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This paper is concerned with the study of the rate of convergence of the distribution of the
maximum likelihood estimator of a parameter appearing linearly in the drift coefficients
of two types of stochastic partial differential equations (SPDEs).

1. Introduction

Maximum likelihood estimation of a parameter appearing linearly in some stochastic
partial differential equations (SPDEs) has been considered by Hiibner et al. [3]. Detailed
discussion of these SPDEs and some interesting phenomena arising out of the parameter
estimation have been considered by them in two examples. In this paper, we study the rate
of convergence of the distribution of the maximum likelihood estimator (MLE) OAN,€ of
the parameter 6 occurring linearly in such SPDEs. Bounds on the difference Oy — 61,
where 8 is the true value of the parameter, can be obtained using these results as in
Mishra and Prakasa Rao [6]. In Section 2, we describe a SPDE with parameter 0 such
that the corresponding stochastic process u. generates measures {Pg, 6 € ®} which are
mutually absolutely continuous, and the main results pertaining to this section have been
described in Section 3. In Section 4, we describe a SPDE with parameter 6 such that the
corresponding stochastic process u. generates measures which form a family of probabil-
ity measures {P§, 6 € ®} which are singular with respect to each other, and this section
also contains the main results connected to this problem. Comprehensive surveys on sta-
tistical inference for such classes of SPDEs are given by Prakasa Rao [7, 8]. Throughout
the paper, we will denote by C a positive constant different at different places of occur-
rence, possibly dependent on the initial conditions of the SPDEs.

2. SPDE with linear drift (absolutely continuous case): estimation

Let (Q, %, P) be a probability space and consider the process u¢(t,x),0<x<1,0<t<T,
governed by the SPDE

duc(t,x) = (Auc(t,x) + Ouc(£,x)) di + edWq(t,x) (2.1)
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with the initial and boundary conditions given by

ue(0,x) = f(x), feL[0,1], (2.2)
uc(t,0) =uc(t,1)=0, 0<t<T, (2.3)

where A = 92/0x?. Let € — 0 and 0 C R. Here, Q is a nuclear covariance operator for
the Wiener process W (t,x) taking values in L,[0,1] so that Wq(t,x) = QV2W(#,x) and
W (t,x) is a cylindrical Brownian motion in L, [0, 1]. Then it is known that (cf. Rozovskii

(9])
Wqlt,x) = qu/ze (x)W, a.s., (2.4)

where {W;(t), 0 <t < T}, i=> 1, are independent one-dimensional standard Wiener pro-
cesses, {e;} is a complete orthonormal system (CONS) in L, [0, 1] consisting of the eigen-
vectors of Q, and {g;} are the corresponding eigenvalues of Q. We consider a special co-
variance operator Q with e; = sinknx, k > 1, and A = (7k)?, k > 1. Then {e,} isa CONS
with the eigenvalues ¢; = (1+1;)71, i > 1, for the operator Q, where Q = (I — A)~!. Fur-
thermore, dWq = Q2dW. We define a solution u,(t,x) of (2.1) as a formal sum:

uc(t,x) = iuie(t)ei(x) (2.5)
i=1

(cf. Rozovskii [9]). It is known that the Fourier coefficients u;c(t) satisfy the stochastic
differential equation

dui(t) = (0 - /\)ule(t)dt+de(t) 0<t<T, (2.6)
with the initial conditions
1
we©) = vy v~ | fledx (2.7)
0

It is further known that the function uc(f,x) as defined above belongs to L,([0,T] x
0;L,[0,1]) together with its derivative in t. Furthermore, u¢(t,x) is the only solution
of (2.1) under the boundary conditions (2.2) and (2.3). Let P§ be the measure generated
by uc on C[0,T] when 8 is the true parameter. It has been shown by Hiibner et al. [3]
that the family of measures {P((,E), 0 € O} is mutually absolutely continuous and

dPe( = = Ait1
dPy, B

T
(0 00) [ (e (0
i=1 ’ (2.8)

SHear -0y} [ o]

log

The projection of the solution u,(¢,x) onto the subspace aN spanned by {ej,ez,...,en}
(see Liptser and Shiryayev [4]) is given by u (£,x) = Zfil uic(t)e;(x). Let Pg’N be the prob-
ability measure generated by the process uY (t,x) on C[0, T] when 6 is the true parameter.
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Then the measure P§™ is absolutely continuous with respect to the measure PS(;N and

dPg’N Ait+1 r 1 2 0 (F
log gpie = 2.7+ | (0= 00) | et = 3 O -2" = 00-20°} | et |
(2.9)
The MLE of the parameter 6 is given by
N T
éN,e _ zizl ()tz + 1) f() ule(t) (duze(t) +Azu1£(t)dt) (2‘10)

SE i+ 1) g wl(0dt
(cf. [3, page 154]).

3. SPDE with linear drift (absolutely continuous case): Berry-Esseen type bound

We now prove two theorems leading to a Berry-Esseen type bound for the MLE Oy . It
can be checked that Ej, fOT w2 (t)dt < o for i > 1. We assume that 6, < 72, where 0, is the
true parameter. Let @(-) denote the standard normal distribution function and define

N
() _ Ai+1 (g 260-MT _ 1y _ € )
QNr ;72(0_)“) v (e 1) T)t,-+1 . (3.1)

THEOREM 3.1. Forany0<§ <1,

Pg;N{@e-l (Oxc — o) = y} — () '

N 4 T
< ZPE;N{ > ’Z:;l L uz(t)dt—1| > 8} +30.
i=1 ¥N,T

THEOREM 3.2. Let N > 1 be fixed. Then there exists a constant C depending on 0, || f I, and

T such that, forany0<d <land0<e <1,
12
Pg(;N{ 26} 5C6<1+(£ ) (3.3)
O\ Qur

We first state two lemmas needed in the sequel.

sup
y

(3.2)

Ny T
> )g(t)l JO wl (t)dt —1

i=1 XN,T

LemMa 3.3. Let (Q, %, P) be a probability space and let f and g be F-measurable functions.
Then, for any & >0,

NAC N

P{w'g(a)) _x} dD(x)‘

<sup|P{w: f(w) <y} —®(y)| +Pl{w: |g(w) — 1| = 8} +4.
y

sup
* (3.4)

Proof. See Michel and Pfanzagl [5]. O
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LEmMA 3.4. Let {W(t), t = 0} be a standard Wiener process and let Z be a nonnegative
random variable. Then, for every x € R and § >0,

|P{W(Z) <x} - D(x)| < (28)V*+P{|Z~-1| =6} (3.5)
Proof. See Hall and Heyde [2, page 85]. O

Proof of Theorem 3.1. It follows from (2.10) that

N . 1 : It
\/QS)TEA(@ANe —6p) = {Ziﬂ;,/mfo e () Wi(# }/( )NT. (3.6)
’ {n (Ai‘*l) o U (Ddt}/QN'r

Now, for any y € R,

p;;N{\/af}Te-l (Oxc — o) = y} () ’

pev | ZVEH Tl wiedWi O/ Qe | o)
T SN+ 1) [ uk(0dQSy g

P;N{zz 1 \/A +1 fo(gze(t)dw i(t) }_ D(x)
Qnr

< sup
&N zﬁl (Ai+ 1) 1e(t)dt
+P9O ©
Qnr

N 5 T
PEON{W(Z /"(t)l J u,ge(t)dt> < x} — ®O(x)
i=1 QNT 0
+P§$N{ > 8} + 4,

where W(-) is an independent standard Wiener process by using Theorem 2.3 in Feigin
[1] (due to Kunita-Watanabe) and the fact that fOT w2 (H)dW;(t), 1 < i < n, are indepen-
dent square-integrable martingales.

Hence

P e e ) <y} - o)

(3.7)

-1

> 8} +6 (by Lemma 3.3)

= sup
X

Z)t+1j 2 (Hdt—1

11QNT

No+1 (T
<r+2P { Z © J u (t)dt—1 28}+6 (by Lemma 3.4) (3.8)
i-1 Qn,r 70
N 4 T
<2[P§(;N{ Z)"(J;I w(t)dt—1 >6H+3\/§
i-1 QN1 J0

for0<d§ <1. O
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Proof of Theorem 3.2. From (2.6), we obtain that

duic(s) = (0 — Xi) uje(s)ds + dW( ), 0<t<T

vh - (3.9)
uic(0) = vi.
By the {to formula, we have
(i (5)20 ) = S e Maw(s) (3.10)
or
e (H)e®A1 _ —J AW (), (3.11)
Furthermore,
200 = 2(0 — 1) 12 € 4 €
d(ui(t)) =2(0 - Ai)us(t)dt + mule(t)dwl(t)+Ai+ldt (3.12)
or, equivalently,
A+l
( ) T200-1)
eAi+1 (T €? (3:13)
:J (et D (0de+ oS JO weOAWL1) + 565 T,
We know, from (3.11), that
2
Ul (T) = vie? 02T 4 26 T(LIT.«z(@-M)SdW,-(s))
\//1,‘-1—1 0 (3.14)
12,260 J AW,
From (3.11) and (3.13), we obtain that
N N
Ait+1l _
Zz(e—x) {”"2(62(9 W1 - A } ZJ (Ai+ Duic (H)dt
i=1 i it i=1
N T
B 6«/)L<+1J ' .
- ; 2(9 _/11) o ulé(t)dwl(t)
B (3.15)

2

_i Ai+1 P20-0)T eA)de(s)
“~2(0-1) \/)t+

2viE  Sp-anT J S(0-A)s
- —e i e\ dW(s) |.
\//1,'-1—1 0 l( )
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Since

N 2
Q(e) _ z Ai‘l’l (viz(ez(ef)t,‘)T _ 1) _ TL))

we have

pgN {

Jy (SN, i+ 1)l (b)) dt

1 28}

Ql(\?)T
_ peN i (VA +1/2(0 = M) fy wie(HAWi(e) | _ &
s izl QN 3
+P€’N{ 1 (2vie/ A +1)e20-A) Tf g0-A)s dWi(s) }
% QN,T 3
N (1SN (€2/2(0 = 1)) 2OMT ([T e®Msdwi(s))* | 5
*Po QI(\?)T 3

=L+L+1 (say).

Now

1/2
ce (& Ay+1 J’T }
I < Eg, | 12, (t)dt
1 6Q§5,>T{§1<9—Ak)2 b Jo e

Ce (& M+1 ( 1 P 20-4)T )
= V(1 -0
6Q§§3T{,§1<0—Ak)2 261" )

. e 1 (T BE éZ(AkG)T)}l/Z
2 (q-0)° 2(l — 6)

(following [3, page 154])

N 1/2
[ € T
8Qi)r i L —0) 2 (-9
CE % { Ak+1 2+ EZT }1/2
Q( ric L-0)° E (A~ 6)’
Ce { I a1 }
< +eT
oy (2 e TR
Ce CeTl/2

< .
5k 8Qr

(3.16)

(3.17)

(3.18)
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Next,
QN o Wkt 0
N /
- C(i) ZSL Vl% 1 (1 52T (A 0))75,12
SQur ko Mt 12(e = 6)
3.19
Ce <& Vi " o
<
5%, kZl{ (A +1) (A — 6) }
- Ce i ”-fJ < Ce
= 6 (€) 2 8 (€)
QN,T k=1 Qn.r
In addition,
N 4 12
e St o] [ ]
5QN,T k=1 ()Lk - 6) 0
ce2 Y 1 gih-OT 20T 2 ”
1) (€) z 2 2 [e 1]
Qvr ic Lk —0)" 4l — 0)
N
. Cé? Z‘{ 1 GO [2=0) 1]}
8Qr i L —0)
& (3.20)
2
S P T
8Qur ko LAk = 0)
Ce> i 1 ce < 1
5Q§5,)T o1 (A — 9)2 - 6Q§§)T k=1 ket
Ce?
N.T
Note that

/1k+1 { 2(9_/\]{)1‘_ _ €2T }
@0 1 DA v

N
> 580
; (3.21)
" 230.-0)

A +1 { 20-01y . €T }
O WL
Ak— ( ) Ac+1

Using (3.18), (3.19), and (3.20), we get that

Cie  CeT? . Ge? _ Ce
SQVr  0QNr QN T QN
This completes the proof of Theorem 3.2. O

L+L+1<

(1+T12). (3.22)
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Observe that
Q¥ = ClET+IIfI] (3.23)

for large N > Ny depending on 0 and T and for all 0 < € < 1. Choosing § = €! ", for some
0 < r < 1, we get that the bound in Theorem 3.2 is of order

Cer(1+TV2)

4(627,_'_ Bk (3.24)

As a consequence of Theorems 3.1 and 3.2, we have the following main result giving a
Berry-Esseen type bound for the MLE Oy.c.

THEOREM 3.5. Let N = Ny be fixed, satisfying (3.23). Then there exists a constant C de-
pending on Oy, || 1, and T such that, forany0<e <land0<r<1,

A r 172
sup ‘pg’ﬂp/@g}e*1 (Bye —60) < y} - (D(y)‘ L COULT) sver.  (3.2s)
y 0 ’ e2T+| £l

Remarks 3.6. Observe that the bound in Theorem 3.5 is of order O(e”) + O(e1=")/2),
Choosing r = 1/3, we note that the bound is of order O(€'/3).

4. SPDE with linear drift (singular case): estimation and Berry-Esseen type bound

Let (Q, %, P) be a probability space and consider the process u;c (£,x),0 <x < 1,0<t < T,
governed by the SPDE

duc(t,x) = 0Auc(t,x)dt + (I — A)~V2dW (t,x), (4.1)

where 0 > 0 satisfies the initial and boundary conditions

uc(0,x) = f(x), 0<x<1, fel[0,1],

4.2

uc(t,0) = uc(t,1) =0, 0=<t<T. (4.2)
Here, I is the identity operator, A = 9*/dx? as defined in Section 3, and the process W (£, x)
is the cylindrical Brownian motion in L,[0,1]. In analogy with the discussion following
the stochastic differential equation given by (2.6), it can be checked that the Fourier co-
efficients u;c (t) satisfy the stochastic differential equation

€

duic(t) = —0Au;c (H)dt + \/m

dwi(t), 0<t=<T, (4.3)
where conditions (2.7) hold.

Let P§ be the measure generated by the process ue on C[0, T] when 6 is the true pa-
rameter. It can be shown that the family of measures {Pg, 0 € ®} does not form a family
of equivalent probability measures. In fact, Pg is singular with respect to P§ when 6 # 6’
in ® (cf. Hiibner et al. [3]). Let uéN)(t,x) be the projection of u(t,x) onto the subspace
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spanned by {ej,es,...,en} in L,[0,1]. In other words,

N
x) = > uic(t)ei(x). (4.4)
i-1

Let PZ’N be the probability measure generated by the process u™ on the subspace

spanned by {ej,...,ex} in L,[0, 1]. It can be shown that the measures {Pg’N, 0 € ®} form
an equivalent family and

dpyN

log —8
8 dpy N

1 d T
(7)== 2h0+ 1) ) (0= 00) | i) e t)+ Buvae (1))
i=1 (4.5)

%(9 60)\, J (1) dt]
It can be checked that the MLE HN ¢ of @ based on ue ) satisfies the likelihood equation

aen = € (Oye — 00)en (4.6)

when 6 is the true parameter,

N

tew = St 1 JTuie(t)dWi(t), (4.7)
P 0
N1 T

few =3 (Ai+ 1)/12J 2, (1)dt. (4.8)

1

From (4.6), we obtain that

@ (4 (SN AV wie(DdWi(0) 1Ry
RN,T(eN,e _‘90) =

(4.9)
{SN i+ DA [ . (6)de /RS
where
R(é) _i/li(Ai—i—]-){ 2(1_—29/\iT)+T 62 } (4 10)
Y- I A L1y '

i=1

It can be checked that

T
Eoof W2 (1)dt < oo. (4.11)
0
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THEOREM 4.1. Forany0<4§<1,

pg(;N{ IRE; (B — 60) = y} () ’

_ T
(e SE L+ DAy wl(t)dt
< 2P -1
0 R(E)

sup
y

(4.12)

= 8}+3\/5.

We can prove Theorem 4.1 using Lemmas 3.3 and 3.4 and following the method in the
proof of Theorem 3.1.

THEOREM 4.2. Let 0 < € < 1 be fixed. Then there exists a constant C depending on 0y, Hfllz,
and T such that, forany0< 3§ <1and N = 1,

N
|

Proof. By the fto formula, we get that

“1yN ) 2(T 2 3 12
e SV i+ DA u,e(t)dt_l' 28} CN*(1+T2) (4.13)

RS SRy

2

€
Ai+1

d(12(1)) = =200 2. (£)dt + ———— e () AWi(t) + ———dt (4.14)

\/A, +1

or, equivalently,

d(%ui(ﬂ) = R+ V(e + P dwi o +

Ezli
20

dt  (4.15)

or

A,’(/\,"i— 1) ) (T) _ /li(li-i- 1)1/2

20 i 20 P

T (4.16)
—— | R+
0

ex\\/ﬁI

Again, by the ito formula, it follows that

d(uic (t)et) =

uie(T)eNT —v; =

T
Uie(T) — v;eT = ée”J € _eMtgw (o), (4.17)

2. (T) -zen(J \/_ ”‘dW(t))z

T
+ T 4 e dwi(t),

2e VAEZGA,'TJ'
x//\i-f—l ' 0
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or

Aidit+1) o (1) = i pont < JTe‘”“tdW,-(t))2
0

20 € 26
4.18
Aidi+1) 50 € o, 1 e (419
LAY amr €3 Nt 1820 viJ eMEAW(1).
20 0 0
From (4.16) and (4.18), we get that
Ny (). 2 N T
Z’(Azligl){viz(l—éz“”)+ T}—ZJ Rt 1) (1)dt
i=1 i
2> N
=§—921ié29}“(I P AW t)) +2€Z)h/)t +1ve29”J AW (1)
Ai \/)L +1
—ez j wie (HAWi(D)
(4.19)
Hence
pen ([ S e B At D (de |
" R)r )
_pen [ | (203 ww”(ffe“ffdwxﬂ)z . 8
S RNT 3
, pen { (1/0) SN A/ + 1w, @20 T [ Pt g (1) _} (4.20)
% RNT 3
+P6’N{ (1720) SN A + 1y wie(£)dWi( g}
)
RN,T 3
=i +] +]; (say),
where
N
)t+1 o1 €2
NT=§ { 1- emtT)+mT}. (4.21)
Therefore,

ZA 200 T J Zﬂlitdt

(S\RN T i=1
e e (207~ 1) |
(SRN T i=1 26Ai

CeN

1

z
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S i

NTI 1
CN?

(following [3, page 158])

C N 1/2
- { S+ 1) za,}
i-1

< C {NS/Z T1/2N3/2}.
6RNT

Hence

hth+]< SR (N?+TY2N3?) < e
N,T N,T

This completes the proof of Theorem 4.2.

Observe that

> c( > kvt +e2TN3>

k=1

(4.22)

(4.23)

(4.24)

for some k; depending on €, 6, and T, and hence for N = Nj depending on €, 0, and T.

Therefore,

CN3(1+T"2)
S(€2TN3+ 33 k*v})

Ji+th+]s<

(4.25)
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for N = Ny depending on €, 8, and T. Choosing § = N7, for some y > 0, we get that the
bound is of order

CN*(1+T'7)

. 4.26
N-7(e2TN3 + 3, k*7) (4.26)

As a consequence of Theorems 4.1 and 4.2, we have the following result which gives a
Berry-Esseen type bound for the MLE Oy for any fixed 0 < € < 1.

THEOREM 4.3. Let 0 < € < 1 be fixed. Then there exists a constant C depending on 0y, Hfllz,
and T such that, for anyy >0 and N > Ny, depending on €, 6, and T,

P R (b~ 00 = v} - 0|

CN? 1+ T2 )
= +3VN7.
v (s sy

sup
g (4.27)

Remarks 4.4. Observe that the bound in Theorem 4.3 is of order O(NY~2) + O(N~/2)
provided >V | k*vi > g(N) = O(N?). In such a case, the bound can be obtained to be of
order O(N~%?) by choosing y = 4/3. We can obtain the rate of convergence for the case
when N is fixed but € varies over the interval (0,1) by arguments similar to those given
above. We omit the details.
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