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1 Introduction

In this paper we prove existence results for the following functional differential inclu-
sions:

(ρ(t)y′(t))′ ∈ F (t, yt), a.e. t ∈ [0, T ], (1.1)

subject to inital
y0 = φ, y′(0) = η (1.2)

or boundary conditions
y0 = φ, y(T ) = η (1.3)

respectively, where F : J × C([−r, 0], IRn) −→ P(IRn) is a multivalued map, φ ∈
C([−r, 0], IRn), ρ ∈ C(J, IR+), η ∈ IRn, P(IRn) is the family of all subsets of IRn.
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For any continuous function y defined on the interval [−r, T ] and any t ∈ [0, T ], we
denote by yt the element of C([−r, 0], IRn) defined by

yt(θ) = y(t+ θ), θ ∈ [−r, 0].

Here yt(·) represents the history of the state from time t− r, up to the present time t.
Recently, in [1], the authors studied first and second order initial value problems

for equation (1.1), in the case where ρ(t) = 1, by using a fixed point theorem for
contraction multivalued maps due to Covitz and Nadler [5] (see also Deimling [6]). Using
a fixed point theorem for condensing multivalued maps due to Martelli, the authors
have obtained an existence result for the initial value problem (1.1)-(1.2). Here, by
using the fixed point theorem for contraction maps and Schaefer’s theorem combined
with a selestion theorem of Bressan and Colombo for lower semicontinuous multivalued
operators with decomposable values, existence results are proposed for problems (1.1)-
(1.2) and (1.1)-(1.3).

2 Preliminaries

In this section, we introduce notations, definitions, and preliminary facts from multi-
valued analysis which are used throughout this note.

C([−r, 0], IRn) is the Banach space of all continuous functions from [−r, 0] into IRn

with the norm
‖φ‖ = sup{|φ(θ)| : −r ≤ θ ≤ 0}.

By C([0, T ], IRn), we denote the Banach space of all continuous functions from [0, T ]
into IRn with the norm

‖y‖[0,T ] := sup{|y(t)| : t ∈ [0, T ]}.

L1([0, T ], IRn) denotes the Banach space of measurable functions y : [0, T ] −→ IRn

which are Lebesgue integrable normed by

‖y‖L1 =
∫ T

0

|y(t)|dt for all y ∈ L1([0, T ], IRn).

ACi([0, T ], IRn) is the space of i-times differentiable functions y : [0, T ] → IRn, whose
ith derivative, y(i), is absolutely continuous.
Let A be a subset of [0, T ] × IRn. A is L⊗ B measurable if A belongs to the σ-algebra
generated by all sets of the form N ×D where N is Lebesgue measurable in J and D
is Borel measurable in IRn. A subset B of L1([0, T ], IRn) is decomposable if, for all
u, v ∈ B and N ⊂ [0, T ] measurable, the function uχN + vχJ−N ∈ B, where χ denotes
for the characteristic function.

Let E be a Banach space, X a nonempty closed subset of E and G : X → P(E) a
multivalued operator with nonempty closed values. G is lower semi-continuous (l.s.c.)
if the set {x ∈ X : G(x)∩C 6= ∅} is open for any open set C in E. G has a fixed point
if there is x ∈ X such that x ∈ G(x).

Definition 2.1: Let Y be a separable metric space and letN : Y → P(L1([0, T ], IRn))
be a multivalued operator. We say N has property (BC) if

1) N is lower semi-continuous (l.s.c.);
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2) N has nonempty closed and decomposable values.

Let F : [0, T ] × C([−r, 0], IRn) → P(IRn) be a multivalued map with nonempty
compact values. Assign to F the multivalued operator

F : C([−r, T ], IRn) → P(L1([0, T ], IRn))

by letting

F(y) = {w ∈ L1([0, T ], IRn) : w(t) ∈ F (t, yt) for a.e. t ∈ [0, T ]}.

The operator F is called the Niemytzki operator associated with F. We say F is of
lower semi-continuous type (l.s.c. type) if its associated Niemytzki operator F is lower
semi-continuous and has nonempty closed and decomposable values.

Next we state a selection theorem due to Bressan and Colombo.
Lemma 2.1: [3] Let Y be separable metric space and let N : Y → P(L1([0, T ], IRn))

be a multivalued operator which has property (BC). Then N has a continuous selection,
i.e. there exists a continuous function (single-valued) g : Y → L1([0, T ], IRn) such that
g(y) ∈ F (y) for every y ∈ Y.

Let (X, d) be a metric space. We use the notations:
P (X) = {Y ∈ P(X) : Y 6= ∅}, Pcl(X) = {Y ∈ P (X) : Y closed}, Pb(X) =

{Y ∈ P (X) : Y bounded}.
Consider Hd : P (X) × P (X) −→ IR+ ∪ {∞}, given by

Hd(A,B) = max
{

sup
a∈A

d(a,B), sup
b∈B

d(A, b)
}
,

where d(A, b) = inf
a∈A

d(a, b), d(a,B) = inf
b∈B

d(a, b).

Then (Pb,cl(X), Hd) is a metric space and (Pcl(X), Hd) is a generalized metric space.
Definition 2.2: A multivalued operator N : X → Pcl(X) is called

a) γ-Lipschitz if and only if there exists γ > 0 such that

Hd(N(x), N(y)) ≤ γd(x, y), for each x, y ∈ X,

b) contraction if and only if it is γ-Lipschitz with γ < 1.

For more details on multivalued maps and the proof of known results cited in this
section we refer to the books of Deimling [6], Górniewicz [8], Hu and Papageorgiou [9]
and Tolstonogov [11].

Our considerations are based on the following fixed point theorem for contraction
multivalued operators given by Covitz and Nadler in 1970 [5] (see also Deimling, [6]
Theorem 11.1).

Lemma 2.2: Let (X, d) be a complete metric space. If N : X → Pcl(X) is a
contraction, then FixN 6= ∅.

3 Initial Value Problems

Now, we are able to state and prove our main theorems. In this section we shall give
two results for the IVP (1.1)–(1.2). Before stating and proving these results, we give
the definition of a solution of the IVP (1.1)–(1.2).
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Definition 3.1: A function y : [−r, T ] −→ E is called solution for the IVP (1.1)-
(1.2) if y(·), ρ(·)y(·) ∈ C([−r, T ], IRn) ∩ AC1([0, T ], IRn) and satisfies the differential
inclusion (1.1) a.e. on [0, T ] and the conditions (1.2).

Theorem 3.1: Assume that:

(H1) F : [0, T ] × C([−r, 0], IRn) −→ Pcl(IRn) has the property that F (·, u) : [0, T ] →
Pcl(IRn) is measurable for each u ∈ C([−r, 0], IRn);

(H2) Hd(F (t, u), F (t, u)) ≤ l(t)‖u − u‖, for each t ∈ [0, T ] and u, u ∈ C([−r, 0], IRn),
where l ∈ L1([0, T ], IR), and d(0, F (t, 0)) ≤ l(t) for a.e. t ∈ [0, T ].

Then the IVP (1.1)-(1.2) has at least one solution on [−r, T ] provided Tρ−1
0

∫ T

0

l(s)ds <

1, where ρ0 = min{ρ(t) : t ∈ [0, T ]}.
Proof: Transform the problem into a fixed point problem. Consider the multivalued

operator N : C([−r, T ], IRn) → P(C([−r, T ], IRn)) defined by:
N(y) =

h ∈ C([−r, T ], IRn) : h(t) =



φ(t), if t ∈ [−r, 0]

φ(0) + ρ(0)η

∫ t

0

ds

ρ(s)

+

∫ t

0

1

ρ(s)

∫ s

0

g(τ)dτds, if t ∈ [0, T ], g ∈ SF (y)


where

SF (y) =
{
g ∈ L1([0, T ], IRn) : g(t) ∈ F (t, yt) for a.e. t ∈ [0, T ]

}
.

Remark 3.1:

(i) It is clear that the fixed points of N are solutions to (1.1)-(1.2).

(ii) for each y ∈ C([−r, T ], IRn) the set SF (y) is nonempty since by (H1) F has a
measurable selection (see [4], Theorem III.6).

We shall show that N satisfies the assumptions of Lemma 2.2. The proof will be
given in two steps.

Step 1: N(y) ∈ Pcl(C(−r, T ], IRn) for each y ∈ C([−r, T ], IRn).
Indeed, let (yn)n≥0 ∈ N(y) such that yn −→ ỹ in C[−r, T ], IRn). Then ỹ ∈

C[−r, T ], IRn) and

yn(t) ∈ φ(0) + ρ(0)η
∫ t

0

ds

ρ(s)
+
∫ t

0

1
ρ(s)

∫ s

0

F (τ, yτ )dτds, t ∈ [0, T ].

Using the fact that F has closed values and from the second part of (H2), we can

easily show that
∫ t

0

F (s, ys)ds is closed for each t ∈ [0, T ]. Then

yn(t) −→ φ(0) + ρ(0)η
∫ t

0

ds

ρ(s)
+
∫ t

0

1
ρ(s)

∫ s

0

F (τ, yτ )dτds, t ∈ [0, T ].

So ỹ ∈ N(y).
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Step 2: Hd(N(y1), N(y2)) ≤ γ‖y1−y2‖[−r,T ] for each y1, y2 ∈ C[−r, T ], IRn) (where
γ < 1).

Let y1, y2 ∈ C([−r, T ], IRn) and h1 ∈ N(y1). Then there exists g1(t) ∈ F (t, y1t) such
that

h1(t) = φ(0) + ρ(0)η
∫ t

0

ds

ρ(s)
+
∫ t

0

1
ρ(s)

∫ s

0

g1(τ)dτds, t ∈ [0, T ].

From (H2) it follows that

Hd(F (t, y1t), F (t, y2t)) ≤ l(t)‖y1t − y2t‖.

Hence there is w ∈ F (t, y2t) such that

‖g1(t) − w‖ ≤ l(t)‖y1t − y2t‖, t ∈ [0, T ].

Consider U : [0, T ] → P(IRn), given by

U(t) = {w ∈ IRn : ‖g1(t) − w‖ ≤ l(t)‖y1t − y2t‖}.

Since the multivalued operator V (t) = U(t) ∩ F (t, y2t) is measurable (see Proposition
III.4 in [4]), there exists g2(t) a measurable selection for V . So, g2(t) ∈ F (t, y2t) and

‖g1(t) − g2(t)‖ ≤ l(t)‖y1t − y2t‖, for each t ∈ [0, T ].

Let us define for each t ∈ [0, T ]

h2(t) = φ(0) + ρ(0)η
∫ t

0

ds

ρ(s)
+
∫ t

0

1
ρ(s)

∫ s

0

g2(τ)dτds.

Then we have

‖h1(t) − h2(t)‖ ≤ T

ρ0

∫ t

0

‖g1(s) − g2(s)‖ ds

≤ T

ρ0

∫ t

0

l(s)‖y1s − y2s‖ds

=
T

ρ0

∫ t

0

l(s)
(

sup
−r≤θ≤0

|y1s(θ) − y2s(θ)|
)
ds

=
T

ρ0

∫ t

0

l(s)
(

sup
−r≤θ≤0

|y1(s+ θ) − y2(s+ θ)|
)
ds

=
T

ρ0

∫ t

0

l(s)
(

sup
s−r≤z≤s

|y1(z) − y2(z)|
)
ds

≤ T

ρ0

∫ t

0

l(s)
(

sup
−r≤z≤T

|y1(z) − y2(z)|
)
ds

≤

(
T

ρ0

∫ T

0

l(s)ds

)
‖y1 − y2‖[−r,T ].

Then

‖h1 − h2‖[−r,T ] ≤

(
T

ρ0

∫ T

0

l(s)ds

)
‖y1 − y2‖[−r,T ].
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By the analogous relation, obtained by interchanging the roles of y1 and y2, it follows
that

Hd(N(y1), N(y2)) ≤

(
T

ρ0

∫ T

0

l(s)ds

)
‖y1 − y2‖[−r,T ].

So, N is a contraction and thus, by Lemma 2.2, it has a fixed point y, which is solution
to (1.1)-(1.2).

By the help of the Schaefer’s theorem combined with the selection theorem of Bressan
and Colombo for lower semicontinuous maps with decomposable values, we shall present
an existence result for the problem (1.1)-(1.2). Before this, let us introduce the following
hypotheses which are assumed hereafter:

(H3) F : [0, T ]×C([−r, 0], IRn) −→ P(IRn) is a nonempty compact valued multivalued
map such that
a) (t, u) 7→ F (t, u) is L⊗ B measurable;
b) u 7→ F (t, u) is lower semi-continuous for a.e. t ∈ [0, T ];

(H4) For each q > 0, there exists a function hq ∈ L1([0, T ], IR+) such that

‖F (t, u)‖ := sup{|v| : v ∈ F (t, u)} ≤ hq(t)

for a.e. t ∈ [0, T ] and u ∈ C([−r, 0], IRn) with ‖u‖ ≤ q.

In the proof of our following theorem, we will need the auxiliary result:
Lemma 3.1: [7]. Let F : [0, T ] × C([−r, 0], IRn) → P(IRn) be a multivalued map

with nonempty, compact values. Assume (H3) and (H4) hold. Then F is of l.s.c. type.
Theorem 3.2: Suppose, in addition to hypotheses (H3), (H4), the following also

holds:

(H5) ‖F (t, u)‖ := sup{|v| : v ∈ F (t, u)} ≤ p(t)ψ(‖u‖) for almost all t ∈ [0, T ] and all
u ∈ C([−r, 0], E), where p ∈ L1([0, T ], IR+) and ψ : IR+ −→ (0,∞) is continuous
and increasing with

T

ρ0

∫ T

0

p(s)ds <
∫ ∞

c

dτ

ψ(τ)
,

where c = ‖φ‖ + ρ(0)|η| T
ρ0

.

Then the initial value problem (1.1)–(1.2) has at least one solution.
Proof: (H3) and (H4) imply by Lemma 3.1 that F is of lower semi-continuous

type. Then, from Lemma 2.1, there exists a continuous function f : C([0, T ], IRn) →
L1([0, T ], IRn) such that f(y) ∈ F(y) for all y ∈ C([0, T ], IRn).

We consider the problem

(ρ(t)y′(t))′ = f(y)(t), a.e. t ∈ J = [0, T ], (3.1)

y0 = φ, y′(0) = η. (3.2)

Remark 3.2: If y ∈ C([−r, T ], IRn) is a solution of the problem (3.1)–(3.2), then y
is a solution to the problem (1.1)-(1.2).
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Transform problem (3.1) - (3.2) into a fixed point problem. Consider the multivalued
map, N : C([−r, T ], IRn) −→ C([−r, T ], IRn) defined by:

N(y)(t) =





φ(t), if t ∈ [−r, 0]

φ(0) + ρ(0)η
∫ t

0

ds

ρ(s)
+
∫ t

0

1
ρ(s)

∫ s

0

f(y)(u)duds, if t ∈ [0, T ].

Clearly from (H4) and the Arzela-Ascoli theorem, the multivalued operator N is con-
tinuous and completely continuous.

In order to apply Schaefer’s theorem, it remains to show that the set

E(N) := {y ∈ C([−r, T ], IRn) : λy = N(y), for some λ > 1}

is bounded. Let y ∈ E(N). Then λy = N(y) for some λ > 1. Thus, for each t ∈ [0, T ]

y(t) = λ−1φ(0) + λ−1ρ(0)η
∫ t

0

ds

ρ(s)
+ λ−1

∫ t

0

1
ρ(s)

∫ s

0

f(y)(τ)dτds.

This implies by (H5) that for each t ∈ [0, T ] we have

|y(t)| ≤ ‖φ‖ + ρ(0)|η| T
ρ0

+
T

ρ0

∫ t

0

p(s)ψ(‖ys‖)ds.

We consider the function µ defined by

µ(t) = sup{|y(s)| : −r ≤ s ≤ t}, 0 ≤ t ≤ T.

Let t∗ ∈ [−r, t] be such that µ(t) = |y(t∗)|. If t∗ ∈ [0, T ], by the previous inequality we
have for t ∈ [0, T ]

µ(t) ≤ ‖φ‖ + ρ(0)|η| T
ρ0

+
T

ρ0

∫ t

0

p(s)ψ(µ(s))ds.

If t∗ ∈ [−r, 0], then µ(t) = ‖φ‖ and the previous inequality holds.
Let us take the right-hand side of the above inequality as v(t); then we have

c = v(0) = ‖φ‖ + ρ(0)|η| T
ρ0
, µ(t) ≤ v(t), t ∈ [0, T ]

and
v′(t) =

T

ρ0
p(t)ψ(µ(t)), t ∈ [0, T ].

Using the nondecreasing character of ψ, we get

v′(t) ≤ T

ρ0
p(t)ψ(v(t)), t ∈ [0, T ].

This implies for each t ∈ [0, T ] that

∫ v(t)

v(0)

du

ψ(u)
≤ T

ρ0

∫ T

0

p(s)ds <
∫ ∞

v(0)

du

ψ(u)
.
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This inequality implies that there exists a constant b = b(T, p, ψ) such that v(t) ≤ b, t ∈
[0, T ], and hence µ(t) ≤ b, t ∈ [0, T ]. Since for every t ∈ [0, T ], ‖yt‖ ≤ µ(t), we have

‖y‖[r,T ] := sup{|y(t)| : −r ≤ t ≤ T} ≤ max(b, ‖φ‖).

This shows that E(N) is bounded. As a consequence of Schaefer’s theorem (see [10]),
we deduce that N has a fixed point which is a solution of (3.1)-(3.2) and hence from
Remark 3.2, a solution to the problem (1.1)-(1.2) .

4 Boundary Value Problems

In the next theorem we give an existence result for the BVP (1.1), (1.3).
Definition 4.1: A function y : [−r, T ] −→ IRn is called solution for the BVP (1.1),

(1.3) if y(·), ρ(·)y(·) ∈ C([−r, T ], IRn) ∩ AC1([0, T ], IRn) and satisfies the differential
inclusion (1.1) a.e. on [0, T ] and the boundary condition (1.3).

Theorem 4.1: Let F satisfies (H1) and (H2). Then the BVP (1.1), (1.3) has at
least one solution on [−r, T ].

Proof: As in Theorem 3.1 we transform the problem into a fixed point problem.
Consider the multivalued operator N1 : C([−r, T ], IRn) → P(C([−r, T ], IRn)) defined
by:
N1(y) :=

h ∈ C([−r, T ], IRn) : h(t) =



φ(t), if t ∈ [−r, 0]

φ(0) +
η − φ(0)

ω(T )
ω(t)

+

∫ T

0

G(t, s)g(s)ds, if t ∈ [0, T ], g ∈ SF (y)


where ω(t) =

∫ t

0

1
ρ(s)

ds and G is the Green’s function for the corresponding homogen-

uous problem which is given by the formula

G(t, s) =





ω(s)
(
ω(t)
ω(T )

− 1
)
, if 0 ≤ s ≤ t ≤ T

ω(t)
(
ω(s)
ω(T )

− 1
)
, if 0 ≤ t ≤ s ≤ T.

We shall show that N1 satisfies the assumptions of Lemma 2.1.
Using the same reasoning as in Step 1 of Theorem 3.1, we can show that N1(y) ∈

Pcl(C(−r, T ], IRn), for each y ∈ C([−r, T ], IRn).

N1 is a contraction multivalued map. Indeed, let y1, y2 ∈ C[−r, T ], IRn) and h1 ∈
N1(y1). Then there exists g1(t) ∈ F (t, y1t) such that

h1(t) = φ(0) +
η − φ(0)
ω(T )

ω(t) +
∫ T

0

G(t, s)g1(s)ds, t ∈ [0, T ].

From (H2) it follows that

Hd(F (t, y1t), F (t, y2t)) ≤ l(t)‖y1t − y2t‖.
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Hence, there is w ∈ F (t, y2t) such that

‖g1(t) − w‖ ≤ l(t)‖y1t − y2t‖, t ∈ [0, T ].

Consider U : [0, T ] → P(IRn), given by

U(t) = {w ∈ IRn : ‖g1(t) − w‖ ≤ l(t)‖y1t − y2t‖}.

Since the multivalued operator V (t) = U(t) ∩ F (t, y2t) is measurable (see Proposition
III.4 in [4]), there exists g2(t) a measurable selection for V . So, g2(t) ∈ F (t, y2t) and

‖g1(t) − g2(t)‖ ≤ l(t)‖y1t − y2t‖, for each t ∈ [0, T ].

Let us define for each t ∈ [0, T ]

h2(t) = φ(0) +
η − φ(0)
ω(T )

ω(t) +
∫ T

0

G(t, s)g2(s)ds.

Then we have

‖h1(t) − h2(t)‖ ≤
∫ T

0

G(t, s)‖g1(s) − g2(s)‖ ds

≤ sup
[0,T ]×[0,T ]

|G(t, s)|
∫ T

0

l(s)‖y1s − y2s‖ds

≤

(
sup

[0,T ]×[0,T ]

|G(t, s)|
∫ T

0

l(t)dt

)
‖y1 − y2‖[−r,T ].

Then

‖h1 − h2‖[−r,T ] ≤

(
sup

[0,T ]×[0,T ]

|G(t, s)|
∫ T

0

l(t)dt

)
‖y1 − y2‖[−r,T ].

By the analogous relation, obtained by interchanging the roles of y1 and y2, it follows
that

Hd(N1(y1), N1(y2)) ≤

(
sup
J×J

|G(t, s)|
∫ T

0

l(t)dt

)
‖y1 − y2‖[−r,T ].

So, if we choose sup
[0,T ]×[0,T ]

|G(t, s)|
∫ T

0

l(t)dt < 1, N1 is a contraction, and thus, by

Lemma 2.2, it has a fixed point y, which is solution to (1.1), (1.3).
Using the reasoning used in the proof of Theorem 3.2, we can obtain the following

result where the details are left to the reader.
Theorem 4.2: Let F satisfy (H3) and

(H6) there exists a function h ∈ L1([0, T ], IR+) such that

‖F (t, u)‖ := sup{|v| : v ∈ F (t, u)} ≤ h(t) for a.e. t ∈ [0, T ] and u ∈ C([−r, 0], IRn).

Then the BVP (1.1), (1.3) has at least one solution on [−r, T ].
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