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We consider the generalized Burgers equation with and without a time delay when the
boundary conditions are periodic with period 2π. For the generalized Burgers equa-
tion without a time delay, that is, ut = νuxx − uux + u+ h(x), 0 < x < 2π, t > 0, u(0, t) =
u(2π, t), u(x,0)= u0(x), a Lyapunov function method is used to show boundedness and
uniqueness of a steady state solution and global stability of the equation. As for the gen-
eralized time-delayed Burgers equation, that is, ut(x, t)= νuxx(x, t)−u(x, t− τ)ux(x, t) +
u(x, t), 0 < x < 2π, t > 0, u(0, t)= u(2π, t), t > 0, u(x,s)= u0(x,s), 0 < x < 2π, −τ ≤ s≤ 0,
we show that the equation is exponentially stable under small delays. Using a pseudospec-
tral method, we present some numerical results illustrating and reinforcing the analytical
results.

1. Introduction

Recently, the generalized Burgers equation

ut = νuxx −uux +mu+h(x), ν,m∈R, (1.1)

has gotten a lot of attention and interest from both the engineering and the mathematical
communities to model several problems including but not limited to the control of tur-
bulent flow [2, 9], the excitation of long water waves by a moving pressure distribution
[1], the dispersal of a population [32], and the behavior of the flame front interface un-
der physical assumption [29]. Rakib and Sivashinsky [29] derived a nonlinear evolution
equation as a model for the flame front interface:

yt − 1
2
y2
x = νyxx + y−

∫ 1

0
ydx, 0 < x < 1, t > 0, (1.2)

yx(0, t)= 0, yx(1, t)= 0, y(x,0)= y0(x), (1.3)
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where ν > 0 is a small positive constant. Later on, Sun and Ward [33] studied (1.2) by
reformulating it in terms of the slope u(x, t)=−yx(x, t), which yields

ut = νuxx −uux +u, 0 < x < 1, t > 0, (1.4)

u(0, t)= u(1, t)= 0, u(x,0)= u0(x). (1.5)

They showed that for ν� 1 with a certain class of initial conditions, the solution will
have a metastable behavior. Generally, a solution is called metastable if the change of its
motion can be noticed only on very long-time intervals [13].

In this paper, we study the behavior of the solution of (1.1) on [0,2π], with periodic
boundary conditions, and different values of h. It should be noted that the case where
m= 1 and h= 0 in (1.1) reduces to (1.4). Also, we investigate the dynamical behavior of
the generalized Burgers equation if a time delay τ is introduced in the convective term.
That is,

ut(x, t)= νuxx(x, t)−u(x, t− τ)ux(x, t) +u(x, t), 0 < x < 2π, t > 0, (1.6)

u(0, t)= u(2π, t), t > 0, (1.7)

u(x,s)= u0(x,s), 0 < x < 2π, −τ ≤ s≤ 0. (1.8)

The effect of time delays in PDEs has been studied by different investigators to see wheth-
er or not such delays can destabilize the system under study [10, 11, 12, 14, 16, 17, 25, 26,
27, 28]. Oliva [28] is one of the investigators who considered dissipative scalar reaction-
diffusion equations with boundary conditions which include small delays. He showed
the global existence and uniqueness of solution in a convenient fractional power space.
Also, Datko [10] and Datko et al. [11, 12] studied certain hyperbolic partial differen-
tial equations with Neumann boundary conditions that include time delays. These equa-
tions are the Euler beam equation and the two-dimensional wave equation on a square.
They showed that these equations could be destabilized when small delays are introduced
into their boundary feedback controls. However, Friesecke [17] considered Hutchinson’s
equation which arises in population dynamics as a model for the evolution of a popula-
tion with density distribution u. He studied equations of the following form:

ut −µ∆u= f
(
u(t),u(t− τ)

)
, (1.9)

and showed that all nonnegative solutions of the initial boundary value problem stay
bounded as t→∞ in one, two, or more dimensions. Burgers equation with time delays
was also investigated by Liu [25] who considered the following form of Burgers equation:

ut(x, t)= νuxx(x, t)−u(x, t− τ)ux(x, t), 0 < x < 1, t > 0, (1.10)

with Dirichlet boundary condition. He showed that the delayed Burgers equation is ex-
ponentially stable if the delay parameter is sufficiently small.

This paper is organized as follows. Section 2 analyzes the behavior of the solution
of (1.1) without introducing a time delay. Section 3 discusses the behavior of the time-
delayed Burgers equation (1.6). Section 4 presents some numerical results for both stud-
ies that support the analytical results, and we conclude in Section 5.
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2. The generalized Burgers equation without a time delay

The forced Burgers equation without a time delay has been the subject of numerous stud-
ies [1, 4, 5, 6, 7, 8, 9, 15, 16, 19, 20, 21, 22, 30, 31]. Ablowitz and De Lillo [1] considered
Burgers equation

ut =
(
ux +u2)

x +G(x, t), (2.1)

where u= u(x, t) and G(x, t) is a given function. They linearized the initial value problem
on the line for an integrable bounded function of time F(t) and discussed the asymptotic
behavior of the solution for particular choices of F(t). Ito and Yan [20] studied the forced
viscous scalar conservation law on (0,1) with the nonlinear flux feedback at the boundary

ut = νuxx +uux +F(x, t), x ∈ (0,1), t > 0. (2.2)

They showed that under an appropriate growth condition on the flux function and non-
linear dissipation at the boundary, there exists an absorbing set that absorbs the whole
space L∞(0,1), and they proved the existence of a compact global attractor in the L∞-
topology.

Smaoui [31] studied the long-time dynamics of a system of reaction-diffusion equa-
tions that arise from the viscous forced Burgers equation where the force is sinusoidal,

ut = νuxx −uux +F(x) (2.3)

with periodic boundary conditions. He used a nonlinear transformation introduced by
Kwak to embed the scalar Burgers equation into a system of reaction-diffusion equations.
He showed analytically as well as numerically that the two systems have a similar long-
time dynamical behavior for large viscosity ν.

2.1. h(x) = 0. In the following, we show that the generalized Burgers equation when
h(x)= 0,

ut = νuxx −uux +u, (2.4)

and with periodic boundary condition, is globally stable. Let

V(t)= 1
2

∫ 2π

0
u2dx, (2.5)

then

dV

dt
= d

dt

(
1
2

∫ 2π

0
u2dx

)
=
∫ 2π

0
uut dx =

∫ 2π

0
u
(
νuxx −uux +u

)
dx. (2.6)

Using integration by parts and the periodicity of u, we get

d

dt

(
1
2

∫ 2π

0
u2dx

)
=−ν

∫ 2π

0
u2
x dx+

∫ 2π

0
u2dx. (2.7)
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Applying the Poincaré inequality and the zero-mean condition on u on the above equa-
tion, we obtain

d

dt

(
1
2

∫ 2π

0
u2dx

)
≤−

(
ν

4π2
− 1

)∫ 2π

0
u2dx ≤ 0, ∀ν≥ 4π2. (2.8)

By Lyapunov theory, limt→∞u(x, t)= 0, which implies that (2.4) is globally asymptotically
stable.

Global stability can also be shown by using control theory. Let us be the steady state
solution of u, then

lim
t→∞u(x, t)= us, ∀x ∈ [0,2π]. (2.9)

If one defines the regulation error by

w(x, t)= u(x, t)−us, (2.10)

then (2.4) becomes

wt = νwxx −
(
w+us

)
wx +w+us = νwxx −wwx −uswx +w+us, (2.11)

with periodic boundary control w(0, t)= f0, and w(2π, t)= f1, where f0 and f1 are scalar
control inputs. Then by taking the control Lyapunov function

V = 1
2

∫ 2π

0
w2(x, t)dx (2.12)

and taking the time derivative of V , one can then find the control f0 and f1 that can
enhance the negativity of (d/dt)(V) which implies that w(x, t)= 0 or u(x, t)= us. Thus,
(2.4) is globally asymptotically stable in L2(0,2π). (For a complete stability analysis using
control theory, the reader is referred to [3, 9, 19, 23, 24, 26, 27].)

2.2. h(x) �= 0. In this section, we show that in the Hilbert space H =H2(0,2π) consisting
of 2π-periodic functions with zero mean, the first and second derivatives in L2(0,2π),
and inner product 〈u,v〉2 =

∫
uxxvxx dx, the generalized Burgers equation

ut = νuxx −uux +u+h(x), (2.13)

with periodic boundary condition u(0, t)= u(2π, t), has a unique steady state solution.

Proposition 2.1. Every solution to the generalized Burgers equation

ut = νuxx −uux +u+h(x) (2.14)

satisfies the inequality

‖u‖ ≤
√

2π2

ν− 8π2
‖h‖, ∀t ≥ t0, (2.15)
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with

t0 = 4π2

ν− 8π2
ln

(
ν
∥∥u0

∥∥2

2π2‖h‖2

)
, ν > 8π2. (2.16)

Proof. Similar to [32, Theorem 4.1]. �

Proposition 2.2. Let ν > 8π2 and let us be the steady state solution to the forced Burgers
equation, then us satisfies the following inequalities:

(a) ‖us‖ ≤ √16π4/ν(ν− 8π2)‖h‖,
(b) ‖usx‖ ≤ c‖h‖, where c = (4π2/(ν− 4π2)

√
ν(ν− 8π2))1/2.

Proof. Similar to [31, Lemma 3.5]. �

Theorem 2.3. Let c1 be the Sobolev constant and let c = (4π2/(ν− 4π2)
√

ν(ν− 8π2))1/2

with ν > 8π2. The generalized Burgers equation

ut = νuxx −uux +u+h (2.17)

has a unique steady state solution provided

‖h‖ <
(

ν− 4π2c1

6π2cc1

)
. (2.18)

Proof. Suppose there are two steady state solution u and υ such that

νuxx −uux +u+h(x)= 0, νυxx − υυx + υ+h(x)= 0. (2.19)

Let w = u− υ. Then,

νwxx −uwx − υxw+w = 0. (2.20)

Multiplying the above equation by w, integrating from 0 to 2π, and using the periodicity
of u and w lead to

ν

∫ 2π

0
w2
x dx+

∫ 2π

0
u
(
w2

2

)
x
dx+

∫ 2π

0
υxw

2dx−
∫ 2π

0
w2dx = 0. (2.21)

Again, using integration by parts on
∫ 2π

0 u(w2/2)x dx, we obtain

ν

∫ 2π

0
w2
x dx−

∫ 2π

0
w2
(
ux
2
− υx + 1

)
dx = 0. (2.22)

Equation (2.22) can be written as

ν
∥∥wx

∥∥2 ≤ ∥∥w2
∥∥(1

2

∥∥ux∥∥+
∥∥υx∥∥+ 1

)
. (2.23)
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Now using part (b) of Proposition 2.2, we obtain

ν
∥∥wx

∥∥2 ≤ ∥∥w2
∥∥( c

2
‖h‖+ c‖h‖+ 1

)
(2.24)

or

∥∥wx

∥∥2 ≤ ∥∥w2
∥∥( 3c

2ν
‖h‖+

1
ν

)
. (2.25)

Since

∥∥w2
∥∥
L2(0,2π) ≤ c1‖w‖2

L∞(0,2π) ≤ 2πc1‖w‖L2(0,2π)
∥∥wx

∥∥
L2(0,2π), (2.26)

it follows that

∥∥wx

∥∥2 ≤
(

3c
2ν
‖h‖+

1
ν

)(
2πc1‖w‖

∥∥wx

∥∥) (2.27)

or

∥∥wx

∥∥2 ≤
(

6π2cc1

ν
‖h‖+

4π2c1

ν

)∥∥wx

∥∥2
. (2.28)

If (
6π2cc1

ν

)
‖h‖+

4π2c1

ν
≤ 1 (2.29)

or

‖h‖ < ν− 4π2c1

6π2cc1
, (2.30)

then w =wx = 0, which implies u= υ. �

3. The generalized Burgers equation with a time delay

The effect of time delays in certain partial differential equations has been the subject of
recent studies [10, 11, 12, 14, 16, 17, 25, 26, 27, 28]. The question that is frequently asked
is: can such delays destabilize a system which is stable in the absence of delays? Oliva
[28] considered dissipative scalar reaction-diffusion equations that include the ones of
the form

ut −∆u= f
(
u(t)

)
(3.1)

subjected to boundary conditions that include small delays

∂u

∂na
= g

(
u(t),u(t− τ)

)
. (3.2)

He proved the global existence and uniqueness of solutions in a convenient fractional
power space. Furthermore, he showed that, for τ sufficiently small, all bounded solutions
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are asymptotic to the set of equilibria as t tends to infinity. On the other hand, Liu [25]
considered the time-delayed Burgers equation

ut(x, t)= νuxx(x, t)−u(x, t− τ)ux(x, t), 0 < x < 1, t > 0, (3.3)

with Dirichlet boundary condition. He showed that the delayed Burgers equation is ex-
ponentially stable if the delay parameter is sufficiently small.

In this section, the generalized Burgers equation with time delay is studied:

ut(x, t)= νuxx(x, t)−u(x, t− τ)ux(x, t) +u(x, t), 0 < x < 2π, t > 0, (3.4)

u(0, t)= u(2π, t), t > 0, (3.5)

u(x,s)= u0(x,s), 0 < x < 2π, −τ ≤ s≤ 0. (3.6)

First, we show that the problem given by (3.4), (3.5), and (3.6) is well posed. We define
the linear operator A by

A : H2(0,2π)−→ L2(0,2π),

Aw = νwxx +w,
(3.7)

where H2(0,2π) consists of 2π-periodic functions with zero mean, two derivatives in
L2(0,2π), and inner product 〈u,v〉2 =

∫
uxxvxx dx. It is well known that the operator A

generates an analytic semigroup eAt in L2(0,2π) (see Temam [34]). Also, we define the
nonlinear operator

B : C
(
[−τ,0], H1(0,2π)

)−→ L2(0,2π),

B(ϕ)=−ϕ(−τ)ϕx(0),
(3.8)

where B is locally Lipschitz. If we denote

ut(s)= u(t+ s), −τ ≤ s≤ 0, (3.9)

then the generalized Burgers equation (3.4) can be written in terms of the above operators
as

ut = Au+B
(
ut(s)

)
. (3.10)

Using Gronwall’s inequality, we obtain

u(t)= eAtu0(0) +
∫ t

0
eA(t−s)B

(
us
)
ds, t > 0,

u(t)= u0(t), −τ ≤ t ≤ 0.
(3.11)
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Lemma 3.1. The generalized Burgers equation

ut(x, t)= νuxx(x, t)−u(x, t− τ)ux(x, t) +u(x, t), 0 < x < 2π, t > 0, (3.12)

u(0, t)= u(2π, t), t > 0, (3.13)

u(x,s)= u0, 0 < x < 2π, −τ ≤ s≤ 0, (3.14)

with u0 = u0(x,s)∈ C([−τ,0],H1(0,2π)), has a unique global solution u on [−τ,∞) with

u∈ C
(
[−τ,∞),H1(0,2π)

)
. (3.15)

Proof. See [28, Theorem 1]. �

In the following, we show that (3.12) does not blow up for finite time. Let nτ ≤ t ≤
(n+ 1)τ (n = 0,1, . . .). First, we prove that for n = 0 and for any τ ≥ 0, (3.12) does not
blow up for finite time. Then, we use continuation to show that this is true for all n. For
n= 0 (i.e., 0≤ t ≤ τ),

d

dt

∫ 2π

0
u2
x(t)dx = 2

∫ 2π

0
ux(t)uxt(t)dx. (3.16)

Using integration by parts on the right-hand side of (3.16) and making use of the peri-
odicity of u, we get

d

dt

∫ 2π

0
u2
x(t)dx =−2

∫ 2π

0
uxx(t)ut(t)dx

=−2ν

∫ 2π

0
u2
xx(t)dx+ 2

∫ 2π

0
u(t− τ)ux(t)uxx(t)dx− 2

∫ 2π

0
uxx(t)u(t)dx.

(3.17)

Now using the fact that |u(t− τ)| ≤ ‖u0‖C([−τ,0],H1(0,2π)), for 0≤ t ≤ τ, and integrating by
parts the last term of the right-hand side, then the above equation becomes

d

dt

∫ 2π

0
u2
x(t)dx ≤−2ν

∫ 2π

0
u2
xx(t)dx

+ 2
∥∥u0

∥∥
C([−τ,0],H1(0,2π))

∫ 2π

0

∣∣ux(t)uxx(t)
∣∣dx+ 2

∫ 2π

0
u2
x(t)dx

(3.18)

or

d

dt

∫ 2π

0
u2
x(t)dx− 2

∫ 2π

0
u2
x(t)dx

≤−2ν

∫ 2π

0
u2
xx(t)dx

+
∥∥u0

∥∥
C([−τ,0],H1(0,2π))

∫ 2π

0

√√√ 2ν∥∥u0
∥∥
C([−τ,0],H1(0,2π))

uxx(t)

√∥∥u0
∥∥
C([−τ,0],H1(0,2π))

2ν
ux(t)dx.

(3.19)
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Next, using Cauchy-Schwarz and Young’s inequalities on the above equation, we get

d

dt

∫ 2π

0
u2
x(t)dx− 2

∫ 2π

0
u2
x(t)dx

≤−2ν

∫ 2π

0
u2
xx dx+ 2

∥∥u0
∥∥
C([−τ,0],H1(0,2π))

[∫ 2π

0

2ν∥∥u0
∥∥
C([−τ,0],H1(0,2π))

u2
xx(t)
2

dx

+
∫ 2π

0

∥∥u0
∥∥
C([−τ,0],H1(0,2π))

2ν

u2
x(t)
2

dx

]

≤ 1
2ν

∥∥u0
∥∥2
C([−τ,0],H1(0,2π))

∫ 2π

0
u2
x(t)dx

≤ 1
ν

∥∥u0
∥∥2
C([−τ,0],H1(0,2π))

∫ 2π

0
u2
x(t)dx,

(3.20)

which implies that

∫ 2π

0
u2
x(t)dx ≤ exp

((
1
ν

∥∥u0
∥∥2
C([−τ,0],H1(0,2π)) + 2

)
t
)∫ 2π

0
u2
x(0)dx. (3.21)

The same result can be shown for nτ ≤ t ≤ (n+ 1)τ (n = 1,2, . . .) by applying the same
procedure. Thus, for any τ > 0, the solution will not blow up in a finite time.

Before stating the main result about the exponential stability, the following notations
are introduced. For a given initial condition u0 = u0(x,s)∈ C([−τ,0],H1(0,2π)), let

K = K
(
u0
)

= sup
−τ≤s≤0

∥∥u0x(s)
∥∥+

√
4
[∥∥u0(0)

∥∥2
+
∥∥u0x(0)

∥∥2
]

exp
[

8π4

ν

(∥∥u0x

∥∥2
L2
τ

+
∥∥u0(0)

∥∥2
)]

,

σ = σ
(
ν,u0

)
= sup

{
δ > 0 :

[
ω

ω− 2

∥∥u0(0)
∥∥2

+
∥∥u0x(0)

∥∥2
]

exp
[

8π4

ν
eωτ

(∥∥u0x

∥∥2
L2
τ

+
1
ω

∥∥u0(0)
∥∥2
)]

≤ K2

4
for 0≤ τ ≤ δ

}
,

(3.22)

where ‖ · ‖ denotes the L2-norm and ‖u0x‖2
L2
τ
= ∫ 0

−τ
∫ 2π

0 u2
0x(s)dxds, µ= ν− 4π2, with ν >

4π2,

τ0 = τ0
(
µ,u0

)=min

{
σ ,

(
−1 +

√
5

32π4K2

)
µ

}
, (3.23)

ω = ω(µ,τ,K)= µ−
√

16π4τ
(
µK2 + 16π4τK4

)
4π2

> 0, for 0≤ τ ≤ τ0, µ > 0. (3.24)

In (3.24), ω > 0 because

µ−
√

16π4τ
(
µK2 + 16π4τK4

)
> 0, (3.25)
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which is true only if

−
(

1 +
√

5
32π4K2

)
µ < τ <

(
−1 +

√
5

32π4K2

)
µ. (3.26)

Lemma 3.2. If ‖ux(t)‖ ≤ K , for all −τ ≤ t< T0 with T0 = sup{δ : ‖ux(t)‖ ≤ K on 0≤ t ≤
δ}, then

∫ t

t−τ

∫ 2π

0
u2
s (s)dxds≤ µK2 + 16π4τK4, ∀0≤ t ≤ T0. (3.27)

Proof. Since

ν
d

dt

∫ 2π

0
u2
x(t)dx = 2ν

∫ 2π

0
ux(t)uxt(t)dx, (3.28)

then integrating by parts and using the periodicity of u, we get

ν
d

dt

∫ 2π

0
u2
x(t)dx =−2ν

∫ 2π

0
uxx(t)ut(t)dx

=−2
∫ 2π

0

[
ut(t) +u(t− τ)ux(t)−u(t)

]
ut(t)dx

=−2
∫ 2π

0
u2
t (t)dx− 2

∫ 2π

0
u(t− τ)ux(t)ut(t)dx+

d

dt

∫ 2π

0
u2(x, t)dx.

(3.29)

Using the Poincaré inequality and the zero-mean condition on u, we get

ν
d

dt

∫ 2π

0
u2
x(t)dx ≤−2

∫ 2π

0
u2
t (t)dx− 2

∫ 2π

0
u(t− τ)ux(t)ut(t)dx

+
d

dt

(
4π2

∫ 2π

0
u2
x(x, t)dx

)
.

(3.30)

Integrating (3.30) from t− τ to t, we get

(
ν− 4π2)∫ t

t−τ
d

(∫ 2π

0
u2
x(t)dx

)

≤−2
∫ t

t−τ

∫ 2π

0
u2
s (s)dxds− 2

∫ t

t−τ

∫ 2π

0
u(s− τ)ux(s)us(s)dxds.

(3.31)

The above equation can be written as

µ
∫ 2π

0
u2
x(t)dx−µ

∫ 2π

0
u2
x(t− τ)dx

≤−2
∫ t

t−τ

∫ 2π

0
u2
s (s)dxds− 2

∫ t

t−τ

∫ 2π

0
u(s− τ)ux(s)us(s)dxds.

(3.32)
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From Holder’s inequality, we have |u(s− τ)| ≤ (2π)2‖ux(s− τ)‖ ≤ 4π2K when 0 ≤ x ≤
2π and −τ ≤ s < T0. Then, for 0≤ t ≤ T0,

µ
∫ 2π

0
u2
x(t)dx+ 2

∫ t

t−τ

∫ 2π

0
u2
s (s)dxds≤ µK2 + 8π2K

∫ t

t−τ

∫ 2π

0
ux(s)us(s)dxds. (3.33)

Using the Cauchy-Schwarz inequality on (3.33), we get

µ
∫ 2π

0
u2
x(t)dx+ 2

∫ t

t−τ

∫ 2π

0
u2
s (s)dxds

≤ µK2 + 2


((4π2K

)2
∫ t

t−τ

∫ 2π

0
u2
x(s)dxds

)1/2(∫ t

t−τ

∫ 2π

0
u2
s (s)dxds

)1/2

 .

(3.34)

Now using Young’s inequality on the above equation, we get

µ
∫ 2π

0
u2
x(t)dx+ 2

∫ t

t−τ

∫ 2π

0
u2
s (s)dxds

≤ µK2 + 2

[(
4π2K

)2
∫ t

t−τ

∫ 2π

0

u2
x(s)
2

dxds+
∫ t

t−τ

∫ 2π

0

u2
s (s)
2

dxds

]

≤ µK2 + 16π4τK4 +
∫ t

t−τ

∫ 2π

0
u2
s (s)dxds,

(3.35)

which implies that

∫ t

t−τ

∫ 2π

0
u2
s (s)dxds≤ µK2 + 16π4τK4−µ

∫ 2π

0
u2
x(t)dx (3.36)

or

∫ t

t−τ

∫ 2π

0
u2
s (s)dxds≤ µK2 + 16π4τK4, ∀0≤ t ≤ T0. (3.37)

�

Lemma 3.3. If ‖ux(t)‖ ≤ K , for all −τ ≤ t < T0 and T0 = sup{δ : ‖ux(t)‖ ≤ K on 0 ≤ t ≤
δ}, then

∫ T0

0
eωt
∫ 2π

0
u2
x(t)dxdt ≤ 1

ω

∫ 2π

0
u2

0(x,0)dx, (3.38)

where ω is defined as in (3.24).

Proof.

d

dt

∫ 2π

0
u2(t)dx = 2

∫ 2π

0
u(t)

[
νuxx(t)−u(t− τ)ux(t) +u(t)

]
dx (3.39)
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or

d

dt

∫ 2π

0
u2(t)dx = 2ν

∫ 2π

0
u(t)uxx(t)dx− 2

∫ 2π

0
u(t)u(t− τ)ux(t)dx+ 2

∫ 2π

0
u2(t)dx.

(3.40)

Using integration by parts and the periodicity of u, we get

d

dt

∫ 2π

0
u2(t)dx =−2ν

∫ 2π

0
u2
x(t)dx− 2

∫ 2π

0
u(t)u(t− τ)ux(t)dx+ 2

∫ 2π

0
u2(t)dx. (3.41)

By using the Poincaré inequality and the zero-mean condition on u, we have

d

dt

∫ 2π

0
u2(t)dx ≤ (− 2ν + 8π2)∫ 2π

0
u2
x(t)dx− 2

∫ 2π

0
u(t)u(t− τ)ux(t)dx, (3.42)

and since
∫ 2π

0 u2(t)ux(t)dx = 0 because of the periodicity of u, then adding that term in
the above inequality, we obtain

d

dt

∫ 2π

0
u2(t)dx ≤ (− 2ν + 8π2)∫ 2π

0
u2
x(t)dx

− 2
∫ 2π

0
u(t)u(t− τ)ux(t)dx+ 2

∫ 2π

0
u2(t)ux(t)dx

= (− 2ν + 8π2)∫ 2π

0
u2
x(t)dx− 2

∫ 2π

0

[
u(t− τ)−u(t)

]
u(t)ux(t)dx.

(3.43)

Using the fact that |u(x, t)| ≤ (2π)2‖ux(t)‖, (3.43) becomes

d

dt

∫ 2π

0
u2(t)dx ≤ (− 2ν + 8π2)∫ 2π

0
u2
x(t)dx

+ 8π2

(∫ 2π

0
u2
x(t)dx

)1/2∫ 2π

0

∣∣(u(t− τ)−u(t)
)
ux(t)

∣∣dx.
(3.44)

Now using the Cauchy-Schwarz inequality, we obtain

d

dt

∫ 2π

0
u2(t)dx ≤ (− 2ν + 8π2)∫ 2π

0
u2
x(t)dx

+ 8π2

(∫ 2π

0
u2
x(t)dx

)1/2(∫ 2π

0

∣∣u(t− τ)−u(t)
∣∣2
dx

)1/2(∫ 2π

0
u2
x(t)dx

)1/2

=(− 2ν + 8π2)∫ 2π

0
u2
x(t)dx+ 8π2

∫ 2π

0
u2
x(t)dx

(∫ 2π

0

∣∣u(t− τ)−u(t)
∣∣2
dx

)
1/2
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= (− 2ν + 8π2)∫ 2π

0
u2
x(t)dx+ 8π2

∫ 2π

0
u2
x(t)dx

(∫ 2π

0

∣∣∣∣
∫ t

t−τ
us(s)ds

∣∣∣∣
2

dx

)1/2

= (− 2ν + 8π2)∫ 2π

0
u2
x(t)dx+ 8π2√τ

∫ 2π

0
u2
x(t)dx

(∫ 2π

0

∫ t

t−τ
u2
s (s)dsdx

)1/2

.

(3.45)

Now using Lemma 3.2, we get

d

dt

∫ 2π

0
u2(t)dx ≤ (− 2ν + 8π2)∫ 2π

0
u2
x(t)dx+ 8π2√τ

√
µK2 + 16π4τK4

∫ 2π

0
u2
x(t)dx

≤−2
((

ν− 4π2)−√16π4τ
(
µK2 + 16π4τK4

))∫ 2π

0
u2
x(t)dx.

(3.46)

Using the Poincaré inequality and the zero-mean condition on u, (3.46) becomes

d

dt

∫ 2π

0
u2(t)dx ≤−2



(
ν− 4π2

)−√16π4τ
(
µK2 + 16π4τK4

)
4π2


∫ 2π

0
u2(t)dx

≤−2ω
∫ 2π

0
u2(t)dx,

(3.47)

where ω is defined by (3.24). Solving this inequality, we obtain

∫ 2π

0
u2(t)dx ≤ e−2ωt

∫ 2π

0
u2

0(x,0)dx, ∀0≤ t ≤ T0. (3.48)

From (3.46), we have

d

dt

∫ 2π

0
u2(t)dx+ 8π2ω

∫ 2π

0
u2
x(t)dx ≤ 0. (3.49)

Multiplying (3.49) by eωt, we get

d

dt

(
eωt
∫ 2π

0
u2(t)dx

)
+ 8π2ωeωt

∫ 2π

0
u2
x(t)dx ≤ ωeωt

∫ 2π

0
u2(t)dx. (3.50)

Now using (3.48), we get

d

dt

(
eωt
∫ 2π

0
u2(t)dx

)
+ 8π2ωeωt

∫ 2π

0
u2
x(t)dx ≤ ωe−ωt

∫ 2π

0
u2

0(x,0)dx. (3.51)

Integrating (3.51) from 0 to T0, we obtain

∫ T0

0
d

(
eωt
∫ 2π

0
u2(t)dx

)
+ 8π2ω

∫ T0

0
eωt
∫ 2π

0
u2
x(t)dxdt

≤ ω
∫ T0

0
e−ωt

∫ 2π

0
u2

0(x,0)dxdt,

(3.52)
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which is equivalent to

eωT0

∫ 2π

0
u2(T0

)
dx−

∫ 2π

0
u2

0(x,0)dx+ 8π2ω
∫ T0

0
eωt
∫ 2π

0
u2
x(t)dxdt

≤ (1− e−ωT0
)∫ 2π

0
u2

0(x,0)dx,

(3.53)

which implies

eωT0

∫ 2π

0
u2(T0

)
dx+ 8π2ω

∫ To

0
eωt
∫ 2π

0
u2
x(t)dxdt ≤ (2− e−ωT0

)∫ 2π

0
u2

0(x,0)dx (3.54)

or

8π2ω
∫ T0

0
eωt
∫ 2π

0
u2
x(t)dxdt ≤ (2− e−ωT0

)∫ 2π

0
u2

0(x,0)dx− eωT0

∫ 2π

0
u2(T0

)
dx,

∫ T0

0
eωt
∫ 2π

0
u2
x(t)dxdt ≤ 1

4π2ω

∫ 2π

0
u2

0(x,0)dx ≤ 1
ω

∫ 2π

0
u2

0(x,0)dx.

(3.55)

�

Lemma 3.4. If ‖ux(t)‖ ≤ K , for all−τ ≤ t < T0 and T0=sup{δ : ‖ux(t)‖≤K on 0≤ t ≤ δ},
then

∫ T0

0
eωt
∫ 2π

0
u2
x(t− τ)dxdt ≤ eωτ

∫ 0

−τ

∫ 2π

0
u2

0x(s)dxds+
eωτ

ω

∫ 2π

0
u2

0(x,0)dx, (3.56)

where ω is defined as in (3.24).

Proof. Consider the term
∫ T0

0 eωt
∫ 2π

0 u2
x(t− τ)dxdt and make the change of variable s =

t− τ on that term; we get

∫ T0

0
eωt
∫ 2π

0
u2
x(t− τ)dxdt =

∫ T0−τ

−τ
eω(s+τ)

∫ 2π

0
u2
x(s)dxds. (3.57)

Now, since u(x,s) = u0(x,s) in −τ ≤ s ≤ 0, then ux(x,s) = u0x(x,s), for all −τ ≤ s ≤ 0.
Then the above equality becomes

∫ T0

0
eωt
∫ 2π

0
u2
x(t− τ)dxdt ≤

∫ 0

−τ
eω(s+τ)

∫ 2π

0
u2

0x(s)dxds+
∫ T0

0
eω(s+τ)

∫ 2π

0
u2
x(s)dxds,

(3.58)

and since eωs ≤ 1, for −τ ≤ s≤ 0, then

∫ T0

0
eωt
∫ 2π

0
u2
x(t− τ)dxdt ≤ eωτ

∫ 0

−τ

∫ 2π

0
u2

0x(s)dxds+ eωτ
∫ T0

0
eωs
∫ 2π

0
u2
x(s)dxds. (3.59)

Using Lemma 3.3, we obtain the desired result. �
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Lemma 3.5 (see [34]). Let g,h, and y be three positive and integrable functions on (t0,T)
such that dy/dt is integrable on (t0,T). If

dy

dt
≤ g y +h ∀t0 ≤ t ≤ T , (3.60)

with

∫ T

t0
g(s)ds≤ C1,

∫ T

t0
eδsh(s)ds≤ C2,

∫ T

t0
eδs y(s)ds≤ C3, (3.61)

then

y(t)≤ [C2 + δC3 + y
(
t0
)]
eC1e−δ(t−t0), ∀t0 ≤ t ≤ T , (3.62)

where δ,C1,C2, and C3 are positive constants.

Proof. Multiplying (3.60) by eδt, we get

d

dt

(
eδt y

)− δeδt y ≤ eδtg y + eδth, for t ≥ t0, (3.63)

or

d

dt

(
eδt y

)− geδt y ≤ δeδt y + eδth. (3.64)

Multiplying (3.64) by exp(−∫ tt0 g(s)ds), we obtain

d

dt

(
eδt y exp

(
−
∫ t

t0
g(s)ds

))
≤ (eδth+ δeδt y

)
exp

(
−
∫ t

t0
g(s)ds

)
. (3.65)

Hence, integrating from t0 to t, we get

eδt y(t)exp

(
−
∫ t

t0
g(s)ds

)
− eδt0 y

(
t0
)≤

∫ t

t0

(
eδsh+ δeδs y

)
exp

(
−
∫ s

t0
g(r)dr

)
ds,

eδt y ≤ eδt0 y
(
t0
)

exp

(∫ t

t0
g(s)ds

)

+

[∫ t

t0

(
eδsh+ δeδs y

)
exp

(
−
∫ s

t0
g(r)dr

)
ds

]
exp

(∫ t

t0
g(r)dr

)

≤ eδt0 y
(
t0
)

exp

(∫ t

t0
g(s)ds

)
+
∫ t

t0

(
eδsh+ δeδs y

)
exp

(
−
∫ s

t
g(r)dr

)
ds

≤ eδt0+C1 y
(
t0
)

+
(
C2 + δC3

)
eC1 ,

(3.66)
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or

y ≤ (C2 + δC3 + y
(
t0
))
eC1e−δ(t−t0). (3.67)

�

Theorem 3.6. Let τ0 = τ0(µ,u0), where µ= ν− 4π2 with ν > 4π2, K and ω are as defined
in (3.22), (3.23), and (3.24). For any τ < τ0 and for any initial condition u0 = u0(x,s) ∈
C([−τ,0], H1(0,2π)), the solution of the generalized Burgers equation (3.4) with periodic
boundary conditions satisfies

∥∥ux(t)
∥∥≤ K

2
e−ω(t/2), ∀t ≥ 0. (3.68)

Proof. We use the same method as in [25]. Let

T0 = sup
{
δ :
∥∥ux(t)

∥∥≤ K on 0≤ t ≤ δ
}
. (3.69)

Note that T0 > 0 since ‖ux(0)‖ < K and ‖ux(t)‖ is continuous. To prove that T0 = +∞, we
argue by contradiction. For T0 < +∞, we have

∥∥ux(t)
∥∥≤ K , ∀− τ ≤ t < T0,∥∥ux(T0

)∥∥= K.
(3.70)

Using (3.4), we get

d

dt

∫ 2π

0
u2
x(t)dx =−2ν

∫ 2π

0
u2
xx(t)dx− 2

∫ 2π

0
uxx(t)u(t)dx

+ 2
∫ 2π

0
uxx(t)u(t− τ)ux(t)dx.

(3.71)

By using Cauchy-Schwarz and Young’s inequalities simultaneously on (3.71), we obtain

d

dt

∫ 2π

0
u2
x(t)dx ≤ 1

2ν

∫ 2π

0
u2(t− τ)u2

x(t)dx− 2
∫ 2π

0
uxx(t)u(t)dx. (3.72)

Using integration by parts, we get

d

dt

∫ 2π

0
u2
x(t)dx ≤ 1

2ν

∫ 2π

0
u2(t− τ)u2

x(t)dx+ 2
∫ 2π

0
u2
x(t)dx. (3.73)

Since |u(t− τ)| ≤ (2π)2‖ux(t− τ)‖, then

d

dt

∫ 2π

0
u2
x(t)dx− 2

∫ 2π

0
u2
x(t)dx ≤ 8π4

ν

∫ 2π

0
u2
x(t− τ)dx

∫ 2π

0
u2
x(t)dx (3.74)
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or

d

dt

(
e−2t

∫ 2π

0
u2
x(t)dx

)
≤ 8π4

ν

∫ 2π

0
u2
x(t− τ)dx

(
e−2t

∫ 2π

0
u2
x(t)dx

)
. (3.75)

Applying Lemma 3.5 on (3.75) with

y = e−2t
∫ 2π

0
u2
x(t)dx,

g = 8π4

ν

(∫ 2π

0
u2
x(t− τ)dx

)
,

h= 0,

δ = ω,

C1 = 8π4

ν

(
eωτ

∫ 0

−τ

∫ 2π

0
u2

0x(s)dxds+
eωτ

ω

∫ 2π

0
u2

0(x,0)dxds

)
(by Lemma 3.4),

C2 = 0,

C3 = 1
ω− 2

∫ 2π

0
u2

0(x,0)dx (by Lemma 3.3),

(3.76)

then we have for 0≤ t ≤ T0,

∫ 2π

0
u2
x(t)dx ≤

[
0 +ω

(
1

ω− 2

∫ 2π

0
u2

0(x,0)dx

)
+
∫ 2π

0
u2

0x(x,0)dx

]

× exp

[
8π4

ν

(
eωτ

∫ 0

−τ

∫ 2π

0
u2

0x(s)dxds+
eωτ

ω

∫ 2π

0
u2

0(x,0)dxds

)]
e−ωt

(3.77)

or

∫ 2π

0
u2
x(t)dx ≤ K2

4
e−ωt, (3.78)

which implies that

∥∥ux(T0
)∥∥≤ K

2
e−ω(T0/2), (3.79)

which is in contradiction to our assumption. Therefore, T0 = +∞ and then

∥∥ux(t)
∥∥≤ K

2
e−ω(t/2), ∀t ≥ 0. (3.80)

�
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4. Numerical results

In this section, we would like to find a Fourier representation for the generalized Burgers
equation without a time delay

ut = νuxx −uux +u+h(x), (4.1)

and the generalized Burgers equation with a time delay

ut(x, t)= νuxx(x, t)−u(x, t− τ)ux(x, t) +u(x, t), (4.2)

with periodic boundary conditions

u(0, t)= u(2π, t). (4.3)

Equation (4.1) can be written as

∂u

∂t
=G(u,h), (4.4)

where G(u,h)= νuxx −uux +u+h(x).
Spectral approximation could be used to find the Fourier representation because of

its accuracy and efficiency since we can expand the function u in terms of an infinite
sequence of orthogonal functions {Φk},

u=
∞∑

k=−∞
ûkΦk. (4.5)

But since most numerical methods based upon Fourier series cannot be implemented
directly by standard treatment of Fourier series because the Fourier coefficients of an
arbitrary complex-valued function are not known and must be approximated in some
way, we use the discrete Fourier series [8]. That is, for any integer N > 0, we consider the
set of points

xj = 2π j
N

, j = 0, . . . ,N − 1. (4.6)

The discrete Fourier coefficients of a complex-valued function u in [0,2π] with respect
to these points are

ũk = 1
N

N−1∑
j=0

u
(
xj , t

)
e−ikxj , −N

2
≤ k ≤ N

2
− 1, (4.7)

where

u(x, t)=
N/2−1∑
k=−N/2

eikxû(k, t). (4.8)
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Then, by differentiating (4.8) with respect to x and with respect to t, we get

ux(x, t)= i
N/2−1∑
k=−N/2

keikxû(k, t), (4.9)

uxx(x, t)=−
N/2−1∑
k=−N/2

k2eikxû(k, t), (4.10)

ut(x, t)=−
N/2−1∑
k=−N/2

eikxût(k, t). (4.11)

If we substitute (4.8), (4.9), (4.10), and (4.11) in (4.1), we get

ût(k, t)= (1− νk2)û(k, t)− ik
∑

k=p+q

û(p, t)û(q, t)

− ik
∑

p+q=k±N
û(p, t)û(q, t) + ĥ(k).

(4.12)

Also, substituting (4.8), (4.9), (4.10), and (4.11) in (4.2), we obtain

ût(k, t)= (1− νk2)û(k, t)− ik
∑

k=p+q

û(p, t− τ)û(q, t)

− ik
∑

p+q=k±N
û(p, t− τ)û(q, t).

(4.13)

All the nonlinear terms in (4.12) and (4.13) were evaluated in the physical space followed
by the discrete Fourier transform to find the Fourier coefficients. The aliasing error was
removed by truncation in the manner described in [8], that is, by performing all multi-
plication in a physical space followed by the discrete Fourier transform to determine the
corresponding Fourier coefficients.

Two computer programs that use a spectral Galerkin method with N = 256 were writ-
ten to solve both (4.12) and (4.13). The value of N = 256 in those equations was chosen
so that not only the truncation error is kept down to a minimum, but also the aliasing
error caused by the nonlinear term is completely removed. The “slaved-frog” scheme was
used [18]. That is

un+1 = e−2αδtun−1 +
(

1− e−2αδt

α

)
fn, (4.14)

where un = u(tn), fn = f (tn). This is obtained from the exact relation

u(t+ δt)= e−2αδtu(t− δt) +
∫ t+δt

t−δt
e−α(t+δt−s) f (s)ds. (4.15)

Figure 4.1 presents the steady state solution of the generalized Burgers equation (4.1)
without time delay when h(x)= 0.5sin(x) and u(x,0)= sin(x) for different viscosity. One
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Figure 4.1. Steady state solutions of the generalized Burgers equation without time delay for different
values of ν with h(x)= 0.5sin(x) and u(x,0)= sin(x).

can observe that when ν is large, the solution decays to the steady state quickly. This is be-
cause the linear diffusion term is controlled by the viscosity. Hence, for small ν, the con-
vection term will act to sharpen the solution, while the diffusion term will try to smooth
it out. This competition of sharpening and smoothing out of solutions will take some
time until the solution reaches steady states. But for large ν, the diffusion term will domi-
nate the equation behavior. As a result, the solution will evolve to the steady state quickly.
Other sinusoidal terms for h(x) and u(x,0) were used and similar results were obtained
(see Figure 4.2).

Figures 4.3 and 4.4 present the energy or Lyapunov function curve of solution of (4.2)
with different values of delays. It can be seen that for small τ’s, the energy always decays
to zero exponentially. In Figure 4.3, we consider u(x,s)= 10(1 + s)(sin3x+ sin2x+ sinx)
and observe that the solution will decay to zero exponentially faster for large values of
τ than for small ones. This is because the energy value of u(x,s) is increasing. However,
if we take the case of u(x,s) = 10(1− s)(sin3x + sin2x + sinx) (i.e., the energy value is
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Figure 4.2. Steady state solutions of the generalized Burgers equation without time delay for different
values of ν with h(x)= 0.5cos(x) and u(x,0)= cos(x).
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Figure 4.3. Energy curve for the solution of the generalized Burgers equation with time delay for
different values of τ with initial condition u(x,s)= 10(1 + s)(sin3x+ sin2x+ sinx).



94 Generalized Burgers equation

τ = 0.1

τ = 0.5

τ = 0.9

15

10

5

0
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

Figure 4.4. Energy curve for the solution of the generalized Burgers equation with time delay for
different values of τ with initial condition u(x,s)= 10(1− s)(sin3x+ sin2x+ sinx).

decreasing), one can see that the solution decays to zero exponentially quickly when the
delay τ is small (see Figure 4.4). The numerical results obtained are in accordance with
the analytical ones presented in Sections 2 and 3.

5. Concluding remarks

In this paper, we studied the generalized Burgers equation with periodic boundary con-
ditions on the interval [0,2π] with and without introducing a time delay for sufficiently
large viscosity. By using Lyapunov theory, we showed that for the generalized Burgers
equation without a time delay and when h(x)= 0, the equation is globally asymptotically
stable. Moreover, we showed that when h(x) �= 0, the steady state solution is bounded and
unique. For the generalized Burgers equation with a time delay and when h(x) = 0, we
showed that the equation is exponentially stable under small delays. We presented some
numerical results by using the spectral method to support the analytical results given in
Sections 2 and 3. The case when h(x) �= 0 in the generalized time-delayed Burgers equa-
tion and the analysis of the behavior of its solution for different values of h(x) will be the
subject of future studies.
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