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It is known that if a predictable nondecreasing process generates a bounded potential,
then its final value satisfies the Garsia inequality. We prove the converse, that is, a ran-
dom variable satisfying the Garsia inequality generates a bounded potential. We also pro-
pose some useful relations between the Garsia inequality and the Cramer conditions, and
different ways how to construct a potential.

1. Introduction

Let (Ω,�,P) be a complete probability space and let {�t, t ≥ 0} be a filtration satisfying
the standard conditions: �0 contains P zero sets of σ-field �, �s ⊂ �t ⊂ �, 0 ≤ s ≤ t,
�s =

⋂
t>s�t. Also, let {Xt,�t, t > 0} be the potential with the Doob-Meyer decomposi-

tion of the form

Xt =Mt −At, (1.1)

where Mt is a martingale, At is nondecreasing integrable right-continuous predictable
process, A0 = 0. Let A∞ := limt→∞At. It follows from (1.1) that Xt also admits the decom-
position

Xt = E
(
A∞ −At|�t

)
, (1.2)

and we say that the processAt generates the potential Xt. Garsia [2] established that in the
case when Xt is bounded, that is, 0≤ Xt ≤ c0, the random variable (r.v.) ξ := A∞ satisfies
the Garsia inequality

EG(ξ)≤ c0Eg(ξ), (1.3)

where g = g(t) : R+ → R+ is any nondecreasing nonnegative function, G(t) = ∫ t0 g(u)du.
In particular, with g(t)= tn−1, n≥ 1, we obtain from the Garsia inequality that ξ satisfies
the Cramer conditions, that is, Eξn ≤ cn0 ·n!, n≥ 1.
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Our aim is to investigate what sort of potential can be generated by a r.v. that satisfies
the Garsia inequality or the Cramer conditions.

The paper is organized as follows. Section 2 contains relations between the Garsia in-
equality and the Cramer conditions on the one side, and the properties of the distribution
function (d.f.) of corresponding r.v. on the other side. Example 2.6 demonstrates that the
Garsia inequality and the Cramer conditions are not equivalent. In Section 3 we prove
that any r.v. satisfying the Garsia inequality predictably generates a nontrivial bounded
potential (corresponding definitions are provided in this section). In Section 4 we trans-
form some r.v. in such a way that the resulting r.v. predictably generates a bounded po-
tential.

2. The asymptotic properties of a distribution function corresponding to a random
variable that satisfies the Garsia inequality or the Cramer conditions

Throughout the paper, ξ is a nonnegative unbounded integrable r.v. with the d.f. Fξ(x)=
P{ξ < x}. Note that the integral

∫∞
x (1−Fξ(u))du exists and is positive for any x ≥ 0, Eξ =∫∞

0 (1−Fξ(u))du, and 1−Fξ(x) is a left-continuous function.
Denote

λ(x) := (1−Fξ(x)
)(∫∞

x

(
1−Fξ(u)

)
du
)−1

= (E(ξ − x | ξ ≥ x)
)−1

. (2.1)

Lemma 2.1. (1) The positive, left-continuous function λ defined by (2.1) also satisfies the
relations

1−Fξ(x)= Eξ · λ(x)exp
{
−
∫ x

0
λ(u)du

}
, (2.2)

∫ x
0
λ(u)du=− ln

(∫∞
x

(
1−Fξ(u)

)
du · (Eξ)−1

)
, (2.3)

∫∞
0
λ(u)du=∞. (2.4)

(2) Let the function λ satisfy representation (2.2). Then it is unique, positive, left-continuous,
and satisfies (2.1), (2.3), and (2.4).

Proof. (1) Let λ be defined by (2.1). Denote Q(x) := ∫∞x (1−Fξ(u))du. Then
∫ x

0 λ(u)du=∫Q(0)
Q(x) (du/u) = ln(Q(0)/Q(x)), yielding (2.3) and also Eξ · λ(x)exp{−∫ x0 λ(u)du} = Eξ ·
λ(x) · (Q(x)/Q(0))= λ(x)Q(x)= 1− Fξ(x), that is (2.2). Evidently, Q(∞)= 0 and there-
fore

∫∞
0 λ(u)du= ln(Q(0)/0)=∞.

(2) Let the function λ be defined by (2.2). Denote Λ(x) := ∫ x0 λ(u)du, and obtain from
(2.2) that

∫ x
0

(
1−Fξ(u)du

)= Eξ ·
∫ x

0
exp

{−Λ(u)
}
λ(u)du

= Eξ · (1− exp
{−Λ(x)

})
.

(2.5)
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Since Eξ = ∫∞
0 (1 − Fξ(u))du, we obtain from (2.5) that Eξ · exp{−Λ(x)} = ∫∞

x (1 −
Fξ(u))du. Therefore, from (2.2),

1−Fξ(x)= λ(x) ·
∫∞
x

(
1−Fξ(u)

)
du (2.6)

and, also, Eξ exp{−Λ(∞)} = 0. Hence Λ(∞)=∞. We establish (2.1) and (2.4). Relation
(2.3) follows from (2.1) (see part (1) of the proof). �

Theorem 2.2. Let ξ be a nonnegative unbounded integrable r.v. The following assertions are
equivalent:

(i) r.v. ξ satisfies Garsia inequality (1.3);
(ii) for any x ≥ 0, λ(x)≥ c−1

0 , where λ is defined by (2.1).

Remark 2.3. It follows from (2.1) that (ii) is equivalent to

(iii) supx≥0E(ξ − x | ξ ≥ x)≤ c0.

Proof. (1) Let r.v. ξ satisfy Garsia inequality (1.3). Then, in particular, Eξ ≤ c0. Consider
a nonnegative nondecreasing function g such that Eg(ξ) <∞. Then,

0≤ c0Eg(ξ)−EG(ξ)

= c0

∫∞
0

(
g(0) +

∫ u
0+
dg(v)

)
Fξ(du)

−
∫∞

0

∫ u
0

(
g(0) +

∫ r
0+
dg(v)

)
drFξ(du)

= (c0−Eξ
)
g(0) +

∫∞
0+

(
c0
(
1−Fξ(u)

)−
∫∞
u

(
1−Fξ(v)

)
dv
)
dg(u).

(2.7)

The integrand on the right-hand side of (2.7) is left-continuous. So, if (2.7) holds for any
nonnegative nondecreasing g with Eg(ξ)≤∞, then obviously this integrand is nonnega-
tive, that is,

c0
(
1−Fξ(u)

)−
∫∞
u

(
1−Fξ(v)

)
dv ≥ 0 for each u≥ 0. (2.8)

Inequality (2.8), by Lemma 2.1, is equivalent to λ(u)≥ c−1
0 , u≥ 0.

(2) Let λ(x)≥ c−1
0 , x ≥ 0. From λ(0)= (Eξ)−1, we obtain Eξ ≤ c0. From the latter and

relation (2.1), we deduce that the right-hand side of (2.7) is nonnegative for any nonneg-
ative nondecreasing g, and for such g with Eg(ξ) <∞, it equals c0Eg(ξ)−EG(ξ). Thus we
arrive at the Garsia inequality. �

Remark 2.4. If we consider Fξ(x) = P{ξ ≤ x}, that is, right-continuous Fξ(x), and ξ has
no atom at zero, the proof of Theorem 2.2 will be the same. But if ξ has an atom at zero
and Fξ(x) is right-continuous, then we must consider λ(x) with some additional term,
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namely,

λ(x) := (1−Fξ(x) +P{ξ = 0}I{x = 0})(
∫∞
x

(
1−Fξ(u)

)
du
)−1

= (E(ξ − x | ξ ≥ x)
)−1

.

(2.9)

To avoid these technical difficulties, we therefore consider left-continuous functions.

Theorem 2.5. Let ξ be the same as in Theorem 2.2. The following assertions are equivalent:

(iv) the r.v. ξ satisfies the Cramer conditions;
(v) limx→∞(1/x)

∫ x
0 λ(u)du > 0, where λ is defined by (2.1).

Proof. It is well known (see [3]) that the Cramer conditions hold if and only if there exists
an r > 0 such that Eexp{rξ} <∞. In turn, the last inequality is equivalent to

1−Fξ(x)≤ cexp{−rx}, x ≥ 0, (2.10)

for some 0 < r <∞ and 0 < c <∞, since Eexp{rξ} ≥ ∫∞x exp{ru}dFξ(u) ≥ exp{rx}(1−
Fξ(x)), and Eexp{rξ} = 1 + r

∫∞
0 (1−Fξ(u))exp{ru}du, r ∈ (0,r).

By the same arguments, we obtain that (2.10) is equivalent to

∫∞
x

(
1−Fξ(u)

)
du≤ cexp{−rx}, x ≥ 0, (2.11)

for some 0 < r <∞ and 0 < c <∞. From relation (2.3), we deduce that the Cramer condi-
tions are equivalent to the inequality

∫ x
0
λ(u)du≥ rx+ c1, x ≥ 0, (2.12)

for some r > 0, c1 ∈R, that is, equivalent to (v). �

As mentioned above, the Cramer conditions follow from the Garsia inequality. The
next example demonstrates that the converse is not true.

Example 2.6. There exists an integrable nonnegative r.v. ξ satisfying the Cramer condi-
tions but not the Garsia inequality. The idea is the following. If we choose a nonneg-
ative left-continuous function λ(x) such that lnλ(x)− ∫ x0 λ(u)du decreases to −∞, and∫ x

0 λ(u)du ≥ rx + c1, x ≥ 0, for some r > 0, c1 ∈ R, but limx→∞ λ(x) = 0, then the right-
hand side of (2.2) will be a tail of some d.f. Fξ(x). This d.f. will satisfy the Cramer con-
ditions by Theorem 2.5, but the Garsia inequality will not hold by assumption (ii) of
Theorem 2.2.

Three conditions mentioned above will be satisfied if the function λ is a solution of
the boundary value problem

−λ′(x) + λ2(x)= λ(x)ϕ(x), x ≥ 0, λ(0)= 1
3

, (2.13)

where ϕ(x)=∑n≥0 I[2n,2n+1)(x).
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The corresponding d.f. Fξ(x) can be calculated from (2.2) as

1−Fξ(x)= Eξ · λ(0) · exp
{∫ x

0+

(
d lnλ(y)− λ(y)dy

)}

= 1
2
Eξ exp

{
−
∫ x

0
ϕ(y)dy

}
∼ cexp

{
− 1

2
x
}

,
(2.14)

whence the Cramer conditions hold.
The solution of (2.13) on the intervals [2n,2n+ 1) and [2n+ 1,2n+ 2) equals

λ(x)=

λ(2n)e2n

(
λ(2n)e2n +

(
1− λ(2n)

)
ex
)−1

, x ∈ [2n,2n+ 1),

λ(2n+ 1)
(
(2n+ 1) · λ(2n+ 1) + 1− λ(2n+ 1)x

)−1
, x ∈ [2n+ 1,2n+ 2),

(2.15)

supposing that λ∈ C(R+). Evidently, λ(x) increases on [2n+ 1,2n+ 2), and decreases on
[2n,2n+ 1), n≥ 0. The values of λ(2n+ 1) at the points xn = 2n+ 1 of a local minimum
can be estimated from the relations λ(1)= (1 + 2e)−1 < 1/6; λ(2n+ 1)= (1 + ((λ(2n))−1−
1)e)−1, λ(2n) = λ(2n− 1)(1− λ(2n− 1))−1, whence λ(2n + 1) = (1 + ((λ(2n− 1))−1 −
2)e)−1. Suppose that λ(2n− 1) < 1/(n+ 5) (it is true for n= 1), then λ(2n+ 1) < (1 + (n+
3)e)−1 < 1/(n+ 6). It means that λ(2n+ 1)→ 0, n→∞, and limx→∞ λ(x)≤ limn→∞ λ(2n+
1)= 0, so the Garsia inequality does not hold.

Theorem 2.7. Let nonnegative unbounded r.v. ξ satisfy the Cramer conditions. Then
limx→∞ λ(x) > 0.

Proof. Choose an r > 0 such that

Eexp{rξ} <∞. (2.16)

Then from (2.2) and Raikov theorem (see [3]), for any 0 < r < r, (1−Fξ(x))exp{rx} → 0,
x→∞, and

Eexp
{
rξ
}= r

∫∞
0

exp
{
rx
}(

1−Fξ(x)
)
dx

= r
∫∞

0
exp

{
rx−

∫ x
0
λ(u)du

}
λ(x)dx ·Eξ.

(2.17)

Suppose that λ(x)→ 0, x→∞. Choose any ε ∈ (0,r). Then there exists x0 > 0 such that
λ(x) < ε, for x > x0, whence

∫∞
0

exp
{
rx−

∫ x
0
λ(u)du

}
λ(x)dx

≥ exp
{∫ x0

0

(
r− λ(u)

)
du
}
·
∫∞

0
exp

{
(r− ε)(x− x0

)}
λ(x)dx

> exp
{∫ x0

0

(
r− λ(u)

)
du
}
·
∫∞

0
λ(x)dx =∞.

(2.18)
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Relations (2.17) and (2.18) contradict (2.16). So our assumption is false, whence the
proof follows. �

The next example demonstrates that the inequality limx→∞ λ(x) > 0 is not equivalent
to the Cramer conditions.

Example 2.8. Denote

xn := (n− 1)n(2n− 1)
6

+
(n− 1)n

2
,

yn := (n+ 1)n(2n+ 1)
6

+
n(n− 1)

2
, n≥ 1.

(2.19)

Let λ(0)= 1,

λ(x)=




1√
n

, xn < x ≤ yn

1√
n

+
1
n

(
x− yn

)
, yn ≤ x ≤ xn+1, n≥ 1.

(2.20)

Then limx→∞ λ(x)≥ limn→∞ λ(xn+1)= limn→∞(1 + 1/
√
n)= 1.

Denote ψ(x) := λ′(x)− λ2(x). Then ψ(x)≤ 1/n− (1/
√

(n))2 = 0 and λ has only nega-
tive jumps. Therefore, λ(x)exp{−∫ x0 λ(u)du} is nonincreasing. It means that 1−Fξ(x) is
considered as the left-hand side of (2.1), with Eξ = 1 being nonincreasing. Moreover, for
xn < x < xn+1, n≥ 2,

1√
n

exp

{
−

n∑
k=1

(
1√
k
k2 +

k

2
+
√
k
)}

≤ 1−Fξ(x)≤
(

1√
n

+ 1
)

exp

{
−

n−1∑
k=1

(
1√
k
k2 +

k

2
+
√
k
)}

.

(2.21)

From the right-hand side of (2.21), 1−Fξ(x)≤ exp{−(2/5)(n− 1)5/2}, and from the left-
hand side of (2.21),

1−Fξ(x) >
1√
n

exp
{
− 6

5
(n+ 1)5/2

}
, xn < x ≤ xn+1. (2.22)

Evidently, xn > (n− 1)3/3, xn+1 < (5/6)(n+ 1)3. So, for sufficiently large x,

1−Fξ(x)≤ exp


−2

5

((
6
5
x
)1/3

− 2

)5/2

∼ exp

{−αx5/6} (2.23)
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for some constant α > 0. Therefore ξ is integrable r.v. On the other hand,

1−Fξ(x) >
(
(3x)1/3 + 1

)−1/2
exp

{
− 6

5

(
(3x)1/3 + 2

)5/2
}
∼ βx−1/6 exp

{− γx5/6} (2.24)

for some constants β,γ > 0. It means that Eexp{rξ} = ∞ for any r > 0; so ξ does not
satisfy the Cramer conditions.

3. What random variable generates a bounded potential?

Definition 3.1. A r.v. ξ is said to generate a bounded potential if there exists a filtra-
tion {Gt, t ≥ 0} on (Ω,�,P) that satisfies the standard conditions, and a bounded right-
continuous Gt-adapted potential Xt that admits the expansion (compare with (1.2))

Xt = E
(
A∞ −At|Gt

)
, (3.1)

with a Gt-adapted nondecreasing integrable process At such that A∞ = ξ.

Definition 3.1 means, in particular, that ξ is G∞-adapted.

Definition 3.2. A r.v. ξ is said to generate a nontrivial bounded potential if the potential
Xt in expansion (3.1) can be chosen in such a way that P{Xt > 0} > 0 for any t > 0.

Definition 3.3. A r.v. ξ is said to predictably generate a bounded potential if the process
At in expansion (3.1) can be chosen to be Gt-predictable.

Note that for a given Xt, the predictable process in (3.1) is unique.
Denote G0 the family of all P zero sets of �.

Lemma 3.4. Any integrable r.v. ξ generates a bounded potential.

Proof. Choose any t0 > 0 and set At = ξI{t ≥ t0}, Gt =G0∨Ω for t < t0, Gt =� for t ≥ t0.
Then A∞ = ξ, E(A∞ −At|Gt) = 0 for t ≥ t0 and E(A∞ −At|Gt) = Eξ for t < t0. So, Xt =
EξI{t < t0} is a bounded potential. (Note that Xt is trivial in terms of Definition 3.2.)

�

Theorem 3.5. Let a r.v. ξ satisfy Cramer conditions. Then ξ generates a nontrivial bounded
potential.

Proof. According to Theorem 2.7 we can choose some c > 0 and a sequence π = {tn, n≥
0}, t0 = 0, tn ↑ ∞ such that

∫∞
tn (1−Fξ(u))du(1−Fξ(tn))−1 ≤ c.

Define

Gt :=

G0, 0≤ t < t1,

σ
{
ξ ∧ tk, 1≤ k ≤ n}, tn ≤ t < tn+1,

At :=

0, 0≤ t < t1,

ξ ∧ tn, tn ≤ t < tn+1,

(3.2)

where n ≥ 1. Then Gt satisfies the standard conditions, At is a Gt-adapted nonnega-
tive nondecreasing right-continuous process, and A∞ = ξ. Now, let Xt := E(A∞ −At|Gt).
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Since for any k < m and α < tk, the event {ξ ∧ tk < α} = {ξ < α∧ tk} = {ξ ∧ tm < α∧ tk},
we have that Gt = σ{ξ ∧ tn} if tn ≤ t < tn+1. Therefore, for tn ≤ t < tn+1,

Xt = E
(
ξ − ξ ∧ tn

∣∣ξ ∧ tn)
=
∫∞
tn

(
u− tn

)
dFξ(u)

(
1−Fξ(u)

)−1
I
{
ξ > tn

}

=
∫∞
tn

(
1−Fξ(u)

)
du
(
1−Fξ(u)

)−1
I
{
ξ > tn

}≤ cI{ξ > tn}≤ c.
(3.3)

We conclude that the potential Xt is bounded and P{Xt > 0} > P{ξ > tn} > 0, tn ≤ t < tn+1;
so Xt is nontrivial. �

Theorem 3.6. Let a r.v. ξ satisfy the Garsia inequality. Then ξ predictably generates a non-
trivial potential.

Proof. LetGt = σ{ξ ∧ s, s≤ t}. Analogously to the proof of Theorem 3.5, we can establish
that Gt = σ{ξ ∧ t}. Also, let At := ξ ∧ t, A∞ = ξ. According to Theorem 2.2 and represen-
tation (2.1),

Xt := E(A∞ −At|Gt
)= E(ξ − ξ ∧ t|ξ ∧ t)I{ξ > t} = (λ(t)

)−1
I{ξ > t} ≤ c0. (3.4)

Evidently, P{Xt > 0} > 0, t > 0, and At is continuous. Therefore, it is a predictable process
and the proof follows. �

Remark 3.7. The σ-fields Gt participating in the proof of Theorem 3.6 were considered
by Dellacherie [1], where the dual predictable projection of the process A = I[ξ,∞[ with
respect to {Gt, t ≥ 0} was constructed.

The next example demonstrates that the same r.v. ξ can generate rather different po-
tentials with respect to the same filtration {Gt, t ≥ 0}.
Example 3.8. Let {Pt, t ≥ 0} be a homogeneous Poisson process with the intensity λ0,
θ(x) = exp{−λ1x}, λ0,λ1 > 0. Define ξ := ∫∞0 θ(u)Pudu = λ−1

1

∫∞
0 θ(u)dPu. Then Eξ =

λ0
∫∞

0 uθ(u)du= λ0λ
−2
1 .

Also, let Gt = σ{Ps, 0≤ s≤ t}. If we put A0
t := ∫ t0 θ(u)Pudu, A∞ := ξ, then the process

At is predictable, and the potential X0
t := E(A0∞ −A0

t |Gt) = Pt
∫∞
t θ(u)du = λ−1

1 θ(t)Pt is
nontrivial and unbounded for any t > 0. WithA1

t := λ−1
1

∫ t
0 θ(u)dPu,A1∞ = ξ,A1

t is not pre-
dictable, and the potential X1

t := E(A1∞ −A1
t |Gt) = λ0λ

−1
1

∫∞
t θ(u)du = λ0λ

−1
1 θ(t) is non-

trivial and bounded.

4. Some additional results

The next theorem states that in the case when limx→∞ λ(x) > 0, an integrable r.v. ξ can be
transformed into a r.v. ψ(x) that predictably generates a bounded potential. Note that in
this case we can choose the sequence π = {tn, n≥ 0}, t0 = 0, tn ↑ ∞ such that

λ
(
tn
)≥ c > 0, δπ := inf

n≥1

(
tn− tn−1

)
> 0. (4.1)



N. Kartashov and Yu. Mishura 105

Theorem 4.1. Let limx→∞ λ(x) > 0, let π{tn, n ≥ 0} be chosen as in (4.1). Denote by ψ :
R+ →R+ an increasing piece-wise linear function such that ψ(tn)= n.

Then ψ(ξ) predictably generates a nontrivial bounded potential.

Proof. The d.f. of the r.v. ψ(ξ) equals Fψ(x)= P{ψ(ξ)≤ x} = P{ξ ≤ ψ−1(x)}. Therefore,

∫∞
n

(
1−Fψ(u)

)
du · (1−Fψ(n)

)−1

=
∫∞
n

(
1−Fξ

(
ψ−1(u)

))
du · (1−Fξ(tn))−1

=
∫∞
tn

(
1−Fξ(u)

)
ψ′(u)du · (1−Fξ(tn))−1

.

(4.2)

Furthermore, for t ∈ (tn−1, tn),

ψ′(t)= (ψ(tn)−ψ(tn−1
))(

tn− tn−1
)−1 = (tn− tn−1

)−1 ≤ δ−1
π . (4.3)

We obtain from (4.2) and (4.3) that there exists c1 > 0 such that (λψ(n))−1 := ∫∞n (1−
Fψ(u))du(1− Fψ(n))−1 ≤ c1. Note that x(1− Fψ(x)) = x(1− Fξ(ψ−1(x))) = ψ−1(x)(1−
Fξ(ψ−1(x))) · (x(ψ−1(x))−1), and ψ−1(x)(1 − Fξ(ψ−1(x))) → 0, x → ∞, x(ψ−1(x))−1 ≤
(n+ 1)/ψ−1(n)= (n+ 1)/tn < (n+ 1)/δπn≤ c2, n < t ≤ n+ 1.

It means that
∫∞

0 udFψ(u)= ∫∞0 (1−Fψ(u))du <∞, that is, ψ is integrable.
Now, let Gt = σ{ψ(ξ)∧n}, n≤ t < n+ 1, and

At :=

0, 0≤ t < 2,

ψ(ξ)∧ (n− 1), n≤ t < n+ 1.
(4.4)

Then At is Gt-predictable, A∞ = ψ(ξ), and for any t > 0,

Xt := E(A∞ −At|Gt
)

= E(ψ(ξ)−ψ(ξ)∧n|ψ(ξ)∧n)+
(
ψ(ξ)∧n−ψ(ξ)∧ (n− 1)

)≤ c1 + 1.
(4.5)

�

The next result demonstrates that an integrable r.v. ξ with limx→∞ λ(x) > 0 generates
an “almost bounded” potential.

Theorem 4.2. Let limx→∞ λ(x) > 0. Then for any ε > 0, the r.v. ξ predictably generates a
nontrivial potential that is bounded on the set R+�B where m(B) < ε (m(·) is a Lebesgue
measure on R).

Proof. Consider Gt := σ{ξ ∧ tn}, tn − ε/2n ≤ t < tn+1 − ε/2n+1, and At being the same
as in the proof of Theorem 3.5. Then At is Gt-predictable. Furthermore, Xt := E(A∞ −
At|Gt)= E(ξ − ξ ∧ tn|ξ ∧ tn)≤ c for tn ≤ t < tn+1− ε/2n+1. �
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Remark 4.3. Let the r.v. ξ be such that 0 = limx→∞ λ(x) < limx→∞ λ(x). Consider Gt and
At from the proof of Theorem 3.5 and construct the compensator (dual predictable pro-
jection) Aπt of At. Evidently,

Aπt =
n∑
k=1

E
(
ξ ∧ tk − ξ ∧ tk−1

∣∣ξ ∧ tk−1
)

=
n∑
k=1

∫ tn
tn−1

(
x− tn−1

)
dFξ(x)

(
1−Fξ

(
tn−1

))−1
I{ξ > tn−1}, tn ≤ t < tn+1,

Aπ∞ =
n∑
k=1

∫ tn
tn−1

(
x− tn−1

)
dFξ(x)

(
1−Fξ

(
tn−1

))−1
I
{
ξ > tn−1

}
.

(4.6)

Since At −Aπt is a Gt-martingale, we obtain that

Xt := E(A∞ −At|Gt
)= E(Aπ∞ −Aπt |Gt

)≤ c. (4.7)

The last relation means that Aπ∞ satisfies the Garsia inequality.
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