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1 Introduction

In order to make this paper self-contained, we introduce the following definition.
Definition 1: The function f(t) is said to be eventually zero if there exists a

sufficiently large tµ such that f(t) ≡ 0 holds for t ≥ tµ.
This paper is concerned with nonexistence conditions of eventually positive solutions

of the even order neutral differential inequality with distributed deviating arguments

[x(t) + c(t)x(t − τ)](n) +
∫ b

a

p(t, ξ)f(x[g(t, ξ)])dσ(ξ) ≤ 0, t ≥ t0, (1)

in which τ > 0 is a constant, n is an even positive integer; c(t) ∈ C(I, R), 0 ≤ c(t) ≤ 1,
and p(t, ξ) ∈ C(I × J, R+) is not eventually zero on any Iµ × J , I = [t0,∞), J = [a, b],
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Iµ = [tµ,∞), tµ ≥ t0, R+ = [0,∞). Furthermore, we assume that g(t, ξ) ∈ C(I × J, R)
is nondecreasing with respect to t and ξ, respectively, d

dtg(t, a) exists, g(t, ξ) ≤ t for
ξ ∈ J , and lim inf

t→∞,ξ∈J
{g(t, ξ)} = ∞; f(x) ∈ C(R, R), and xf(x) > 0 (x 6= 0); σ(ξ) ∈ (J, R)

is nondecreasing; integral of inequality (1) is in Lebesgue-Stieltjes sense.
Recently, Li and Cui [1] have obtained some results dealing with a class of even order

neutral differential inequalities with applications. On the other hand, Liu and Fu [2]
have studied nonlinear differential inequality with distributed deviating arguments and
their applications. These authors provided some results on nonexistence conditions of
eventually positive solutions of inequality (1). For example,

Theorem A:(See [1]) If 0 ≤ c(t) ≤ 1, and

∫ t

t0

∫ b

a

p(s, ξ){1− c[g(s, ξ)]}dσ(ξ)ds = ∞,

then inequality (1) has no eventually positive solutions.
Theorem B:(See ([2]) Assume that f(−x) = −f(x), x ∈ (0,∞), and

f(x)
x

≥ λ, x ∈ (0,∞), for some constant λ > 0. (2)

If there exists a monotonically increasing function ϕ(t) ∈ C ′(I, (0,∞)) such that

∫ t

t0

[λϕ(s)
∫ b

a

p(s, ξ){1 − c[g(s, ξ)]}dσ(ξ)− Aϕ′(s)]ds = ∞

for any number A > 0, then inequality (1) has no eventually positive solutions.
The purpose of this paper is to obtain two new results related to the nonexistence

criteria for eventually positive solutions of inequality (1). In the established nonexistence
criteria, there is a general class of function H(t, s) as the parameter function. By
choosing a different function H(t, s), we are able to derive some useful corollaries.

Definition 2: The solution x(t) ∈ C(n)(I, R) of inequality (1) is said to be even-
tually positive if there exists a sufficiently large positive number T ≥ t0 such that the
inequality x(t) > 0 holds for t ≥ T .

To develop the nonexistence criteria of eventually positive solutions of inequality
(1), we first need the following Lemmas:

Lemma 1: (See [1]) Assume that x(t) is an eventually positive solution of inequality
(1). Let

y(t) = x(t) + c(t)x(t − τ). (3)

Then there exists a t1 ≥ t0 such that

y(t) > 0, y′(t) > 0, y(n−1)(t) > 0 and y(n)(t) ≤ 0, t ≥ t1.

Lemma 2: (See [3]) Let x(n)(t) ∈ C(I, R+). If x(n)(t) is eventually of one sign for
all large t, and x(n)(t)×x(n−1)(t) ≤ 0 for t1 > t0, then there exists a constant θ ∈ (0, 1)
such that for sufficiently large t, there exists a constant Mθ > 0 satisfying

|u′(t/2)| ≥ Mθt
n−2|u(n−1)(t)|.
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2 Main Results

The following theorems provide sufficient conditions leading to nonexistence of eventu-
ally positive solutions for inequality (1).

Theorem 1: Assume that the condition of Theorem B holds, and there exist func-
tions H(t, s) ∈ C ′(D; R), h(t, s) ∈ C(D; R), with D = {(t, s)|t ≥ s ≥ t0} satisfying

(H1) H(t, t) = 0, t ≥ t0; H(t, s) > 0, t > s ≥ t0;

(H2) Ht
′(t, s) ≥ 0, Hs

′(t, s) ≤ 0, and −Hs
′(t, s) = h(t, s)

√
H(t, s), (t, s) ∈ D.

If

lim sup
t→∞

1
H(t, t0)

∫ t

t0

H(t, s)
∫ b

a

p(s, ξ){1− c[g(s, ξ)]}dσ(ξ)ds = ∞, (4)

and

lim sup
t→∞

1
H(t, t0)

∫ t

t0

h2(t, s)
gn−2(s, a)g′(s, a)

ds < ∞, (5)

then inequality (1) has no eventually positive solutions.
Proof: Assume to the contrary that x(t) is an eventually positive solution of in-

equality (1). Then from limt→∞, infξ∈J{g(t, ξ)} = ∞, there exists a t1 ≥ t0 such that
x(t) > 0, x(t − τ) > 0 and x[g(t, ξ)] > 0 for t ≥ t1 and ξ ∈ J . From (2) and (3),
inequality (1) can be written as

0 ≥ y(n)(t) +
∫ b

a

p(t, ξ)f(x[g(t, ξ)])dσ(ξ) (6)

≥ y(n)(t) + λ

∫ b

a

p(t, ξ){y[g(t, ξ)]− c[g(t, ξ)]x[g(t, ξ)− τ ]}dσ(ξ).

From Lemma 1, y′(t) > 0 and y(t) ≥ x(t), t ≥ t1, hence y[g(t, ξ)] ≥ y[g(t, ξ) − τ ] ≥
x[g(t, ξ) − τ ]. Thus

y(n)(t) + λ

∫ b

a

p(t, ξ){1 − c[g(t, ξ)]}y[g(t, ξ)]dσ(ξ) ≤ 0, t ≥ t1. (7)

Furthermore, in view of g(t, ξ) being nondecreasing with respect to ξ, we have

y(n)(t) + λy[g(t, a)]
∫ b

a

p(t, ξ){1 − c[g(t, ξ)]}dσ(ξ) ≤ 0, t ≥ t2. (8)

Let

z(t) =
y(n−1)(t)

y[ g(t,a)
2 ]

. (9)

Then z(t) ≥ 0. Since d
dtg(t, a) exists, we obtain y′[g(t, a)] = dy

dg
d
dtg(t, a). Furthermore,

from Lemma 1, y(n)(t) ≤ 0, and in view of g(t, ξ) being nondecreasing with respect to ξ,
g(t, ξ) ≤ t for ξ ∈ J , we obtain y(n−1)(t) ≤ y(n−1)[g(t, a)] ≤ y(n−1)[ g(t,a)

2 ]. Thus, from
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Lemma 2, we have

z′(t) =
y(n)(t)

y[ g(t,a)
2 ]

− 1
2

y(n−1)(t)y′[ g(t,a)
2 ]g′(t, a)

y2[ g(t,a)
2 ]

(10)

≤ y(n)(t)

y[ g(t,a)
2 ]

− Mθ

2
gn−2(t, a)g′(t, a)z2(t),

Furthermore, from y′(t) > 0 and (8), for t ≥ t2, we obtain

z′(t) ≤ −λ

∫ b

a

p(t, ξ){1 − c[g(t, ξ)]}dσ(ξ)− Mθ

2
gn−2(t, a)g′(t, a)z2(t). (11)

Integrating by parts for any t > T ≥ t1, and using the properties (H1) and (H2), we
have

λ

∫ t

T

H(t, s)
∫ b

a

p(s, ξ){1− c[g(s, ξ)]}dσ(ξ)ds

≤ −
∫ t

T

H(t, s)z′(s)ds − Mθ

2

∫ t

T

H(t, s)gn−2(s, a)g′(s, a)z2(s)ds

= −
∫ t

T

H(t, s)dz(s) − Mθ

2

∫ t

T

H(t, s)gn−2(s, a)g′(s, a)z2(s)ds

= H(t, T )z(T ) −
∫ t

T

h(t, s)
√

H(t, s)z(s)ds

−Mθ

2

∫ t

T

H(t, s)gn−2(s, a)g′(s, a)z2(s)ds

= H(t, T )z(T ) − 1
2

∫ t

T

[√
MθH(t, s)gn−2(s, a)g′(s, a)z(s)

+
h(t, s)√

Mθgn−2(s, a)g′(s, a)

]2

ds +
∫ t

T

h2(t, s)
2Mθgn−2(s, a)g′(s, a)

ds,

which implies that
∫ t

T

[
λH(t, s)

∫ b

a

p(s, ξ){1− c[g(s, ξ)]}dσ(ξ)− h2(t, s)
2Mθgn−2(s, a)g′(s, a)

]
ds

≤ H(t, T )z(T ) − 1
2

∫ t

T

[√
MθH(t, s)gn−2(s, a)g′(s, a)z(s)

+
h(t, s)√

Mθgn−2(s, a)g′(s, a)

]2

ds. (12)

Furthermore, in view of (H2), for t1 ≥ t0, we have H(t, t1) ≤ H(t, t0). Thus
∫ t

t1

[
λH(t, s)

∫ b

a

p(s, ξ){1− c[g(s, ξ)]}dσ(ξ)− h2(t, s)
2Mθgn−2(s, a)g′(s, a)

]
ds

≤ H(t, t1)z(t1) ≤ H(t, t0)z(t1)
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1
H(t, t0)

∫ t

t0

[
λH(t, s)

∫ b

a

p(s, ξ){1− c[g(s, ξ)]}dσ(ξ)− h2(t, s)
2Mθgn−2(s, a)g′(s, a)

]
ds

=
1

H(t, t0)

[∫ t1

t0

+
∫ t

t1

] [
λH(t, s)

∫ b

a

p(s, ξ){1− c[g(s, ξ)]}dσ(ξ)

− h2(t, s)
2Mθgn−2(s, a)g′(s, a)

]
ds

≤ z(t1) +
∫ t1

t0

H(t, s)
H(t, t0)

∫ b

a

p(s, ξ){1− c[g(s, ξ)]}dσ(ξ)ds

≤ z(t1) +
∫ t1

t0

∫ b

a

p(s, ξ){1 − c[g(s, ξ)]}dσ(ξ)ds. (13)

It follows from (13) that

lim sup
t→∞

1
H(t, t0)

∫ t

t0

λH(t, s)
∫ b

a

p(s, ξ){1 − c[g(s, ξ)]}dσ(ξ)

≤ lim sup
t→∞

1
H(t, t0)

∫ t

t0

[
λH(t, s)

∫ b

a

p(s, ξ){1 − c[g(s, ξ)]}dσ(ξ)

− h2(t, s)
2Mθgn−2(s, a)g′(s, a)

]
ds

+ lim sup
t→∞

1
H(t, t0)

∫ t

t0

h2(t, s)
gn−2(s, a)g′(s, a)

ds

≤ z(t1) +
∫ t1

t0

∫ b

a

p(s, ξ){1 − c[g(s, ξ)]}dσ(ξ)ds

+ lim sup
t→∞

1
H(t, t0)

∫ t

t0

h2(t, s)
gn−2(s, a)g′(s, a)

ds

< ∞,

which contradicts (4). Therefore, the proof of Theorem 1 is complete.
Remark 1: From Theorem 1, we can establish various sufficient conditions by means

of the choices of parameter function H(t, s). For example, choosing H(t, s) = (t−s)m−1,
t ≥ s ≥ t0, in which m > 2 is an integer, we obtain h(t, s) = (m−1)(t−s)

m−3
2 , t ≥ s ≥ t0.

From Theorem 1, we have
Corollary 1: If there exists an integer m > 2 such that

lim sup
t→∞

1
tm−1

∫ t

t0

(t − s)m−1

∫ b

a

p(s, ξ){1 − c[g(s, ξ)]}dσ(ξ)ds = ∞, (14)

lim sup
t→∞

1
tm−1

∫ t

t0

(m − 1)2(t − s)m−3

gn−2(s, a)g′(s, a)
ds < ∞, (15)

then inequality (1) has no eventually positive solutions.
If

lim sup
t→∞

1
H(t, t0)

∫ t

t0

H(t, s)
∫ b

a

p(s, ξ){1− c[g(s, ξ)]}dσ(ξ)ds < ∞, (16)
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we have the following result:
Theorem 2: Assume that the conditions of Theorem 1 and (16) hold. If H ′

t(t, s) is
nondecreasing, and there exists a function ϕ(t) ∈ C(I, R) satisfying

lim inf
t→∞

1
H(t, t0)

∫ t

u

[
λH(t, s)

∫ b

a

p(s, ξ){1− c[g(s, ξ)]}dσ(ξ)

− h2(t, s)
2Mθgn−2(s, a)g′(s, a)

]
ds ≥ ϕ(u), u ≥ t0, (17)

lim
t→∞

1
H(t, t0)

∫ t

t0

H(t, s)gn−2(s, a)g′(s, a)ϕ2
+(s)ds = ∞, ϕ+(s) = max

s≥t0
{ϕ(s), 0}, (18)

then inequality (1) has no eventually positive solutions.
Proof: Assume to the contrary that x(t) is an eventually positive solution of in-

equality (1). Then from the proof of Theorem 1, there exists a t1 ≥ t0 such that

z′(t) ≤ −λ

∫ b

a

p(t, ξ){1 − c[g(t, ξ)]}dσ(ξ)− Mθ

2
gn−2(t, a)g′(t, a)z2(t). (19)

Thus

λ

∫ t

t1

H(t, s)
∫ b

a

p(s, ξ){1 − c[g(s, ξ)]}dσ(ξ)ds

≤ −
∫ t

t1

H(t, s)z′(s)ds − Mθ

2

∫ t

t1

H(t, s)gn−2(s, a)g′(s, a)z2(s)ds

= H(t, t1)z(t1) −
∫ t

t1

√
H(t, s)h(t, s)z(s)ds

−Mθ

2

∫ t

t1

H(t, s)gn−2(s, a)g′(s, a)z2(s)ds (20)

and

λ

∫ t

t1

H(t, s)
∫ b

a

p(s, ξ){1 − c[g(s, ξ)]}dσ(ξ)ds

≤ H(t, t1)z(t1) −
1
2

∫ t

t1

{√
Mθgn−2(s, a)g′(s, a)H(t, s)z(s)

+
h(t, s)√

Mθgn−2(s, a)g′(s, a)

}2

ds

+
∫ t

t1

h2(t, s)
2Mθgn−2(s, a)g′(s, a)

ds

≤ H(t, t1)z(t1) +
∫ t

t1

h2(t, s)
2Mθgn−2(s, a)g′(s, a)

ds. (21)
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Furthermore, for t > u ≥ t0, we have

1
H(t, t0)

∫ t

u

[
λH(t, s)

∫ b

a

p(s, ξ){1− c[g(s, ξ)]}dσ(ξ)− h2(t, s)
2Mθgn−2(s, a)g′(s, a)

]
ds

≤ H(t, u)
H(t, t0)

z(u). (22)

From (17) and (H2), we conclude that

ϕ(u) ≤ 1
H(t, t0)

∫ t

u

[
λH(t, s)

∫ b

a

p(s, ξ){1− c[g(s, ξ)]}dσ(ξ)

− h2(t, s)
2Mθgn−2(s, a)g′(s, a)

]
ds

≤ H(t, u)
H(t, t0)

z(u) ≤ z(u), (23)

which implies that
ϕ2

+(u) ≤ z2(u). (24)

Let

v(t) =
1

H(t, t0)

∫ t

t1

√
H(t, s)h(t, s)z(s)ds

w(t) =
1

H(t, t0)

∫ t

t1

Mθ

2
H(t, s)gn−2(s, a)g′(s, a)z2(s)ds.

Then, from (20), we find

v(t)+w(t) ≤ H(t, t1)
H(t, t0)

z(t1)−
1

H(t, t0)

∫ t

t1

λH(t, s)
∫ b

a

p(s, ξ){1−c[g(s, ξ)]}dσ(ξ)ds. (25)

It follows from (17) that

lim inf
t→∞

1
H(t, t0)

∫ t

u

λH(t, s)
∫ b

a

p(s, ξ){1− c[g(s, ξ)]}dσ(ξ)ds ≥ ϕ(u).

Furthermore, we obtain

lim sup
t→∞

1
H(t, t0)

∫ t

t1

λH(t, s)
∫ b

a

p(s, ξ){1 − c[g(s, ξ)]}dσ(ξ)ds

− lim inf
t→∞

1
H(t, t0)

∫ t

t1

h2(t, s)
2Mθgn−2(s, a)g′(s, a)

ds ≥ ϕ(t1). (26)

It turns out from (26) and (16)

lim inf
t→∞

1
H(t, t0)

∫ t

t1

h2(t, s)
2Mθgn−2(s, a)g′(s, a)

ds < ∞.
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Thus, there exists a sequence {tn}∞1 in [t1,∞) such that limn→∞ tn = ∞ that satisfies

lim
n→∞

1
H(tn, t0)

∫ tn

t1

h2(tn, s)
2Mθgn−2(s, a)g′(s, a)

ds < ∞. (27)

Result (27) implies that

lim sup
t→∞

{v(t) + w(t)}

≤ z(t1) − lim inf
t→∞

1
H(t, t0)

∫ t

t1

λH(t, s)
∫ b

a

p(s, ξ){1 − c[g(s, ξ)]}dσ(ξ)ds

≤ z(t1) − ϕ(t1)
4
= M. (28)

Then, for any sufficiently large n, we have

v(tn) + w(tn) < M1, (29)

where M1 > M , M and M1 are constant. According to the definition of w(t), we have

w′(t) =
∫ t

t1

Mθ (H ′
t(t, s)H(t, t0) − H ′

t(t, t0)H(t, s))
2H2(t, t0)

gn−2(s, a)g′(s, a)z2(s)ds.

Since H ′
t(t, s) is nondecreasing and (H2) holds, we have w′(t) ≥ 0, thus, w(t) is increas-

ing, and lim
t→∞

w(t) = l exists, where l is finite or infinite. In the case of lim
n→∞

w(tn) = ∞.

Consequently, it follows from (29) that

lim
n→∞

v(tn) = −∞, (30)

and
v(tn)
w(tn)

+ 1 <
M1

w(tn)
.

Thus, for any 0 < ε < 1 and sufficiently large n, we have

v(tn)
w(tn)

< ε − 1 < 0. (31)

On the other hand, by using the Schwartz inequality, for t ≥ t1, we obtain

0 ≤ v2(tn) =
1

H2(tn, t0)

{∫ tn

t1

√
H(tn, s)h(tn, s)z(s)ds

}2

≤
{

1
H(tn, t0)

∫ tn

t1

Mθ

2
H(tn, s)gn−2(s, a)g′(s, a)z2(s)ds

}

×
{

1
H(tn, t0)

∫ tn

t1

2h2(tn, s)
Mθgn−2(s, a)g′(s, a)

ds

}

= w(tn)
1

H(tn, t0)

∫ tn

t1

2h2(tn, s)
Mθgn−2(s, a)g′(s, a)

ds.

Then,

0 ≤ v2(tn)
w(tn)

≤ 1
H(tn, t0)

∫ tn

t1

2h2(tn, s)
Mθgn−2(s, a)g′(s, a)

ds. (32)



Even Order Neutral Differential Inequality 265

It follows from (27) that

0 ≤ lim
n→∞

v2(tn)
w(tn)

< ∞. (33)

In view of (31), we obtain

lim
n→∞

v(tn)
w(tn)

= lim
n→∞

v′(tn)
w′(tn)

≤ ε − 1 < 0,

and then,

lim
n→∞

v2(tn)
w(tn)

= lim
n→∞

2v(tn)v′(tn)
w′(tn)

= 2 lim
n→∞

v(tn) lim
n→∞

v′(tn)
w′(tn)

= ∞,

which contradicts (33). Thus, we have lim
t→∞

w(t) = l < ∞. Furthermore, according to

(24), we conclude that

lim
t→∞

1
H(t, t0)

∫ t

t1

H(t, s)gn−2(s, a)g′(s, a)ϕ2
+(s)ds

≤ lim
t→∞

1
H(t, t0)

∫ t

t1

H(t, s)gn−2(s, a)g′(s, a)z2(s)ds =
2

Mθ
lim

t→∞
w(t) < ∞, (34)

which implies that

lim
t→∞

1
H(t, t0)

∫ t

t0

H(t, s)gn−2(s, a)g′(s, a)ϕ2
+(s)ds

= lim
t→∞

1
H(t, t0)

[∫ t1

t0

+
∫ t

t1

]
H(t, s)gn−2(s, a)g′(s, a)ϕ2

+(s)ds

≤
∫ t1

t0

H(t, s)gn−2(s, a)g′(s, a)ϕ2
+(s)ds +

2
Mθ

lim
t→∞

w(t) < ∞.

The latter contradicts (18). Therefore, the proof of Theorem 2 is complete.
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