisting of functions u belonging to L?((0,7}) x
(0,T3), B(0,b)) satisfying the condition 5+, g—g%, du ' ¢ 2((0,T7) x
(0,73), B3(0,b)) and conditions (2.3), (2.4a) [(2.4b), respectively]. The operator L is con-
sidered from B to F, where B is the Banach space consisting of functions wu €
L*((0,T1) x (0,Ty), B3(0,b)) having finite norms

| wll B = sup fu(-, - )3 1
0< 1 <T H((0,11),B3(0,b))
sup ”u(')Tla')”Q /
0<n<T H((0,T5),B3(0,b))

and satisfying conditions (2.3), (2.4a) [(2.4b), respectively], and F' is a Hilbert space of
vector-valued functions (f, ¢, ¢) with the finite norms

I (f,0.90) I 2 = ( 1 %%(O,Tl)x(O,Tz),B%(O,b)) + el %1((0,T2)~,L2(07b>)

1

2

+ | %[1((0,T1),L2(0,b))) :
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Finally, we give a definition of a strong solution. Let L be the closure of the operator L
with the domain D(L ).
Definition: A solution of the operator equation

Lu=(f,e,1)

is called a strong solution of problem (2.1)-(2.3), (2.4a) [(2.4b), respectively].

3. Uniqueness and Continuous Dependence of the Solution

In this section we will prove an a priori estimate. The uniqueness and continuous dependence
of the solution upon the data presented here are direct consequences of the a priori estimate.

Theorem 1: Under Assumption A1, the solution of problem (2.1)-(2.3), (2.4a) [respec-
tively, (2.4d)] satisfies the following a priori estimate:

lulp<cll Lull r, (3.1)

where ¢ > 0 is a constant independent of w.
Proof:  Taking the scalar product, in BJ}(0,b), of equation (2.1) and Mu: =

2(37"1 + gTL;), we obtain

2 b
0 du ad Jdu 9 ,,2
a(—tz (gt BJ(O b) + (f)tl atl BJ(O b) +J a(x7t1’t2)(?_tlu dJ,‘
(3.2)
b b (a1t ‘
—|—0f a(x,tl,tg)a%u?dx + 20f e ”g;”)u’]; (a% + g—;;)dx
du du
(ﬁu, on T df?)Bl(o b)
Integrating (3.2) over (0,71) x (0,7), where 0 < 73 < Ty and 0 < 75 < T3, we have
n Ou(w,t1,m) 2 bom )
f ‘ % +f f I tl,TQ (z,tl,’rg)) dl’dtl
0 00
™ u(z, Tt 2
+f ‘ % BL(0b) +f f l' 7'1,t2 (.’L‘,Tl,tQ))Qd.%’dtQ
0 2\ 00
_ 2fT1fT2 f Ou du dtsts + f (1) 2 dt (3 3)
% von + o, B BEZI I '

dts

dp(x,ts)
Jrfof a(z,t1,0)(Y(z, tl)) dzdty Jrf H 9% || gi(0,p)

b m
+ [ [ a(z,0,t)(p(z, t2))*dzdts
00
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b 1 T, ;
[ [ [d“(gflm)+f"’<§f;t2)}u2d:cdtldt2
0 0

b T T2
_20fof(‘)f aaztltz (gzzl 6“)dl‘dt]dt2

Observe that
L T2 T T2
2f [ ( du gg) dtydty <2[ [ || 1l 504 dt1dts
00 ! */ B3 (0.b) 00 A
(3.4)
el S
+0f()f |l o) 2+()f()f Y | P R
It is easy to see that
bom ™ an t 0O O
=2 [ Dl (92 + 80 ) dadtidts
0 0
(3.5)
b da(z,t1,t2) 2 2
<2 [ (2b)) w2 dwdtdry
00
T T2
ou du
dtdts.
+0f0f U || 1o ‘f”? Bl(ob)] 1
From (3.3)-(3.5) and from Assumption Al, we get
m ¢ u(w,t1,m) 2 dt
of et m) | e + | =0 Bon|
7 ) [ 3 + || 222 Ja,
b L Ob Oty B%(O,b)
2
N
< en ffHM M%m+fhwwm+%%1]%
0 BL(0,b)
(3.6)

)
B(0,b)

]dtldt2> ,
BL(0,b

o0 + 3]

2
Ju

ou ‘ Ou
9t | B(0,b)

Oty

T1 T2
fen (fg‘[|u|;@m+\

0

where

max(4,c;)
€10 = min(ey,1)
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and

max(2cs,1)
min(co,1) °

Ci1 =

To finish the proof of Theorem 1, we will need the following result:

Lemma 2: If f; and f5 are nonnegative functions on the rectangle (0,7) x (0,7%), f1 is
integrable on (0,77) x (0,7%), and f, is nondecreasing in (0,71) x (0,7%) with respect to
each of its variables separately, then

fi(m1,m2) < exp(2¢(m + 7)) fa(71, 72)

is a consequence of the inequality

Ji(m, ) < (f Ji(t1, 72)dty +f f1 Tlth)dt2> + fo(71,72).

The proof of the above lemma is analogous to the proof of Lemma 1 in Bouziani [6].

Continuing the proof of Theorem 1, we apply Lemma 2 to (3.6). For this purpose, we
denote the left-hand side of (3.6) by fi(71,72), and the sum of three first integrals on the
right-hand side of (3.6) by f»(7i, 7). This procedure eliminates the last integral of the right-
hand side of (3.6) and yields:

n du J'tl,Ta) 2
Of [ | u(z,t1,m) || 2 20 T ’ 5 B%(O,b)] dt,
+f [|| w(@, 7, t2) || Fap + ‘ densd . :|dt2 (3.7)
2 BL0,b)

T T2
< ClleXp(2Cw(’7'1 + ’7'2)) <f f || f H ZBQI(O‘b)dtldtQ
0 0 '

o
oty

] n
BL(0,b)

’ d
B(0, b>] 5

According to Lemma 1, we bound below the first and the third terms on the left-hand side
of (3.7) and we bound above the third and the fifth terms on the right-hand side of (3.7).
Consequently, we obtain

+f [Hwn 2o

T2 (7
+ of [ el 2L2(0,b) + oty

2 2
(@, ty, 72) | 3 om sy T 1 0@ 70 82) | 0., 100
(3.8)

S Cl?( /1l %Q((O,TJ)X(O,Tz),B%(U,b)) + 19 B0y 20

+ e | I om0, b)))
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where

2
cl1exp(2(zm(T1+T2))max(1,”7)
€12 = min (1 1)
52

Since the right-hand side of inequality (3.8) does not depend on 7; and 7, then, in the left-
hand side of (3.8) we can take the supremum with respect to 7, from 0 to 7, (p =1,2).

Therefore, we obtain (3.1) with ¢ = 01142. The proof of Theorem 1 is complete.
Proposition 1: The operator L from B to F' has a closure.
The proof of the above proposition is similar to the proof of Proposition 1 in Bouziani [4].
Theorem 1 can be extended to cover strong solutions by passing to the limit.
Corollary 1: Under the assumptions of Theorem 1, there exists a positive constant ¢ such
that

lullp<clLulr,

where ¢ does not depend on w.

Corollary 1 implies the following:

Corollary 2: A strong solution of (2.1)-(2.3), (2.4a) [respectively, (2.4b)] is unique, if it
exists, and it depends continuously on (f, ¢, ¥).

Corollary 3: The range R(L ) of solutions for the closure L of L is closed in F,
R(L)=R(L) and T ' =17, where L is the unique extension of L~! (by continuity
from R(L) to R(L)).

4. Existence of the Solution

In this section we concentrate on the existence of the strong solution of problem (2.1)-(2.3),
(2.4a) [respectively, (2.4b)]. The main idea is to demonstrate that the range R(L) is dense in
F.

Theorem 2: Suppose that Assumptions Al and A2 are satisfied. Then, for arbitrary
f € LQ((O’ Tl) X (Ov T2)7 B%(O7 b))? pE Hl((oa T2)7 L2(07 b)) and 1/) € Hl((oa T]),

L?(0,b)), problem (2.1)-(2.3), (2.4a) [respectively, (2.4b)] admits a strong solution
u= L '(f,0,0) =L (., %),

Proof: To prove the existence of a strong solution of problem (2.1)-(2.3), (2.4a)
[respectively (2.4b)] for all (f,p,) € F, it remains to prove that R(L) = F. To this end,
we establish the density in the special case, where u belongs to Dy (L), which is equal to the
set of all uw € D(L) vanishing in a neighborhood of ¢; = 0 and ¢, = 0. Then we proceed to
the general case.

Proposition 2: Let the assumptions of Theorem 2 be satisfied. If for ¢ €
L%((0,T1) x (0,Ty); B4(0,b)) and for all u € Dy(L), we have

fnfn((m,g))dtldt2 =0 Yu € Do(L). (4.1)
0 0

Then g vanishes almost everywhere in Q.
Proof of Proposition 2: By the fact that relation (4.1) holds for any function u € Dy(L),
we express it in a special form. Let
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0, 0< tp < Sps
t1 to
f f 871572 dTldT2’ Sp S tp S TP
S1  S2
for p = 1,2 and let dfd“t be a solution of
TP
a(o, tlvt?)atla@ T 9p = [ gy, (4.3)
ty

where o is a fixed number belonging to [0,7]. Formulas (4.2) and (4.3) imply that « belongs
to D, ,,(L), which denotes the set of all w € D(L) vanishing in the neighborhood of ¢, = s,
and ¢, < s, (p=1,2). Putting s, =0 (p = 1,2), we have that u € Dy(L). It follows from
(4.2) and (4.3) that

2 P - 2
9=30,= — (& + &) (alotr, )55 ). (4.4)

To prove that the function g, defined by (4.4), belongs to L?((sy,T1) X
(s2,T3), B3(0,0)), we apply the following result:

Lemma 3: If the assumptions of Proposition 2 are satisfied, then the function w,
defined by (4.2), has derivatives of the form %{ig and % belonging to
LQ((Sla Tl) X (827 T2)a B%(Ov b))

Proof: See Lemma 2 in Bouziani [3].

Relation (4.4) implies that (4.1) can be written in the form

T

02, ] 82'
-1 (285 & (alostrt2) 525 ) ) ) dtrdy

0

T

,({f

((Otdl?dta’ ();‘2( (0,11, t2) 51 )))dhdb (4.5)

[==1

T T

1 (Bt %), 2 (alo )57 ) )

(V]
T

+ ) (& (alw tr,12)5), 2% (alos 1) 557 ) ) ) dtdts = 0.

0 0

Integrating by parts, each term of (4.5), we obtain

b T 9 1)) 2
a(o, s1,ts) (7}%) dxdty

2w \2
T ots: ) dadtidy (4.6)

T1 T2
*u 1o} *u
_2f (‘!‘ ((—0t15t27{)_tj(a<0’tl’tQ)—6t15t2>)>dt1dt27
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b A Oulz,t 2
[ I oot s) (T2 ) dadty
0 s

2
3 tista) Pu
= f afg)t; 2 (ﬂﬁtlé}tz) dxdt;dty (47)
0 s1 s2
i b *u 19} 9%u
_2f)f (‘)f ((M7%(a(07t17t2)m)))dt]dt2,

I [szz‘n alo, 1, Ty) + 25T UGB L) | (u (0 ), ) dadty
0

3

21

£ aet, Balo b, To) (25050) dodry (4.8)
0 s1
a Z,t1, 24 Z,t,t oy,
:Of [ Oty t;fztz (U7t1at2) + 2 (Ot? e ((’)ttzl o)
51 Sa

da(x,t1,ts) Oa(o,ti,ts) Ja(w,t1,ty) 0a(otits) | 2
+ Ot20t, oty + ot D201, u difdtldtQ

_ 2]‘ f 3a It1,z‘z U Tl,tQ) (Z’,Tl,tg)&t(T T, fZ)dZ'dtQ

b T Ty

2
+[ [ [%ﬁtz)a(avtlaﬁ) +a(m,t1,t2)%f;’m} (g—;f) dxdt dts

b Tv T

_2f f f %tha(avtlatQ)gg d"dxdtldt2

= Pa(x,t b a(x
_ 2f f f |:6 ( ,tl,tz)u—i- 2 <67;l1t2> gg:| (o, tl,tg)’]lat o dxdtdts

T :
+ 26[ f ((%(a(x,tl,t2)%), 3ifl (a(o', tl’tQ)%)))dtldtQ,

=)

/ [a" D) (g, Ty, 1) + 25T BT (4, T, 1) Pty
0 2

S2

b b u(x,Ty,ts) 2
+Of f (l(l‘,Tl,tg)a(O',Tl,tQ)(é—tzl’z) dxdty (49)
52
2 Oa(o,t
_ f [ (;tr;iz,ta a(o,tr,ts) + 311(;";;17?/2) dfl(a,:ll,tz)
0 s1 o

Pa(x,tity) da(otits) | dalztits) daloiits) |, 2
+ Ot 0t Oty + Bty Ot10ts u d.’EdtldtQ
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b T T ,
+[ ][ [%ﬁlm (o,t1,t2) + a(z, t1,t2)M} (g—g) dxdt,dts

_2f f daxtl,Ta 0_ tl,Tg) (1’ tl,T2)3u zflTa dxdt,

- 2f f f %&htz)a(avtlatQ)g_g g—gdmdtldtg

dxdtdts

0%a(z b1t da(x,tts) Ou
_2f f f [ C:%»ia; Z)u+ a(%ml 2 g_tlﬂa(o—atl,h)?;dt Oty

T Ty

+20f [ ((%(a(x,tl,tg)g—;),ai( (0,1, t2) 72 )))dtldt?

0
According to Assumptions Al and A2, we get

" Ty
dty <csf [
S1 52

0%u(z,51,t2) 2
Ot10ty B% (07}))

*u
Ot10ty

dt,dt
BL(0,b) 17

Ty
Co f ‘
59

(4.10)
T T

-2f[ ((—622§1g27aitl(a(07t17t2)—0t31251§2)))dt1dt27
0

0

dtq <Cgf f

s1 82

dtidts

2
Ou(,ty, sz)
cof |
8t16t2 BL(0,b)

90t || g0 )

(4.11)

T Ty
&u 0 Pu
_20f Of (([)tlgtz’O_t«z(a(07tl’tQ)—{)tlgtg)))dtldtQ’

u(x,ty,Ty) 2

dt
o 20p)

(csc+ S L ulsta,To) | Byt + i §

81

(4.12)

T
< (cger +cges +2cses +2¢3) [ [ |l ull %z(o’b)dtldtg

s1 82

+ (2¢1¢3 + €3 + 2¢3)

5]y 1t

s1 S2

u(x,Ty,ts) 2
9l p20,0)

- dts

52 89

2c2c? L 2 2 2
+ 2 (T ) | 3apdta+ 5|
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2
+C%f f Hf)t ot dty

S 6 BL(0,b)

dtidty
b

", L2(0,b)

Ty

+26f fTZ((%( (z,v tl,tQ)a“),a%(a(a,tl,tg)%)))dtldtm

0

Ou(z, Ou(z,T,ts) Jt2)
e dtsy

T
(%%+ﬁ@f|h¢uﬂ¢ﬂ”immﬁ2+0f‘ Vo

82

(4.13)

c?c? 5 2 c? 5 2
<2 [ | u(w b, T) | Byt + 5| dwdt,
S1 51

Qu(x,t,,Ty)
oty

AR D)
+ (CgC] + cge3 + 2c8¢c3 + 267 f f || U || 12(0,b) dtdtsy

51 82

ou

qu dt, dts

+(20103+C3+202f f‘ o

Ju
oty

dty

dtidty
L?(0,b)

+ 01
B3(0,b)

6t 8152

T

+2f fTO((aﬁ( (.11, 12)22), 2 (alo 1, 02) 725 ) ) ) dtadt,

0

Observe that

2id ) || 22l
e o Tulz, 1, To) || 72 ) dta
51

(4.14)

ou
oty

< +| * Nandt
>~ c(z) S L2(0,b) 12(0.0) 16402,

2c}c3 . T 2 d
2 f ” u(a?, 17t2) ” L2(0,b) t2
S9

(4.15)

dtl

2¢2¢2 T
<

S1  So

> dtidts.
L2(0,0)

Adding inequalities (4.10)-(4.15) and applying (4.5), we get
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Th 2 2
0%u(w,s1,t2) T ¢ ‘ Ou(x,T,ts)
Tumi) , 20m T | o dt
{ [H oot | gy T T ) 500 RN VY
2
0*u(x,t1,52) u(x,ty,Ts)
+ f |:H atlaflz 2 B%(Ob + || u(l‘ tlaTQ) || L2(0,b) + ‘ # LZ(O’[)):| dtl
(4.16)
noBn g 2
A [
<onf f [l 10
2 2
Ju Su dtydt
+‘ 9t || £20,0) ‘ 0tz L2(07b):| 1

where

2
maX((z c1ey+cacgtcacg+2c7 1 3 2cic3+c3+2c3+ci+ leg)
0

(J

min (00,70,%(0005+cf))

C13: =

Inequality (4.16) is basic in the proof of Proposition 2. In order to apply inequality (4.16),
we introduce a new function 6 by the formula

T1 T2
O(x,t1,t2): = [ undr + [ undm.
t1 to
Consequently,
u(x, Tla t2) = 9(%’, S1, t2)7 u(m, t1, TQ) = 9(33’ t1, 32)’
Ou(x,Ti,ty) _ 00(x,81,t2) ou(z,t,Ty) _ 90(x,t1,59)
Oty - Oty ’ oty - oty '

Therefore (4.16) yields

i

DPu(w,s1,t2) 2

2 Ot10ty BL(0,b)
(4.17)
; 00(z,51,t2) 2
+ (1= 3ei3(Ty — s2)) | || Oz, 51,t2) || 5 oy T HT L2(0,b) a2
T 2
O*u(z,ty,52) 3
+<le [ ‘W B0b) + (1= 2es(Th — 51))
ols.t 90z ,1,5) || dt
| 0(x,t1,50) || 7 200 T T 12(0,b) !
2
3¢, u
< TM .s{ {Hatl(q)ta BL(0.b) + 101 r208) T Hdt° 12(0,b) Hdt‘ LQ(OJ’J Atz
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Hence, if s, > 0 satisfies 1 — 2¢13(T), — s,,) = 1/2 (p = 1,2), then (4.17) becomes

Ty 2 2
0%*u(w,s1,t2) 0 ¢ H 96(x,s1,t2) dt
9{ { a0t || g0 + || 0(z, s1,t2) || 2 oy T "o 0 9
2
Ou(z,ty,89) 00(x,t1,89)
+f |:‘ 3“3]12 2 BI(0.b) + ” 9($ t1,82) ” L2(0,b) + H# L'Z(O,b):| dtl
(4.18)
T T 2
3 02,
— T{ { |:H0t1('§tt2 BL0,b) || 0 || L2(0,b)
+H39 Hf’e‘ dtydts.
Pl p2p) " 100l 2p " 102

Applying a variant of Lemma 2 for the case of the reversed intervals to (4.18), to eliminate
the double integrals on the right-hand side in (4.18), we conclude that ¢ =0 almost
everywhere in (0,b) x (s1,T1) X (s2,T2). Proceeding in this way, step by step, we prove
that g = 0 almost everywhere in Q. The proof of Proposition 2 is complete.

To finish the proof of Theorem 2, consider the general case. Let the element
W = (f,¢,v) € F be orthogonal to R(L), so that

(L, £) 20,2 x (0.13),8308)) T (1% 0) 1((0.15),22(0,0))
(4.19)

+ (Lou, V) i o.11),22000)) = 0, Yu € D(L).

Putting w in (4.19) equal to any element of Dy(L), we get
(Lu, fr2(0m)x0.1),808) =0, Yu € Do(L).
Proposition 2 implies that f = 0. Hence, (4.19) implies that
(Cru, @) mi((0.1),L2(0,0)) T (L2t ) 1 (0,10),22(0.0)) = 0, Yu € D(L).
Since ¢;u and £yu are independent and the ranges of values £; and ¢, are everywhere dense in
H'((0,Ty), L*(0,b)), H((0,T1),L*(0,b)), the above equality implies that ¢ =0, and
1 = 0 (recall that ¢ and ¢ satisfy Assumption A3'). Hence R(L) = F. Therefore, the proof

of Theorem 2 is complete.
Remark 1: If equation (1.1) is replaced by

2 p
Lvu: = a?](;tz — %(a(l’,tl,tQ)%) = f(xvtlat%U)

then the existence, uniqueness and continuous dependence upon the data of a solution can be
proved by the same method, provided that f satisfies a growth condition of the form

~

‘f(xatht?;U) | S f ($,t1,t2>+c | ’U|.
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Remark 2: Our results can be extended to the following nonlocal hyperbolic problem:

( 2, .
Lo = 320 4signf(1— | M |2 (1= [ Ag|?)]
%(a(w,tht?)%) = f, (x,tl,t2) S Q,)\l, )\2 S C,
liv: = | =0 — A | =Ty = <I>(:c,t2), (l‘,tz) S (O,b) X (O,Tg),
bov: =0 | ty=0 — AU ‘ ty=Ty = \If(.%‘,tl), (l‘,tl) € (O,b) X (0,T1),
% = i (t1,t2), (t1,t2) € (0,T1) x (0, T3),
b
f U(l’,tl,tg)dﬂs = E(tl,tg), (tl,tg) S (O,Tl) X (O,Tg)
0
b
U 2v(z,t1,ta)de = x(t1,t2), (t1,t2) € (0,T1) € (0,Ty), respectively].
0

Remark 3: Our results can also be extended to the following problem;

Lv: = 022(3%;52 - %(a(l’,t],tQ)U) = f7 (xvtlatZ) S Qa
G =v(x,0,t2) = O(x, ts), (z,t3) € (0,0) x (0,T),
KQ'U: = v(z,tl,()) = \IJ(IL‘,tl), (I,tl) € (O,b) X (O,Tl),
W =0, 0<p<m, <t17t2) € (O’Tl) X (07T2)7
b
[ 2(z, t)de =0, p<qg<2m-—1, (t1,t2) € (0,T1) x (0,T3),
0

where m, p, g are integers.
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