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1 Introduction

The problem of proving the existence of mild solutions for differential and integrodiffer-
ential equations in abstract spaces has been studied by several authors [2, 4, 11, 12, 13].
Balachandran and Uchiyama [3] established the existence of solutions of nonlinear in-
tegrodifferential equations of Sobolev type with nonlocal conditions in Banach spaces.
Benchohra [6] studied the existence of mild solutions on infinite intervals for a class of
differential inclusions in Banach spaces. For the existence results of differential inclu-
sions on compact intervals, one can refer to the papers of Avgerinos and Papageorgiou
[1], and Papageorgiou [14, 15]. Benchohra and Ntouyas [7] discussed the existence
results for first order integrodifferential inclusions of the form

t
% — Ay e F(t,/ k(t,s,y)ds) tel=]0,00),
0
y(0) = yo.

In this paper, we consider the Sobolev-type semilinear mixed integrodifferential inclusion
of the type

(Bu(t)) + Au e G (t,u,/ot k(t,s,u)ds,/oa b(t,s,u)ds) tel=10,00),(1.1)
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u(0) = uyp,

where G : I x X x X x X — 2Y is a bounded, closed, convex, multivalued map
k:AxX —X, b:AxX — X where A ={(t,s) € I xI;t>s},up € X, ais areal
constant, X,Y are real Banach spaces with norms ||.|| and |.|, respectively. Our method
is to reduce the problem (1.1) to a fixed point problem of a suitable multivalued map
in the Frechet space C'(I, X) and we make use of a fixed point theorem due to Ma [10]
for multivalued maps in locally convex topological spaces.

2 Preliminaries

In this section we introduce the notations, definitions and preliminary facts from multi-
valued analysis which are used in this paper. I,,, is the compact interval [0, m](m € N).
C(I,X) is the linear metric Frechet space of continuous functions from I into X with
the metric

oo

2—m - m
d(u,z) = Z ﬁ for each u,z € C(I,X),

m=0
where ||u||, = sup{||u(?)|| : t € I,,}. B(X) denotes the Banach space of bounded linear
operators from X into X. A measurable function u : I — X is Bochner integrable if and
only if |u| is Lebesgue integrable. Let L'(I, X) denote the Banach space of continuous
functions w : I — X which are Bochner integrable normed by

s = [ o)l
and U, is a neighbourhood of 0 in C(I, X) defined by
U-={ueC,X):|ullm <r}

for each m € N. The convergence in C(I,X) is the uniform convergence on compact
intervals, that is, u; — w in C(I, X) if and only if for each m € N, |lu; — ul,, — 0 in
C(Im,X) as j — oco. BCOC(X) denotes the set of all nonempty bounded, closed, and
convex subsets of X.

A multivalued map G : X — 2% is convex(closed) valued if G(z) is convex(closed)

for all z € X. G is bounded on bounded sets if G(B) = U G(z) is bounded in X for any

zeB
bounded set B of X (that is, sup{sup{|ju| : v € G(z)}} < o0). G is called upper semi
r€B

continuous on X if for each z¢ € X the set G(z¢) is a nonempty, closed subset of X, and
if for each open subset B of X containing G(z), there exists an open neighbourhood A
of zy such that G(A) C B. G is said to be completely continuous if G(B) is relatively
compact for every bounded subset B C X. If the multivalued map G is completely
continuous with nonempty compact values, then G is upper semicontinuous if and only
if G has a closed graph (that is, z,, — g, un, — ug, u, € G, imply ug € Gxy).

We assume the following conditions:

(i) The operator A: D(A) C X — Y and E : D(E) C X — Y satisfy the following
conditions
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[C1] A and E are closed linear operators.

[C5] ( ) C D(A) and FE is bijective.

[Cs] E71:Y — D(F) is continuous.

[C4] The resolvent R(\, —AE~1) is a compact operator for some A € p(—AE~1)
and resolvent set of —AE ™.

Conditions [C4], [C2], and the closed graph theorem imply the boundedness of the linear
operator AE71:Y =Y.

(i) G: I x X x X x X — BCC(Y) is measurable with respect to t for each u € X,
upper semi continuous with respect to u for each ¢ € I, and for each v € C(I, X)
the set

t a
Sau=A{g€ Ll(I;R) 1g(t) € G(t,u,/ k(t,s,u)ds,/ b(t, s, u)ds)
0 0

for a.e t € I'} is nonempty.

(iii) There exist functions p(t), q(t) € C(I; R) such that
t a
\/ k(t, s,u)ds| < p(t)||lu] and |/ b(t,s,u)ds| < q(t)|lul|for a.et,s € I,u € X.
0 0

(iv) There exists a function «(t) € L'(I; R") such that

1G(E, u, v, w) || < a@Qull + [[ol + [lw])

for a.e t € I,u € X, where Q : Ry — (0,00) is continuous increasing function
satisfying Q(p(t)z + q(t)y) < p(t)Q(x) + q(t)Q(y) and
> du

M/ )1+ p( )+q(s))ds</ 000

for each m € N, where ¢ = |[E~}||M|Eup| and M = max{||T(¢)|;t € I}.
(v) For each neighbourhood U, of 0,u € U, and t € I, the set

{E7'T(t)Euq —l—/o E7'T(t — s)g(s)ds, g€ Sgu}

is relatively compact.

Definition 2.1: A continuous function u(¢) of the integral inclusion

u(t) € E-VT() Bug + /Ot E-IT(t - $)G (su /0 k(s, 7, u(r))dr, /0 b(s,r,u(T))dT) ds

is called a mild solution of (1.1) on 1.

Lemma 2.1: [9]. Let I be a compact real interval and let X be a Banach space. Let
G be a multivalued map satisfying (i) and let T' be a linear continuous mapping from
LY(I,X) to C(I,X). Then the operator

FoSg:C(I,X)— X, (I'oSg)(y) =T(Sa.,)
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is a closed graph operator in C(I,X) x C(I,X).

Lemma 2.2: [10]. Let X be a locally convex space. Let N : X — X be a compact,
convex valued, upper semicontinuous, multivalued map such that there exists a closed
neighbourhood U, of O for which N(U,) is a relatively compact set for each r € N. If
the set ( ={y € X : \y € N(y)} for some XA > 1 is bounded, then N has a fived point.

Remark: [9]. If dimX<oo and I is a compact real interval, then for each u €
C(I,X), Sg,u is nonempty.

Lemma 2.3: [16]. Let S(t) be a uniformly continuous semigroup and let A be its
infinitesimal generator. If the resolvent set R(\ : A) of A is compact for every A € p(A),
then S(t) is a compact semigroup.

From the above fact, —AE~! generates a compact semigroup 7'(t) in Y. Thus,
max |T(t)] is finite and so denote M = max |T(t)].

3 Main Result

Theorem 3.1: If the assumptions (i)—(v) are satisfied, then the initial value problem
(1.1) has at least one mild solution on I.

Proof: A solution to (1.1) is a fixed point for the multivalued map
N:C(I,X) — 2¢0:%) defined by

N(u) = {h € C(I,X): h(t) = E7'T(t)Eug —l—/o E7'T(t - s)g(s)ds, g€ Saul,
where
Seu={9€ L'(I,X):g(t) € G(LU,/O k(t, S,U(S))dsa/oa b(t, s,u(s))ds)

for a.et € I'}.
First we shall prove N(u) is convex for each v € C(I, X). Let hy, ho € N(u), then
there exist g1, g2 € Sa, such that

ha(t) = E-1T(8) Bug + /Ot BTt — 8)gi(s)ds,i = 1,2,t € I
Let 0 < ky < 1, then for each t € I we have
(krhy + (1 — ky)ho)t = E7'T(t) Bug + /Ot E7'T(t — s)(k1gi(s) + (1 — k1) g2(s))ds.
Since S, is convex, thus khy + (1 — k)he € N(u). Hence, N(u) is convex for each
ueC(,X).

Let U, = {u € C(I,X); ||u|| < r} be a neighbourhood of 0 in C(I,X) and u € U,.
Then for each h € N(u) there exists g € Sg,,, such that for ¢ € I, we have

A

[p®)] < HE’lllIIT(t)IIIEuOI+/0 IEZHIIT(E = s)lHg(s)llds

IN

12~ [ M| Euo| + IIE_lllM/0 a(s)[[ull + p@)llull + ¢(B)]|ul))ds
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< | E Y M|Buo| + |E|M / a(s)(Qlul) + PO ul) + B2 ul))ds
< |EY|M|Buo| + B M / YL+ p(s) + a(s)2(ul) ds
< EYM|Buo| + B IM ol o |+ p(s) + a(s)]| sup (ul)

ucU,

Hence, N(U,) is bounded in C(I, X) for each r € N. Next we shall prove N(U,) is an
equicontinuous set in C'(I, X) for each r € N. Let t1,to € I, with t; < to. Then for all
h € N(u) with u € U,., we have

Iht) — B(E)| < BT (t) — T(t) Euo|

B / T(ts — 5) — T(ts — 5))g(u)ds|
LB 1||||/ (t — 5)g(u)ds|

| B (T (k) — T(t2)) Euo|

B / T(ty — 5) — T(ty — $))g(u)ds]

IN

Mt — )| B / lo(s)lds.

Hence, by the Ascoli-Arzela Theorem, we conclude that N : C(I,X) — 2¢(:%) g
a completely continuous multivalued map. Next we shall prove that N has a closed
graph. Let u, — ., hy, € N(u,) and h, — hg, then we shall prove that hg € N(u.).
Here, h,, € N(uy) means that there exists g, € Sg ., such that

t
hn(t) = E7'T(t)Eug —|—/ E7'T(t — s)gn(s)ds, tel.
0
We must also prove that there exists gy € Sg,,, such that
t
ho(t) = E7'T(t)Eug +/ E7'T(t - s)go(s)ds, teJ. (3.1)
0

To prove the above, we use the fact that h,, — ho; and h,, — E7'T(t) Eug € T'(Sg,u),
where

(Tg)(t) = /0 E7'T(t — s)g(s)ds, tel.

Consider the functions u,,, h, — E~'T(t)Eug and g,, defined on the interval [k, k+ 1] for
any k € N U{0}. Then using Lemma 2.1, we can conclude (3.1) is true on the compact
interval [k, k + 1]. That is,

[ho ()] k1) = BT () Bug + /O E7'T(t — s)gk(s)ds

for a suitable Ll-selection g& of G(t,u, fg k(t,s,u)ds,fOT b(t,s,u)ds) on the interval
[k,k +1]. Let go(t) = gk(t) for t € [k,k +1). Then go is an L'-selection and (3.1)



168 M. KANAKARAJ and K. BALACHANDRAN

will satisfied. Clearly we have ||(h, — E7'T(t)Eug) — (hg — E71T(t)Eug)||oc — 0 as
n — oo. Consider for all k € N U {0}, the mapping

SE Ok, k+1],X) — LY ([k, k + 1], X),

t a
y—S&,={9e L' ((kk+1],X):g(t) € G(tu,/ k(t,s,U)d&/ b(t, s, u)ds)
0 0

for a.e t € [k, k+ 1]}
Now we consider the linear continuous operators

Ty LYk, E+1],X) — C([k, k + 1], X),

g—Ti(g /Eth—s g(s)ds.

From Lemma 2.1 it follows that I'y, o S% is a closed graph operator for all k € N U {0}.
Moreover, we have

(ha(t) = E7'T(t) Euo)l i 1) € Tr(SGu,)

and u, — u,. From Lemma 2.1, we have (ho(t) — E~'T(t) Euo)|jek41] € Tr(Se .. ),

t
(ho(t) — E_lT(t)Euo)hk’kH] = / E_lT(t - s)gg(s)dsfor somegg IS Sgu
0

Hence, the function gy defined on I by go(t) = gk(t) for t € [k,k + 1] is in Sg.,.
Therefore, N (U,.) is relatively compact for each r € N where N is upper semicontinuous
with convex closed values. Finally we prove the set ( = {u € C(I, X); A\u € Nu}, for
some A > 1, is bounded.

Let Au = Nu for some A > 1. Then there exists g € Sg,, such that

u(t) = \TTETIT(8) Bug + A1 /t E7YT(t — s)g(s)ds, t €1,
0
[u()]| < |1 EH|M|Euo| + || E 1HM/ (1+p(s) + q(5))Q([[ul)ds

Let v(t) = |E7Y|M|Euo| + |[E~||M fot a(s)(1+ p(s) + q(s))2(J|ul|)ds. Then we have
v(0) = |[EY| M| Eug|| = ¢ and |Ju(t)|| < v(t),t € I,,. Using the increasing character of
Q we get

V() < ETHMa) 1 +p(t) + a(0)Qv(t), tE I

The above proves that for each ¢t € I,,,,

v(t) . ood—u
/(0) Q) <HE ||M/ )(1+p( )—|—q(s))ds</0 )’

The above inequality implies that there exists a constant My such that v(t) < My,t €
I,,,, and hence that ||u||co < My where My depends on m and on the functions a, p, 2.

Hence, ¢ is bounded. Thus by Lemma 2.2, N has a fixed point that is a mild solution

of (1.1).
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4 Nonlocal Initial Conditions

Several authors have studied the nonlocal Cauchy problem in abstract spaces [2, 3, 4,
11, 12, 13]. The importance of nonlocal conditions is discussed in [4, 5]. In this section
we consider a first order Sobolev-type, semilinear, mixed, integrodifferential inclusion
(1.1) with the nonlocal initial condition

u(0) + f(u) = uo (4.1)
In addition to the five assumptions in Section 2, we also assume the following.

(vi) f:C(I,X)— X is a continuous function, and there exists a constant L > 0 such
that || f(u)|| < L for each u € X.

(vid) [|E=HM [ a(s)(1 + p(s) + als))ds < [ s where e = [[E=Y|M|Bug| +
LB~ M|Buq).

(viii) For each neighbourhood U, of 0,u € U, and t € I, the set {E~'T(t)Eug —
E7YT)Ef(u) + f(f E7IT(t — s)g(s)ds, g € Sg.u} is relatively compact.

Definition 4.1: A continuous function u(¢) of the integral inclusion
u(t) € E7'T(t)Bug — E~'T(t)E f(u)

+ /Ot E7'T(t - 5)G (s,u, /OS k(s,7,u(r))dr, /Oa b(s,, u(T))dT) ds

is called a mild solution of (1.1)-(4.1) on I

Theorem 4.1: If the assumptions (i)—(iii), (vi)—(viii) are satisfied, then the non-
local initial value problem (1.1)—(4.1) has at least one mild solution on I.

The proof of Theorem 4.1 is similar to Theorem 3.1 and hence, is omitted.
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