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Infinite systems of stochastic differential equations for randomly perturbed particle systems in ��

with pairwise interacting are considered.  For gradient systems these equations are of the form

�� ��� � � ����� 	 �
 ���� � ��

and for Hamiltonian systems these equations are of the form

�� ��� � � ����� 	 �
 ����

� � ��

Here  is the position of the th particle,  is its velocity,� ��� � � ���

� �

� � � � �� ��� � � ������ � � �
�� �

�
where the function is the potential of the system,  is a constant,� �� � � � �� �
�
 ���� � � �� �� � ��  is a sequence of independent standard Wiener processes.
 Let  be a sequence of different points in  with , and  be a sequence in�� � � �� ��� �� �� � �

�

� �� ���� � �  �  �  
�.  Let  be the trajectories of the -particles gradient system for which~

� ��� � � � � �  �� ���� � �  �  ~  , and let be the trajectories of the -particles Hamiltonian 
� � �

system for which ,  , .  A system is called quasistable if for all� ��� � � � ��� � � � �  
 
� � � �

integers  the joint distribution of  or has a limit as~! �� ���� � � !� �� ���� � � !� 
�

 
�

 ��.  We investigate conditions on the potential function and on the initial conditions under
which a system possesses this property.
 Key words:  Configuration Space, Gradient and Hamiltonian Systems, Stochastic Differential
Equations, Weak Convergence of Measures.
 AMS subject classifications:  60H10, 60G46, 60K35.

1   Introduction

We consider a finite or an infinite sequence of -valued stochastic processes��
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� ���� � " �� �

where  is a finite or infinite interval of the natural numbers by which the evolution of a set of�
pairwise interacting particles in the space  is described.  The interaction is determined by a��

potential  satisfying the condition� ���
 ( )  where the function  is smooth,  forP � ��� � # ����� # ���� 	�� � � #��� � �
$ � % & �, and for some  the relation�

lim
$ ' �

$ # �$� � (�	� ))

is fulfilled, ,  are constants.% � � ( � �
 The motion of a gradient system is determined by the system of the stochastic differential
equations

�� ��� � � � � �� ��� � � ������ 	 �
 ���� � " �� � � � �

�� �
��" �

�
� � � (1)

The number of equations coincides with the number of particles.   is the sequence of
�
independent standard Wiener processes in .  These equations are solved with some initial��

conditions , where , is a sequence of different points in�� ��� � � � � " � �� �� � " �� � �� �
� �� �� ��

� �, for which lim  if  is an infinite interval.�
 The motion of a Hamiltonian system is determined by the system of the stochastic
differential equations

�� ��� � � ��� " �� �� ��� � � ������ 	 �
 ���� � " �

� � � � �

�� �

� � � � (2)

Here  is the velocity of the th particle. Equations (2) are solved with the� ��� � � ��� �

� �

�
��

initial conditions

� ��� � � � � ��� � �

� � �� ,

where  is another sequence in .�� �� � " ��
��

 The existence of the solution to infinite systems of kind (1) was considered for smooth
functions  by J. Fritz (see [2]).  Finite gradient and Hamiltonian systems with the� ���
potentials satisfying condition ( ) were considered by the author (see [5]).P
 .  Let sequences  and  be given.  For anyQuasistability �� � � * �� �� � � * ��� �

 � � �� ���� � �  �, there exists the solution to system (1) , satisfying the initial 
�

conditions

� ��� � � � � �  � 
� �

and the solution to system (2)  satisfying the initial conditions~�� �+ �� � �  � 
�

� ��� � � � � ��� � � � � �  �~ ~  
� �� �

�
��

This follows from the results of [5].
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 Gradient system (1) is called quasistable if for any  the joint distribution of the!
stochastic processes (t),  has as a limit  in the space .~�� � � !�  �� �, �� �� � !

� -����

Hamiltonian system (2) is called quasistable if for any  the joint distributions of the!
stochastic processes  has a limit  in the same space.  Note that the~�� ���� � � !�  �� 

�

quasistability is determined by the potential and initial conditions.
 The main goal of this article is the investigation of the conditions on the potential and
initial conditions of gradient and Hamiltonian systems under which they are quasistable.
 

2 The Spaces  and � ��

It is convenient to consider gradient systems (1) in the configuration space  which is the set of�
locally finite counting measures  on the Borel -algebra  of the space .  So, a� � ��� � �� �

measure  satisfies the property:� �"
 (LF) the support  of the measure  is a sequence  of different points in. �� � � * ��� � �

��

for which

�
�

��� �& /�� & �
�

for all .  The topology in  is generated by the weak convergence of measures:/ � � �
� �/ ��  if � �� � � ���� ���� � ��� ����/ �

for ,  is the set of continuous functions  with bounded support.  Denote� � � �" �� � �0 0
�

1 � 2 � ��� ����� "� � � � � ��
0

and for a continuous function  with bounded support	 ��� � � �� �

1 � 3 2 � ��� � � ���� ��� � � ��� �� ����	 � � 	 � � 	 �� �' ' .

Using Ito's formula and considering the function  as a function of two variables:  '),( (�� � �
we can rewrite system (1) using -valued function  for which� ��

1 � 2 � �� ����� " �� � � � �� � 0

�

� (3)

in the form

�1 � 2 � 11 � (�� 3 2�� 	 1 � 2	 � 4�� ����� �
 ������ � � � � 
� � � �� � � � � �
)

�
�

�� � (4)

where
� � 
� �" � ��� � + % ���

���
0

))
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and  is the set of those  for which '  and ''  are continuous functions.� � � � �
���
0 0" ��� ���

 A -valued stochastic process is called a weak solution to equation (4) if for all� � ��� �

� �"
���
0  the stochastic process

� � � � � � � 
� ��
�� � �� � 1 � 2� -1� � (�� 3 2	 1 � 25�$� $ $ $

�

�
)

�
� �

(5)

is a martingale with respect to the filtration  with the square characteristic� �
� �* �

1 � 2 � 1� � �� 2�$�� � � � � �� � � $
� ) )

�

�� (6)

If  is a weak solution to system (4) and� ��� �

1 � � �2 � �� ����� � � �� �

�

�
for , then the sequence  is a weak solution to system (1).� � �" �� ���� � " �0 �

 For any  and a continuous decreasing functionCompacts in   �� � �"

���� ������ � �	
for which

� ��� 	 � � 	� �	�� � �, 

there exists a continuous decreasing function

	 	��� �-���� � � � �	�� � �	

such that � � 	 	 � � ������ ��� �� ��� � ��� ���� ��� � & �' ' ' . (8)

For any compact set  from  and any function  satisfying the conditions mentioned before,6 � �
there exists a function of the form given by relation (8) for which

sup
�

	 � �
" 6

1 � 3 2 & ���

Note that the set

� �1 � 3 2 * 7�� 	 � ��

is a compact in  for any  of the form (8) and .  Denote by  the set of those� 	 �� 	 �7 � � �

� �"  for which relation (7) is fulfilled.  Set

� � � � �	 �� � �� �
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sup��1 � 2� 1 � 2�� " 8 9: �� 	 �1 � 3 2� 1 � 3 2��	 � �	 � � 	 � � 	 � �� � � � � �
�

� � (9)

where
8 9: � � " � � ����� �� � ���

� �� �

�
0

)

� ���� �� ��
���� �� � �sup sup � � )

) (10)

�	 � 	 �� � with the distance  is a separable locally compact space.�
 It is convenient to consider Hamiltonian systems in the configuration space  which is��

the subspace of those locally finite counting measures  in  for which�; �� �� �

�
�

� � � ;� �
�
" � ��� 4� �� � � �� � . ��

where  are sequences in the space .  Let  be a�� � � � ��� �� � � � �� � �� ���� � � ��� � �
�

solution to equation (2). Introduce a -valued function��

� �;��� < � � � � < " ��� � ���
�

��� ���4� ����" �;
� �

� � �

Let be a function from .  Ito's formula implies the relations� ���� �� ��� � � � ��� � �� � � � �
0

�1 � ���2 � �18 � ���2	 1� � (�� ��� 3 ���2��� 	 � �� ���� � ����� �
; ; ; ; 
� � � � � � � � �� � � � �

�

�
���� (11)
where

8 ��� �� � � ��� ��� �� 	 +% ��� ��� � � �� ��
�
�
�

and

� � (� � � ��� ��� (�� � � ��� (��� � � � ����� �� � �
)

This means that the stochastic process  is the solution to a martingale problem:  for any�;���
� �" ��� � �� �  the stochastic process

� � � � � � � � �; ; ; ; ;��� � � 1 � ���2� �18 � �$�2	 1� � (�� �$� 3 �$�2��$�
�
�

�

� (12)

is a continuous martingale with the square characteristic

1 2 � 1� � � �$�2�$�; ;� � �� � �
�

�
�� (13)

3 Some Properties of Solutions to Finite Systems
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Assume that  and the function  satisfies the condition ( ).  In this section we� � � � ��� P
consider solutions to systems (1) and (2) for which

� �� � -�� /5�/

 Lemma 1: a)  Let be different points in .  Then the system of stochastic�� � � � /� ��
�

differential equations

�� ��� � � (�� ��� � � ������ 	 �
����~ ~ ~
� � �

�� �

��� /�
� � (14)

with initial value  has a strong solution and this solution is unique.~� ��� � �� �

 Let be points in .  Then system  with the initial conditionsb) (2)�� � � � /� ��
�

� ��� � � ���� � � � � /

� � �, ,  has a strong solution and this solution is unique.

 Proof:  Set

( ��� � � # ����= � � � ��� ) �
���� � (15)

Denote by the solution to system (14) in which the function  is changed� (���� ���� � � /�~  �
�

to the function , the existence and the uniqueness of this solution is a consequence of the( ����

Lipschitz condition of the function .  Let( ����

�� � �� ��� � � ��� � /� � � /� � � ��inf .

Introduce the stopping times

�� � �� � � � ��inf inf � ��� � � ������ � /� � � /� � � ��� � ��~ ~� �
� � � (16)

Then for  we have� & & &� � �� � �

� �� �� �� �

� ��� � � ���� � � /� � � �~ ~� �
�

� �
�� � �

 Let ') '  and set> ��� � � �� � �����

? ��� � � > �� �
�� �

��� /��� /� � ���� � �����~ ~� �
� �

Then

�? ��� � . � �� � ��
9� �

� � ���� � ���� 	 . �� ���� � ���� � ���� �� 	 � ���~ ~ ~ ~ ~� � � � � �
� � �

9� �� �� 9

@ 9 �
� � (17)

where

S (18)� �
� � � � � � � � � �

�@�� � � � � � 7 �� � � � �� � � � ( �� � � ���
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. �� � � � � � � � 7 �� � � � �� � � � ( �� � � ���� �
@ � � @ @ � � � � � @

�� (19)

7 � 7 ���� @ are positive constants, and  is a martingale with the square characteristic��

1 2 � , � �$�� � ���
�

�

�� � � �$���$�~ ~� �
� /

and

, �� � � � � � � A�� � �� � �� � � � �� � � �� �� / � 9 � 9
� �� �

�� �

/

9� �

� �
Using formulas (18) and (19) we can prove that for some constant  which does not8 ��� /�
depend on , the inequality holds�

� �
9� � 9� �� �� 9

� @9 � 9 � �. �� � � � 	 . �� � � � � � � 8 ��� /� � ) (20)

for any set of different points

� " � � � � �� � � /��x� �

Formulas (14) and (17) imply that the stochastic process

? ��� � 8 ��� /��� � + ��

is a non-negative supermartingale on the interval .  So, for any  we have the-�� + 5 + � �
relation

lim sup sup
7 ��

� � � � +
 
�

B � ? ��� � 7� � ���

This implies the relation

B � � 	�� � ��lim
�� �

��

Statement a) of the lemma is proved.
 Let  be the solution to the system of the stochastic differential equations�� ���� � � /��

�

�� ��� � ��� � /�( �� ��� � � ������ 	 �
 ���� � � /�
 � � � �
� �

�� �
� �

� �

with the initial conditions

� ��� � � � � ��� � � � � � /�
� �
� �� �
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The existence and the uniqueness of the strong solution follows from the Lipschitz property of
the function .  Let below the stopping time  be determined by formula (16) with ( � ����� �

�� �

� ��� � ���� � ���� � �
� �� instead of .  Set~ ~

� ��� � # �$ = ��$�� �
�

���
) �

C ��� � �� ���� 	 � �� ��� � � �����

�

� � � �� �
�� / �� /��� /

� �
�

�

It is easy to calculate that

�C ��� � / �� 	 � �� � �
 �����

�

�� ��

�� /
� �

�
So, the stochastic process

C ��� � / �� � + �� /# �� �� �

where , is a non-negative martingale on the interval  for all ,# � # �$� -�� + 5 + � �� $� �inf
� � �.  Further proof of statement b) is the same as for statement a).  The lemma is proved.

Free Particles Processes

We consider now the solution to equations (1) and (2) for .  They are called � � 
 � � �  free
particles processes.  The stochastic process

D ��� � �� ��� � � 	 
 ���� � � /�
~ E
/ �

E
� ��

in the space (  is called an -particles free gradient process, and the stochastic process� � /� /

D ��� � �� ��� � � 	 �� 	 
 �$��$� � � /�E E
/ � � � �

�

�

��
in the same space is called an -particles free Hamiltonian process.  We use the notations/

D ��� � �� ���� � � /�� D ��� � �� ���� � � /�
~ ~
/ � / �

for the stochastic processes introduced in Lemma 1.  Let  be probability~ ~! � ! �!� � E�
/ / /

measures on the space  which are the distributions of the stochastic processes� �� ���-���5
� /

D � 
 �� D � 
 �� D � 
 �� D � 
 �
~ ~
/ /

E
/ /

E

on the interval .-�� �5
   a)Lemma 2:   The measure  is absolutely continuous with respect to the measure~!�/
! ! !~ , and the measure  is absolutely continuous with respect to the measure  for allE�
/ / /

� E�

� � �.
 Denoteb)  

Z/ � / � 5����
�� 
 � � �? � 
 �4� 4? � 
 ��� ? � 
 � " �� �� � � /��

and



Quasistable Gradient 53

�!
�! / / /

~
~
�
/
E� �C � 
 �� � � ��� C � 
 ���

~

�!
�! / / /

�
/
E�
/
�C � 
 �� � � ��� C � 
 ��.

Then

d~ ~ ~
/ /

E
��� D � 
 � � ����� ����

exp� F �$� � �$��
 �$� � �F �$� � �$��� �$�� �

�� / �� /
� �

� �

/ � /
E E
� ��

�
� �
� �� �~ ~~ ~

�

where

F �$� �� � � (�� � � �$���
~ ~
/

�� /
�� �$�� ��

E
�

� ~E
�

(22)

and

d/ /
E��� D � 
 � � ����� �� �3

exp� F �$� � �$��
 �$� � �F �$� � �$��� �$�� �

�� / �� /
� �

� �

/ � /
E E �
� ��� �

� �� �
� ,

where

F �$� �� � � (�� � � �$��/

�� /
�� �$�� ��

E
�

�
E
�

. (24)

 Proof:  Denote by  the distribution of the stochastic process!;���/

D � 
 � � �� � 
 �� � � /�
~ ~� �
/ �

in the space .  This stochastic process was introduced in the proof of Lemma 1.� �� ���-���5
� /

It follows from the results of [5] that  and~ ~! G !� E�
/ /

�~ ~�
/

�!
�!

E
��� � �D � 
 ��

~
~
���
H
E�
/

� � F �$� � �$��
 �$� � �F �$� � �$��� �$�exp � �
�� / �� /

� �

� �

� �

/ � / �
E E

� �
�

� �

� �� �~ ~~ ~
� (25)

where  is calculated by formula (22) with  instead of .  It is easy to see that~
F �$� �� ( (

� �
/

D ��� � D ���� ��� � ���
~ ~ ~ ~� �
/ / // � �

for  (see formula (16)).  This implies formula (21).  Formula (23) is proved in the same� � ��
way.  The lemma is proved.

4 Infinite Free Particles System
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Let be a sequence in  for which , and let ,  be an�� � � � �� � � " �� � * ��� � �
�

�� � ��
�

arbitrary sequence in We consider these two sequences of stochastic processes:� ��

�� ��� � � 	 
 ���� � * ��� �� ��� � � 	 �� 	 
 �$��$� � � ��~ .E E
� �� � � � �

�

�

� ��
   a)  Lemma 3: The relation

B � � & �� � ��
�

��� ����& 7�~E
�

(26)

is fulfilled for all if  satisfies condition ,  � � � 7 � � �
 existence of gradient free particle system for all ( )  ( )  EGFPS � � �

� exp� � ���� � ���� & ��� � ��I�

 b)  The relation

B � � & �� � ��
�

��� ����& 7�E
�

(28)

is fulfilled for all ,  if the sequences satisfy the condition� � � 7 � � �� �� �� �� �

 existence of Hamiltonian free particle system for all , ( ) ( ) EHFPS � � � $ � �

�
�

� �
�exp� � ��� � $� � � & �� (29)

 Proof:  It follows from Kolmogorov's theorem on the convergence of random series that
relation (26) is equivalent to the relation

�
�

E
�B ��� ����& 7� & �. (30)

Using the inequality

���� � ��� �� � 	 ���� �
�
A

� �

we can prove the existence of positive continuous functions

F ��� 7� < ��� 7� � � � 7 � �,  ,  ,  ,

for which the inequalities below are held

F �7� �� � � �� � � � B ��� ����& 7� � < �7� �� � � �� � ��exp exp� �
� A �� �

� E �
�� �� �

This implies statement a).  Statement b) can be proved in the same way.  The lemma is proved.
  ( ) Corollary 1: EGFPS If condition  is fulfilled, then the relations
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1 � � � �2 � �� ���� " �� � � � � � �~E
� �

�

E
0

�
determine a -valued continuous stochastic process  which is called a ~� � � �E

� � � � gradient free
particles process.
 ( ) If condition is fulfilled, then the relationsEHFPS

1 � � � �2 � �� ����� " �� � � � � � �E E
� �

�

0
�

where  determine a -valued stochastic process which is� � � � � �; � " ��� ��
� �� 4� �

� E
�� �

called a Hamiltonian free particle process.
   Let  satisfy condition ( ), andRemark 1: EGFPS�� ��

�� �� J��� ��� � ���� �

Then condition ( ) is fulfilled.EHFPS
 Introduce for 1  the stopping times with respect to the filtration � ! & / � � � * ��
�
generated by the sequence �
 ���� ��

�
~ inf min ~ ~
!�/

E E
� �� �� � � � ��� ��� � � �����9 � !� � * /� � %�

�!�/
E E
� �� �� � � � ��� ��� � � �����9 � !� � * /� � %�inf min .

   a)  ( ) Lemma 4: EGFPSLet condition be fulfilled.  Then for any ,  the� � � ! * �
relation

lim ~
/
B � � �� � ��!�/

is held.
 Let condition be fulfilled.  Then for any ,  the relationb) ( )   EHFPS � � � ! * �

lim
/
B � � �� � ��!�/

is held.
 Proof:  Let us prove statement a).  It suffices to prove the relation

lim inf   inf ~
/ $ � � 9 � /
B � �� �$��� 7� � �E

9

for any , .  This follows from the inequality� � � 7 � �

B � �� �$��� 7� � B � �� �$��� 7��inf   inf inf~ ~
$ � � $ � �9 � /

E E
9 �

9� /

�
The lemma is proved.
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5   Quasistability

First, we calculate the conditional expectation  where the filtration~K� ���L �� 
/ �
!

� � � * �� �
 ���� � � !�
�
!

� is generated by the Wiener processes .  We use the notation

�~ ~ ~
/ 9 ��

�

9� �

�9= �� /�
E E

9��� � � �(�� �$� � � �$��� �
 �$���� �
To simplify writing, we assume that  and .  It follows from formula (21) that� � � % � �

� � �~ ~ ~exp/ / /
�
� ���� � � ��� � 1 2 �

where  is the square characteristic of the martingale   This implies the representation~ ~1 2 �� �/ /�

� � �~ ~ ~ (31)/ / /
�� �

�

�& $ & � & $ & �
� ���� � � 	 � �$ �� � �$ ����

� �

   LetRemark 2:

�/
9� �

��= �� /� 9 �
E E��� � � �(�� �$� � � �$��� �
��

9�$���

Then the density  (see formula (23)) is represented by relation (31) with  instead ~� � �/ / /��� �
   Lemma 5: Let .  Then! & /

� � 
~ ~
!�/ / �

!��� � K� ���L �

(32)

exp� �H �$�� �
 �$�� � �H �$�� �$���
�� !

� �

� �
� � �
!�/ !�/�

�
�

� �
and for , the functions  are determined by the formulas� � ! H ����

!�/

H ��� � � < � � � � � � � ��� � �� �� �
!�/ !�/

 * �
� & � & � & �

�  �  
�� �

�  

(33)

where

< � � � � � � � ��
!�/ �  

(34)

� K� � � �(�� �� � � � �� ��� ���
9 ��

�MN �
E E
9 �O O


 �� ��
 �� �

� ��
� �

�
 � �

9 9 O� ��O�

�O� O

�
O&  

~ ~ �

�

(�� �� � � � �� ��L ��~ ~E E !
� � �  


and ��O� � inf '�O � O �9 " �9 4� ���O O O) )
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�MN � � ���9 4� 49 �4�� � � 4� �� " -�� /5 3 -�� /5 ��   
 �/ � / � /

9 " -!	 ��/5P �� � � � � �� O & /� 9 � �� � � /� O &  � � " -!	 ��/5��O O	� /  O  

   First note that the right-hand side of formula (32) gives the general representationProof:
for exponential martingales with respect to the filtration  with the expectation 1� � � * ��
�

!

If the functions  satisfy formula (32), then we can write the relationH ���� � � �� � !�
!�/

� � �
 * � �� ! �� !

�& � & � & � & �

� �
!�/ !�/� � �  �  

� �� �H �� �� �
 �� ��� �H �� �� �
 �� �
�  

� K� � � �� �� � �� �L ��
 * �

�& � & � & � & � / / ��  
!� �

�  

� � 
~ ~

� K� � �(�� �� � � � �� ��� �
 �� ��L ��� � �
 * � O�  

�& � & � & � & �
� � 9

�9 = � � /�
E E !
9 � �O O 9 O

�
�  

O O

� � O O O
~ ~ 


To determine the function , we have to collect all the terms in the right-hand side of theH ����
!�/

last equality representing the integral

�
�

�
�
!�/ ��H �$�� �
 �$���

It is easy to see these terms correspond to the sequences  and  which�9 � O �  � �� � O �  �O O

satisfy the conditions

��9 4� 49 �4�� 4� 4� �� " �MN � �� / �  
�
 �/

 Let  be a standard Wiener process in , and .  Then the formula for
� 
 � � $ & # & ��

conditional expectations is valid

K�
�# � �
�$�L
���� � �# � $��
����
�$�
��$

Here  is the conditional expectation with respect to give .  This relation andK� 
 L
���� 
���
description of  imply formulas (33), (34).  The lemma is proved.H�!�/
 Let the sequences  and  satisfying the condition�9 � O �  � �� � O �  �O O

��9 4� 49 �4�� 4� � �� " �MN ��  �  
� �/

be fixed.  Introduce notations

� 
 �� �� �� � !�� � �� �� � !�� � �9 � � � 9 ��O O O O �  

Denote
< � 49 � � � 9 4� � � � � 4� � � � � ��
!�/ �  � / �  

(35)

� K �� �(�� �� � � � �� ��� �(�� �� � � � ����L �E E E E E !
9 � � � �O O  


 �� ��
 �� �

� ��
�
O&  

~ ~ ~ ~ .
O O  

9 9 OO O�O�

�O� O

�

�
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Here  is the expectation with respect to the joint distribution of the Wiener processesKE

�
 � 
 �� 9 " �� D � � � �� �� " ��9 � O� � �We will use some graphs in the set 
O

 Denote by  the set of all connected graphs with the set of verticesQ� ��

R �Q� � D � �� ,

and the set of edges

K�Q� S ��� � � � �9 � O " ��9 � O OO O
�

A graph  is called minimal ifQ " Q� �) �

7(%�K�Q � � 7(%� � ��) �

The set of all minimal graphs is denoted by .T Q� ��
   Lemma 6: There exist some constants , , and a graph  for7 � � � � Q " T Q� �� �)

which the inequality is valid

�< � 49 � � � 9 4� � � � � 4� � � � � ��� 7 �� � � � � ��  
!�/ �  �  �  �   

�
(36)

exp ~
� � � ��� � � � � �� = �� 	 ��U �� �� �K �Q �� �� � �

� �9 � �  �
� � )

��9 �� �"K�Q ��
O  O O O O

)
�
�

where �
 �  O O

��  
�O� �O�

� ���L���� � � � � � � � �� � � � �� � � � ��
� �

� �O&  �

��O� � �O & O �, (%���9 4� � �9 4� �� � ���max )
O O O O) ) �

K �Q � � K � �
~
�

) E

O" �Q �

��� �� ��� �� ��� ��
�
�) )

E E
9 �O OO O

~ ~

�) ) )
9 ��Q � � �O &  ��� � � � V K�Q ���O O

 Proof:  Let

: " ��� �� W � �� W � �� 	 	 � ��� � � �
� � : W W� � �

We can write the inequality

�< � 49 � � � 9 4� � � � � 4� � � � � ���
!�/ �  �  �  

� �K � �(�
 �� � �
 �� � 	 ? �� � �K � � �E : �L: E W �LW

O�  O&  

9 � O O
�
 �� ��
 �� ��

� ��
� �

O O O

9 9 OO O�O�

�O� O

� ��

��

�K � � � � �� � � � � ��E W �LW

O�  
��
 �� ��� 
 �� �	? �� ��

�
 �  

�
9 O � O OO O�� � !�O

� ��
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where

��
 �  O

O&  
�O�

��L��� � � � � � � �� � � � ��
�

It is easy to see that for some , we can write the inequality7 � ��

K�(�
 ��� 	 ?� & 7 � � ? " � � � � ��� �
: �: L� ��

So

K��(�? �
 �� ��� L � � 7 �� � � � �O 9 O � � O
: �: L�

�O�O �O�



� �
�

and

�K � �(�
 �� � �
 �� � 	 ? ��� � � �7 � �� � � � � �E : �L:  

O�  

9 O � O O � �  
�
 

�
O O

� (37)

where ��
 �  O

O�  
�O�

� L��� � � � � � � �� � � � ��
�

�

In addition, for some constant  we can write the inequality7 � ��

K � � � 7 �E W  

O�  

�
 �� ��
 �� ��

� �� �
� 9 9 OO O�O�

�O� O

��

��  (38)

 Now we proceed to estimation of the expectation

K � K �
~ 1E

O�  
��
 �� ��
 �� �	? �� ��

�
9 O � O OO O

Let a minimal graph  be given.  We call the vertex , the origin of the graph and denote itQ �)
�
 

by .  For any  denote by  the minimal number of edges connecting  with� � " R �Q � O��� ��
)

� 4 O�� � � � O��� � � � " K�Q �� �
) )so .  We call  the Irvel of the vertex .  Note that if , , then

�O��� � O�� � �))| .
 Now we construct the graph  for which the statement of the lemma is valid.  LetQ)

��9 � � � 9 �� �� � � � � �� " �MN � � , (%� � %��  �  
�
 �! �

Denote by  the minimal graph with the edges xQ � Q�9 � � � 9 4� � � � � � �� � � ��)
�  �  9 �O O# #

# � �� � %�  where

O � �O &  �, (%��� � � � � � -!	 ��/5� % 	 �� #��# O  max �
 It is easy to see that the inequality is valid
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K � K � �K �Q ��
~ ~1 (39)E )

O" �Q

��� �� ��� �� ��� �� �
�
� ')

~ ~E E
9 �O OO O

� �
� �

where

� � � ��Q �� �O &  �9 � � " � �� � � � " K�Q ��� �Q � � -�� 5X �Q ��) ) ) ) )
O O 9 �O O

Denote

� �� ) )
O O 9 � 9 ��Q � � �O &  �9 � � " � �� � � � " K�Q �� ��� � = ��� � � ���

O O O O

and

� � � �� �
) �� ) ) ��	� )�Q � � �Q �� �Q � � �Q ��� �

� * � � * �

Introduce the r.v.

� �O  ��� �� ��� �� ��� � ��
 �� �	? �� ��� � � O &  � � � �~ ~E E
9 �O OO O �    

It is easy to see that the sets of r.v.  are independent for different  as well� � O " ��Q � �� �O
�� )

as the sets .  Using the Cauchy inequality we can write� � O " �Q �� �O
��	� )

K � �K � �K �
~ E �L� E �L�

 O O

O" �Q � O" �Q �

� � �� �
� �� �

) )

� �K K �E E �L�
 O

%* � O" �Q �

� �� �
�% )

.

Note that

� �� ) � )
��Q � � �Q ��

�

�
where the sets  are determined by the sets�� )

��Q �

D � �� � � ��
� 9 �

�
O " �Q ��% )

�

O O ,

which are determined by their properties;
 a) �

��� �
�D � D � ���

 b)  if ,D D � Y �� � � �	 �� � � �� �� � ) )
� �
� )

)

 c)  i  7(%�D � �� � � � � O��� � � 0 � " D �� �
� �

 d) the set  contains only one element  for which the relation  isD ? O�?� � � � ��
�

  fulfilled.
 Property b) implies the relation

K � K �E E

O" �Q � O" �Q �

O O

�

� � �
� �% ) )%

�

� �
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Let  be the Wiener process in , and .  Then for any , there exists
��� � ? " � " ��� �L��� � �
a constant  for which the inequality is held7 � �

K� � 7 � � ��?� � �� = �����
����?�� �� �
�exp �

So

K � �� �L
 � 
 ��E

9� �
��
 �$ ��
 �$ �	� �� �� /

�
/ 9 / 9 9� 9 �

� 7 � � ��� 	
 �$ �� � �� = ���� �

9
$ 9 / 9exp � �
)

9 �

where   This implies the inequality� � � � � �9 / /� 9

6�/ � � � / 4$ � � � $ � � 7 � � ��� � � �� = ��� � � � 9
� �
@

9� �
$exp � �)

9

with some  and   This inequality and the following one7 � � � ��@ )�

�? � � �
 �� � 	 � � � � * �� � � � � �
 �� ��/ 9  9 � 9 � 9  
� � � �

��      � �
�

imply the relation

K � 7 � � ��� � � � � �� = � 	 �
 �� �� ��K �Q �� �
~ ~exp7(%� � � ) �L�

@
O" �Q �

� �9 � 9  �
�
�

� �

)
�  O O  

(40)

with some . This formula and formulas (37),(38) imply the proof of the lemma.� � �
 
The Condition of the Quasistability of Gradient Systems

Consider the graph  introduced in the proof of Lemma 6.  LetQ �9 � � � 9 �4� � � � �)
�  �  

� �� �� � O �  �X-��!5� % � 7(%� �O  and 
 Set Denote by the set of minimal ordered? � � � � � �� � %� T Z Q�? � � � ? �� O � %��

graphs  with  and the origin . Let be the set of invertible mappingQ R �Q� � C ? B% ?%

� �C � C � �? � � ? � Q Q " T Z Q�C 4? � Q [ Q for which For ,  we write  if% % %
) )) ) ))

the relation  is fulfilled for some .  For , we setQ � � �Q � � " Q " T Z Q�C 4? �)) ) )
? %� %

� ��Q � � 7(%��� �Q ��� " �) )
?%

It is evident that  if .� ��Q � � �Q � Q [ Q) )) ) ))

 Introduce the functions

U �Q 4 � � � ? � � � ? ��
% � %

) �
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� � � � \� � ? \ 	 \? � ? \ � �� � ���exp � % 9 �
� �

��? �? �"K�Q ��
9& �

? � ?
� �

9 O
)

9 �

 Lemma 7:   Let a sequence of ordered graphs  from �Q � 9 � 8 � T Z Q�? � � � ? �)
9 � %

satisfy the conditions
   if ,a) Q [L Q 9 & �) )

9 �

    for any graph , the relation is trueH� Q " T Z Q�? � � � ? �)
� %�

9� 8
�Q [Q �� � ��) )

9

Let  be the configuration with the support .  Then the inequality is�/� ��� �� " -!	 ��/5�
held

� �
9 �� �O" �Q �

� %
�  �  �  �  

O O
)�

�< � 49 � � � 9 4� � � � � 4� � � � � ��� 7 �� � � � � �

� K �sup exp
Q " T Z Q�C � ? �)

%

~
�
�L� �� L� ���
 �� �� � �� = ��;�  �  �

9� 8
D � � D � �

% �  � % � %
) / /
9 � �

� �
� �
� U �Q � L��
 �� �� ] � � � ] � ��] �� ��] ��� � �

 The proof follows from Lemma 6, and the formula

�
9 �� �O" �Q �

�
!�/ �  �  �  

O O
)�

�< � 49 � � � 9 4� � � � � 4� � � � � ��

� �< � 49 � � � 9 4� � � � � 4� � � � � ��� ���
9� 8

�
!�/ �  �  �  �Q�9 �� �9 4� �� �� �[Q ��  �  

)
9

 We use the notation

F � � �� ? � � � ? � � � U �Q � � �� � ? � � � � ? � �� " ��% � % % � % ?

9� 8

)
9� � �sup (41)�

%

F � � �� C � � � F � � �� � ? � � � ? � ��? �� ��? �% % � % � � � %
C C

� � � �� � (42)

where C S . � , (%�C � %���

 Theorem 1:  Assume the value  in condition satisfies the inequality , and the� �(P) & �
initial configuration  for a gradient system satisfy condition and the� �� " (  EGFPS�
c nditions:J
 1)   for any  there exists constant  for which the inequalities are� �� � (� � � �
fulfilled � exp log� � ��� ]� �� �� 	 \] \�� ��]�� �� �

�
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& �(� �� �� �� 	 ��� 	 � �� 	 \] \�� ��� � �	� �	�log log

 2)   Denote

F � � � F � � �� C � �C S �� 4� 4� �� % �  � % �  

�"C

� �sup��
then for all  the relation is valid� � �

lim
 

� ��log
log 
F � �
 
 �

Under these conditions the gradient system is quasistable.
   It suffices to prove the existence of a limit in probabilityProof:

lim
/

�����/�!

and the relation

K ��� � �
/

lim�/�!

for all .� � �
 Note that for any sequences

��9 � � � 9 �4�� � � � � �� " -!	 ���� 3 -�����  �  
  

there exists a limit in probability

lim
/
< � 49 � � � 9 4� � � � � � � � � � � ��
!�/ �  �  �  

which we denote by

< � 49 � � � 9 4� � � � � 4� � � � � ���
! �  �  �  

represented by the right part of equality (35).  Introduce the stochastic process in �� �� !

D ��� � �� ���4� 4� �����
[ [ [E E E

� !

and functions

	 	� � � !  �
% %�!�/� 4 
 � � � 
 �� �!� 4 
 � � � 
 ������ � � � �

by the relations

	�% ! !

E E
�  �!�/� 4D �� �� � � D �� ��

[ [

� < � 49 � � � 9 4� � � � � 4� � � � � �� � � 43�
7(%��� �� �� �X-��!5� %

�
!�/ �  �  �  

�  

	�% ! !

E E
�  �!� 4D �� �� � � D �� ��

[ [
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� < � 49 � � � 9 4� � � � � 4� � � � � � � ��
7(%��� �� �� �X-��!5� %

�
! �  �  �  

�  

. 44

It follows from Lemma 7 that

\ �!�/� 4D �� �� � � D �� �� \ = \ �!� 4D �� �� � � D �� �� \
[ [ [ [

	 	� �
% ! ! % ! !

E E E E
�  �  

� 7 �� � � � � �� K � �� L� ���
 �� �� � �� = ��� �% �L� �
 �  �  �  �   sup exp 45~

Q " T Z Q�C � ? �)
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It follows from Lemma 5 that
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[ [� �
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Set
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! % ! !
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                           �  

	

(47)
 Investigate the convergence of the series in formula (47). First we note that for some
� � � , � � and , the inequality is valid� �� �� � � � � ��� � � � � � , � � �  �� �

�& � & � & � & �  �  �  
 ��

�  

� � �

Now we obtain a proper estimation for .  Note that it depends on ,~
K ��9 4� �� O " �Q ��� O O

) )�
so we will write

K �Q � � K �Q 49 � � � 9 4� � � � � ��
~ ~
� � �  �  

) )

the function in the right-hand side of the equality depends only of those  for which�9 4� �O O

O " �Q �� �Q � � � � 9 � $�� � �) ) ) )
9  Introduce the subsets of the set  satisfying the conditions

� � �
9 � $ 9 & �

� �Q �� � Y� , (%� � %� 9 & $� , (%� � %�� � � � � �9 9 � 9 $
) )

and min max   Set� �9 9	�� �

�9
O"

��� �� ��� �� ��� ���� ��
�9

E E
9 �O OO O

For some ,  we can write the inequality, � � � �� �
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K �Q � � , �K � �
~
� 9

)  E
�
9� $

� � �

Let  be a minimal ordered graph with the vertices  and the origin Q �] � � � ] � ] �)
� % %

 It follows from condition 1) of the theorem that� �� U �Q � � � � ] � � � ] � ��] �� ��] � � �(� �� ��� ��
% � % � � � % %

) % %	�� � � � 
 (48)

where


%�� � � �� 	 %� 	 ��	 \� \��� �log log

Using Lemmas 6 and 7 for the estimation of  we can obtain the inequalityKE 9�

��
9� 8

� �  �  
)
9 ��9 �� �9 ���� �� �� �"�MN � �, (%� �K �Q 49 � � � 9 4� � � � � ��

~
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These inequalities and formula (45) imply the inequality� �� \ �!� �D �� �� � � D �� � \�� � �� � 8 � �  ��
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%�� sup sup exp (49)~
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where  is a constant, and  was introduced in Lemma 7. It can be shown that7 8�

lim log log .
% ��

� 8 L% % � ��

This implies the local uniform convergence in  of the series in formula (47).�

  This implies the continuity of the functions  for all  and continuity of theH �%� �� %;�
!

function .  Introduce the functionH ����
!

�;��� � � H �$��
 �$� � \H �$� \ �$��exp (50)�
�� !
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� �

� � �
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      � �
Inequality (50) implies the relation

� �!�/��� � ���;

in probability as .  Introduce the stopping time/ ��

�+
�� !

�

�

� �
!� ��� \H �$� \ �$ � + ��inf  ��    
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Then the stochastic process  is a martingale, and� �;�� ^ �+

K �� ^ � � ��;� �+

The proof of the theorem is a consequence of the relation

B � � �� � ��   lim
+ ��

�+

5.2  The Condition of Quasistability of Hamiltonian Systems

Let  be the solution to system (2) with the initial condition�� ���� � � /�/
�

� ��� 	 � " � � ��� � � " � �
/ � / �
� �� �, 

where  is the set of different points from .�� � � � /� ��
�

 Denote by  the density of the distribution of the stochastic process�/���

�D �$�� $ � �� D �$� � �� �$�� � � /�/ /
/
�, 

with respect to the distribution of the stochastic process

�D �$�� $ � ��� D �$� � �� 	 $� 	 # �$�� � � /�� # �$� � 
 ������ � � �� �� �E E
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$

�

�   

.

This density is determined by formula (23).
 Let , set! & /

� � 
/�! /
!
���� � K� ���L ��

 Lemma 8:  a)  The formula is fulfilled

�/�!��� � exp  52~ ~
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where  the function  is determined by formula  with the functions ~ ~
H ��� �@@� < � 
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�

/�! /�!

�

instead of the functions , and the function  are determined by formula ~
< < � 
 � � ��
/�! /�!

�
34

with the functions  instead of the functions .~�� ���� 9 � /� �� ���� 9 � /�E
9 9

E

 b)  Let

��9 � � � 9 �4�� � � � � �� " �MN � ��  �  
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where the set  is determined by Lemma , and the functions�MN � _�
 

< � 49 � � � 9 4� � � � � 4� � � � � �
~ �
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are determined by formula  with  instead of . Then there~� � �� ���� 9 � /� �� ���� 9 � /�35 E
9 9

E

exist some constants , , and a graph  for which the inequality is7 � � � � Q " T Q� �� �)

fulfilled

\< � 49 � � � 9 4� � � � � 4� � � � � � \ � �9 � � � 9 4�K �Q ��
~ ~�

/�! �  �  �   �  �
) �L��

U �Q � L� � � �� �� ? � � � ? ��%  � %
) @ E

��

where  and  where introduced in Lemma 6,  are the vertices of the graph~� � � %K �? � � � ? �
Q U I)

%, and the function  were introduced before Lemma .
 The proof can be performed in the same way as for Lemmas 5 and 6.
 Introduce the function

������ � � �$ � �� �� �� �� �� �� %� 9 � ��� � � ��� � ��inf �� �� 	$�� �� ��
�� �� � 9 �

9 � 9 �

9 �

 Theorem 2:  Let  and the initial condition  of a Hamiltonian system~� � �& � "�
�

satisfy condition for all Let the configuration with� � ������ � Z � "log    �� � � �� �

support  satisfies conditions  of Theorem   Then the Hamiltonian. � �� � � * ���� � 1), 2) 1.
system is quasistable.
 The proof is very similar to the proof of Theorem 1.
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