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This paper introduces the notion of Lipschitz stability for nonlinear nth order
matrix Lyapunov differential systems and gives sufficient conditions for Lipschitz
stability. We develop variation of parameters formula for the solution of the
nonhomogeneous nonlinear nth order matrix Lyapunov differential system. We
study observability and controllability of a special system of nth order nonlinear
Lyapunov systems.
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1. Introduction

Stability analysis of nonlinear systems is an important area of current research and many
concepts of stability analysis have been recently developed for first order nonlinear Lyapunov
systems. In this paper, we develop a variation of parameters formula for nth order nonlinear
Lyapunov systems and use it as a tool to study the various concepts of stability. Our paper is
organized as follows: In Section 2, we develop the nonlinear variation of parameters formula
for nonhomogeneous systems. In Section 3, we study various concepts of stability for
homogeneous systems. In Section 4, we introduce the notion of Lipschitz stability and
investigate sufficient conditions for the nth order nonlinear system to be Lipschitz stable and
uniformly Lipschitz stable. In Section 5, we study the controllability and observability of the
nth order nonlinear Lyapunov system.

2. General Solution of Homogeneous Systems, Nonlinear Variation of
Parameters

In this section, we develop the general solution of the nonlinear matrix Lyapunov system

T = A"T(t) + nCLA" 'T(t) B +nCy A" >T(t) B> + ...
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+nC ATt B + ... + T(t)B" (2.1)

in terms of two fundamental matrix solutions of 7" = AT(t) and T = B*T(t) where B* is
the transpose of the complex conjugate matrix of B. In (2.1), A and B are constant square
matrices of order n x n and T € C[R;,R" x R"] is a variable matrix. Throughout this
paper, Y (¢) and Z(t) stand for the fundamental matrix solutions of 7" = AT and T" = B*T.

Theorem 2.1: If Y is a fundamental matrix solution of 7" = AT, then Y is a
fundamental matrix solution of 7 = A™T where n is a positive integer.

Proof: Y is a fundamental matrix solution of 77 = AT if and only if Y'(t) = AY (¢).
This implies that Y (t) = AY'(t) = AAY = A?Y. This further implies that Y”'(t) = A%Y
and so on. Hence, Y™ (t) = A"Y'(t). Thus, Y is also a fundamental matrix solution of
T = A"T.

Theorem 2.2: Let C be a constant square matrix of order n x n. Then any solution of

T — Z (") AT () B (2.2)

with A = B? = [, is of the form T'(t) = Y (¢t)CZ*(t), where Y (¢) is a fundamental matrix
solution of 7" = AT and Z(t) is a fundamental matrix solution of 7" = B*T.
Proof: It can be easily verified that 7' defined by T'(¢) = Y (¢)CZ*(t) is a solution of
(2.2). For
(Y()CZ*(t))™ = A"Y (t)CZ*(t) + nC1 A" 'Y (H)C Z*(t)B
+nCyA"2Y (1)CZ* () B + ... +nC.A""Y (t)CZ*(t)B"
+...+Y(#)CZ*(t)B".
By the Leibnitz theorem, we have
(Y (t)CZ*(t)™ =YW ()CZ*(t) + nC Y D(t)C Z* (t)
+nCY 2O ZH () + ... +nCYR)CZ @) + ... +Y()CZ(1).
The two equations are the same since Y(*)(t) = A¥Y (¢) and Z*"(t) = Z*(t)B* for
k=1,2,...,n. Thus, T(t) =Y (@)CZ*(t) is a solution of (2.1). To prove that every
solution of the equation is of this form, let T'(¢) be a solution of (2.2) and let K be a square
matrix of order n x n defined by K(t) =Y '(t)T(t). Then T(t) =Y (t)K(t). Now,
T(t) =Y (¢t)K(t) if and only if
YO (K (t) +nC Y ()"K' (t) + nCoY ()" 2K"(t) + ...
G Y () TEO @) 4L+ Y () KO ()
= A"Y () K (t) + nC1A" Y () K'(t) + nCo A" 2Y (x) (1) K" (t) + ...
+nCATY (KW (t) + ... + Y () KM(1). (2.3)
Since Y (t), Y'(t), ..., and Y™ (¢) are linearly independent, equation (2.3) can hold if

and only if K®) = KB* ifand only if K*"' = B*K* for k = 1,2,...,n. Since Z(t)
is a fundamental matrix solution of 7 = B*T, it follows that Z also a fundamental
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matrix solution of 7™ = B*"T". Therefore, there exists a constant matrix C' such that
K*=Z7ZC* thenT =YK = YCZ* and the proof is complete.

We shall now develop the variation of parameters formula for the solution of the
nonhomogeneous system

M) — i (:f)AnfrT(t)BT + F(t,T(t)). (2.4)
r=0

Theorem 2.3:  Any solution T'(t) of (2.4) is of the form T'(t) =Y (t)CZ*(t) + T,(¢),
where T),(¢) is a particular solution of (2.4).

Proof: It can easily be verified that 7'(t) defined by T'(t) = Y (t)CZ*(t) + T,(t) is a
solution of (2.4). To prove that every solution is of this form, let T be any solution of (2.4)
and T),(¢) be any particular solution of (2.4). Then T'(t) — T,(¢) is a solution of the linear
homogeneous  system (2.2) and has the form Y (¢t)CZ*(t). Hence,
T(t)—Ty(t) =Y )CZ*(t)and T'(t) = Y (t)CZ*(t) + T,(t). The proof is complete.

Theorem 2.4: Let Y (¢) be a fundamental matrix solution of 7" = AT and Z(t) be a
fundamental matrix solution of T’ = B*T. Furthermore, suppose that
C € C"[R4,R™ x R"] such that

(Y'C'Z* +YC'Z")i=) =0fori =1,2,...,n. (2.5)
Then a particular solution T, (¢) of (2.4) is given by
Tp(t) =

Tn—1

0 (ft

QH

YL (s)F(s,T(s))Z* " (s)dsdr_1... dT2dT1> Z*(t).

Proof:  Any solution of the homogeneous system (2.1) is of the form T(t) =
Y (t)CZ*(t), where C is an n x n constant matrix. Such a solution cannot be a solution of
the nonhomogeneous system (2.4) unless F' = 0. Assume C €
C"R,,R" x R"] and seek a particular solution T),(¢) of the form T),(¢) =
Y (t)C(t)Z*(t). Substituting T),(t) into (2.3) and using (2.5) yields Y (¢)C'™)(¢)
Z*(t) = F(t,T(t)) which in turn vyields C™(t) =Y ()F(t,T(t))Z* (t). After
integrating n times, we have

cty=[ [ Y ) (s, T(5) 2" (8)dsdrer. . dradry.

a a

Q\

Y () ( P Y ) R T()) 27 (s)dsdmn. . d72d71> Z*()

(2.6)
and T),(t) is easily verified as a solution of (2.4).
Theorem 2.5: Any solution T'(¢) of the nonhomogeneous Lyapunov system (2.4) is of the
form T'(t) =Y (t)CZ*(t) + T,(t) where T,(¢) is given by (2.6).
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Proof: For n =1, the homogeneous system (2.2) reduces to 7/ = AT +TB. The
general solution in terms of the variation of parameters formula for 7" = A(#)T(t) +
T(t)B(t) + F(t,T(t)) has been established in [4].

And for n > 1, we have if T'(¢) is any solution of (2.4) and T,,(¢) is a particular solution of
(2.4), then T(t)—T,(t) is a solution of the homogeneous system (2.1). Hence,
T(t) —Ty(t) =Y )CZ*(t)and T'(t) = Y (t)CZ*(t) + T),(t).

3. Stability Analysis of the Homogeneous System

In this section, we shall be concerned with the various concepts of stability of the
homogeneous system

TO) = 3~ (") AT (1) B (3.1)
r=0

The proofs of the next theorem in each case are simple and hence omitted. For basic
results on stability, see [1].

Theorem 3.1: Let Y(¢) be a fundamental matrix solution of 7" = AT and Z(t) be a
fundamental matrix solution of 7" = B*T'. Then the matrix system (3.1)

(a)  isstable if and only if there exists a positive constant K such that

(Y@ Il Z@) || <Kforallt>ty>0,
(b) s asymptotically stable if and only if it is stable and
Y@ Z®) [ —0ast— oo,
(¢)  isuniformly stable if and only if there exists a positive constant K such that
Y)Y L) || | Z#)Z7(s) || < Kforallt > s>ty >0,
(d)  isstrongly stable if and only if there exists a positive constant K such that

IY®)Y @) || | Z#)Z71(t) || < K forallt >ty >0, and

(e)  isuniformly asymptotically stable if and only if there exist positive constants
my, ms, c, and G such that

| Y@Y(s) | < me)
and
| Z(t)Z71(s) || < maeP=forty < s <t < oo.

Theorem 3.2:  Suppose there exist positive constants L, and L, such that
| Y@)Y~'(s)|| <Lyand || Z(t)Z7Y(s) || <Ly forall co>t>s>t,and F satisfies
the condition || F'(¢t,T(t)) || <~(¢) || T(t) | where ~ is a positive continuous
function such that [, [;... [v(s)ds < co. Then there exists a positive constant L
such that for any t; > tg and || T'(t1) || <c¢/L,we have ||T(t)| <L | T(t)| forall
t >t > tp.
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Proof: Any solution 7'(t) of the nonhomogeneous matrix Lyapunov system (2.4)
satisfying 7'(¢;) = T has the form

T =Y@®)Y L(t)T(t) 2" (t1)Z*(¢)

LY@ f Y ) F(s, T(s) 27 (8)dsdTar. .. d) Z7(8).

ot

Hence,

ITO I < YO @) I ITTE) 2 ()27 @) |

+ff f WY @Y-'(s) | I Fs.Ts) || [ 2 (5)2°(0) || dsdrs....dm,

<LiL | T) || + [ f f L 1Loy(s) || T(s) || dsdT_1...dm

t1 t

< L1L2 || T(tl) || + L1L2f f f LlLQ’)/( ) || T(S) H deTn,I...dTl.

t1 t

By applying the Reid-Bellman inequality [2], we obtain
| T@®) | <LiLy || T(t1) || exp f f f 'y( YdsdTy—1...dT)

< L||T(t) | fort; <t < oo.

Theorem 3.3: Suppose there exists an m = max{my, ma} > 0 such that
Y)Y (s) || <mie =) and || Z(t)Z7(s) || < maoe P=5) for ty<s <t < oo
where « and ( are constants such that o + 3 > 0 and F satisfies a Lipschitz condition with
the Lipschitz constant L < C/m. Then there exists a positive constant K such that
[ T(t:) | < (a+ B)/K implies

IT@) | < mimaeexp( — (a+ B)tr) | T(t) |

X exp mlmgf f f "}/(S)dsd’]'n_l... dTl).

ot

Proof: The proof utilizes the variation of parameters formula given in Theorem 2.4.

4. Lipschitz Stability of the Nonhomogeneous Lyapunov System

In this section, we give sufficient conditions for Lipschitz stability on nonlinear nth order
matrix Lyapunov differential systems and study Lipschitz stability properties of the zero
solution of perturbed matrix Lyapunov system with the variation of parameters formula
developed in Section 2. Before we proceed to give our new results, we shall give the
following definitions [2, 3].
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Definition 4.1: The zero solution of the nth order Lyapunov system (2.4) is said to be
uniformly Lipschitz stable if there exists a constant m > 0 and a § > 0 such that

| T(t,to, To) || <m || To | whenever | Tp | < éandt >ty > 0.

Definition 4.2: The zero solution of the nth order Lyapunov system (2.4) is said to be
asymptotically stable if there exist positive constants m and « such that

| T(t,to, To) || <m || Tp || e @) whenever || Ty || < dandt >ty > 0.
Let f(¢,T(t)) = >r_(")A" T (t)B" with B = A° = 1 and the linear system be
T = f(t,T(t)) (4.2)
and its perturbed system be
W' = f(t, W(t)) + F(t, W(t)) (4.2)

satisfying the initial data T'(ty) =Ty, where tp € R, and f,F € C[R; x R" x R",
R" x R"]. Assume that Y'(¢) is a fundamental matrix solution of 7/ = AT and Z(t) be a
fundamental matrix solution of 77 = B*T'. Obviously, system (4.1) admits the zero solution.
We now have the following theorems.
Theorem 4.1: Suppose that
(Z) ” Yﬁl(t7t07T0)F(t’T(t7thTO) H < g(tv ” T ” ) or
| F(t, T(t, to, To)) Z ' (t, to, To) || < g(t, || To || ) where
g € C[R; x Ry, R,], g(¢,0) = 0, and the trivial solution of

u' = g(t,u),u(ty) =up >0 (4.3)

is uniformly stable, and
(i¢)  the trivial solution of (4.1) is uniformly stable.
Then the trivial solution of (4.2) is uniformly stable.
Proof: Any solution W (¢, ty, Ty) of (4.2) is of the form

W(t) =Y ()Y (to)ToZ* " (te) Z*(t)

Yy .ffT”’lyfl(s)F(s, W ()2 (s)dsdrny...dm) Z*(b).

o ty

Ifwesetm(t) = || Y(®)Z() || and || To | = wo with DTm(¢) < g(t,m(t)), then by the
comparison theorem [2] we have the estimate

m(t) = | Y()Z(@) | <r(tto,uo) =r(tto, | To ) (4.4)

the maximal solution of (4.3) with K = 1. Since W (¢, to, To) = T'(to, to, To), it
follows that || W (¢,t0,Tp) || = || T(t,t0, Y (2), Z(t) || = || T(¢,t0, D(t)) || where ®isa
solution of ™ = Y1) F(t, ®(t))Z* ' (t).

By assumption (i), given any e > 0 and ¢, in R, there exists a §(¢) > 0 such that

| T(t,to,To) || < e whenevert >tyand || Ty || < é(e). (4.5)
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Since the null solution of (4.3) is uniformly stable, we conclude that if §(¢) > 0 for
to € Ry, there exists a n(e) > 0 such that r(t,tp, ug) < n(e) whenever ¢ >t if ¢ is
sufficiently small. From (4.4) and (4.5), it follows that | W (t,to,T0) || < e whenever
| To || < n(e) fort > ty. The proof is complete.

Theorem 4.2: Suppose that

(1) | Y(t,to,T0o) | < Kyand || Y~ l(t,ty,Ty) | < K, fort > t,and

|| Z(t,to,Tg) || < K5 and || Z_1<t, t(),T()) H < K, for¢ > to and || T || <.

(@) N FW) | <glt, | W) where g € C[R, x Ry, R.], g(t,0) =0, g(t,u)

is nonincreasing and the trivial solution of

v = K%g(t,u),u(ty) = uyg >0 (4.6)

where K = K K, is stable. Then the trivial solution of (4.2) is stable.

Proof:  Any solution of the perturbed system 7" =3%" (")A""T(t)B" with
B = A° = [ is of the form T'(t) = Y (¢+)C Z*(t). This solution satisfies the initial condition
T(ty) =Ty if and only if T(¢t) =Y (t)Y " (to)ToZ ' (to)Z*(t). Assumption (i) yields
| T#) || <K!KZ2| Tyl for ||Tp|| <~. Suppose there exists a t; >ty such that
| @) || = | Y)Y Lto) || <~ for to <t <t and | ®(ty) || =
| Y(t1)Y (to) || =~. Then any solution of (4.2) is of the form

i
~

=
I

Y ()Y (to)ToZ* (t0)Z*(t)
+Y@)([ f fT 7 YU (s)F (s, W(s))Z* ' (s)dsdry_,...dr) Z*(t).
Using the bounds on Y (¢), Z(t), Y ~1(t), and Z~!(t) along with assumption (ii), we get

t T Tn—1
IW (@) || < K2K2 | Toll +K2K2[ [ ... [ g(s, | W(s) || )dsdror...dn.
to to to
Hence,

t n Tn—1
W@ || <K To | +K2[ [ ...ff g(s, || W(s) || Ydsdry_...dm.

t() tn
This fact leads to
| W) I <r(t,to, o) = 7r(tto, || To || ),

for ty <t < t; where r(t,t9,uo) is the maximal solution of u' = K?g(t, ), u(to) = ug such
that || 7o || < wg. By using (i7), given > 0, there exists a ¢; > 0 such that (¢, to, up) < n
for ¢ > to whenever uy < 61. Thus, if || 7o || < wuo < 61, then || W (t) || < nforall t > .
This contradicts the fact that || ®(t;) || = || Y (#1)Y " (to) || =n. Thus, | ®(t1) || <n
forall ¢ > ¢3. Now,

t Th—1
W) | <KIK | To || + KiKZ[ [ ---tf g(s, | W(s) || )dsdr,—1...dm.
0

to to

Thus, || W(t, to,To) || < r(t,to, ug) where r(¢) is the maximal solution of (4.6). Given any
€ > 0, there existsa § = (e, t9) > Osuch that || Tp || < 6 implies

H W(t) ” < T(tvt()auo) = T(ta to, H TU || ) <e€
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for all ¢ > ;. Thus, the null solution of (4.2) is stable.
The following theorem gives a set of sufficient conditions for the uniform Lipschitz
stability of the perturbed matrix differential system (4.2).
Theorem 4.3: Suppose that
©) the zero solution of the unperturbed system (4.1) is uniformly Lipschitz
stable and that hypothesis (i) of Theorem 4.2 holds.
(@)  [FEWE) [ <~(@) || W | wherey e C[R,R] and

t Tn—1
[ . f ~(s)dsdry_1...dr < ooforall ¢ > t.
to to to

Then the zero solution of (4.2) is uniformly Lipschitz stable.
Proof: Let T'(¢,%,7p) be the solution of (4.1) and W (¢, %y, Tp) be the solution of the
perturbed system (4.2). Then clearly

I T(t,t0,To) | < || W(t,to,To) | = || Y)Y " (to)ToZ* (to) Z*(t)

+Y (1) ft [ Y ) F (s, W () 2 (8)dsdmny... dm) Z4(1) |

ty to to

t n Tn—1
<KIK;|Th| + KiK:[ [ tf v(s) || W(s) || dsdr_1...dm1.
0

to to

By the Gronwall-Reid-Bellman inequality

t n Ta—1
| W(t,to, To) || < KiKZ || To || exp(KiK3) [ [ ... [ ~(s)dsdrp_i...dm

ty to to

oo T Tn—1
< KIKZ | Ty || exp(K2K2) [ [ ...[ ~(s)dsdryy...dn < L| Ty,

ty to ty

where L = K{Ksexp(K{K3) [ [/ ["'v(s)dsdTy1...dm.  Thus, the proof is
complete.

5. Controllability and Observability
Consider the Lyapunov system
T = A'T(t) + nCLA" ' T(t) B + nCyA" 2T (t) B2 + ... +nC, A" "T(t)B" + ...
+T()B"+ C(t)U (t)D*(¢) (5.1)

W(t) = G(t)T(t)H*(t) where A, B, T are all square matrices of order n x n. C and D are
n X m matrices and U is an m x m matrix. We call U the control and W the observation.
Definition 5.1: The system (5.1) is said to be completely controllable if for any given
initial condition T'(¢y) = Ty and for any ¢; > ¢, there is some U (t) defined on ¢ty <t <t
such that 7'(¢) = 0.
Definition 5.2: The system (5.1) is said to be observable if for any given ¢; > t, we can
determine T'(¢) for ¢y <t < ¢; from W (¢).
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From the variation of parameters formula, the solution of system (2.4) has the form

T(t) = Y()CZ*(t)

+Y (@) ([ lesz. . Y U(s)F (s, T(s))Z* (s)dsdr,_,...drodr) Z*(2).

Tn—1
1

[¢

Then,

YL O)T()Z* ' (t)
t T T Tn—1

=C+ ([ [ ..f Yﬁl(S)F(S,T(S))Z*il(5>d8d7'”_1...dTQdT])

and

C=Y'OT{t)Z* (t)
Y ) (s, T(s) 27 (s)dsdTy. .. drad).

From this, we can determine C' and apply the variation of parameters formula to determine
T(t).
Theorem 5.1: Suppose for some t; > tq the matrices G*Y*Y and HZZ*H* are positive
definite. Then the system (5.1) is observable.

Proof: Let W (t) = G(¢)T(t)H(t). Then

Y ()W (t) 2" (t1) = Y (01)G(6)T(0) H (t) 2" (t1)
and hence
G (L)Y (L)Y ()W (£) 2 (1) Z (4 H (1)
= GV (8)Y (41) G ()T () H (0) 2 () Z (1) H (1),

Since the matrices G*Y*Y and HZ Z*H* are positive definite, whenever G and H
are nonsingular, we can solve for T'(¢;) and hence for T'(¢) for ¢ > .

Theorem 5.2: If Y L(t)C(£)C*(£)Y* ' (t) and Y ~1(¢)D(t) D*(t)Z* () are
all positive definite for all ¢, then the matrix system is completely controllable.

Proof: Any solution T'(t) of (5.1) is of the form

T(t) = Y()CZ*(t)

t 1 T

v YW [ Y ) C)U () D (5) 27 (s)dsdTr. .. dradm) Z5(2) IF we
choose

e [ Y ) U () D (5) 2 (s)dsdr .. dradr) Z°(1),

a

then T'(t) = 0. Choose U as
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Ut) = — @Y ({Y ()o@ c )y ()} 'c

to)"
x {Z7H(O) DD (4) 2 (1)} 271 () D(2).

If we substitute this expression into (5.1), we find that the equality holds. Thus, the system
(5.1) is completely controllable.
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