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Let ρ(x, t) denote a family of probability density functions parameterized by time t. We
show the existence of a family {τt : t > 0} of deterministic nonlinear (chaotic) point
transformations whose invariant probability density functions are precisely ρ(x, t). In
particular, we are interested in the densities that arise from the diffusions. We derive a
partial differential equation whose solution yields the family of chaotic maps whose den-
sity functions are precisely those of the diffusion.

1. Introduction

In this paper, we establish a method for describing flows of probability density functions
by means of discrete-time chaotic maps. We start with a standard map whose invariant
probability density function is known and then use it to derive other invariant proba-
bility density functions by a simple conjugation process which solves the inverse Perron-
Frobenius problem [2, 3] in a time-varying setting.

2. Notation and preliminary results

In this paper, we consider space to consist of 1 dimension although the extension to 2 and
3 dimensions is straightforward. In the sequel, we will need some notions from ergodic
theory and nonlinear dynamics, which can be found in [1].

Let R= (−∞,∞) and let T : R→ R possess a unique absolutely continuous invariant
measure µ which has the probability density function f , that is,

∫
A
f dx =

∫
T−1A

f dx (2.1)

for any measurable set A⊂R. The Perron-Frobenius operator PT acting on the space of
integrable functions is defined by

∫
A
f dx =

∫
T−1A

PT f dx. (2.2)
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The operator PT transforms probability density functions into probability density
functions under the transformation T , where T is assumed to be nonsingular. One of
the most important properties of PT is that its fixed points are the densities of measures
invariant under T [1].

Let h : R→ R be a diffeomorphism. Then τ = h−1 ◦T ◦ h is a transformation from R

into R, which is differentiably conjugate to T and whose probability density function is
given by

k = ( f ◦h) · |h′|. (2.3)

We assume that T is a piecewise monotonic expanding C1 map on R that admits a
unique absolutely continuous invariant measure. Then the invariant density function
f (x) is a fixed point of the Perron-Frobenius operator PT [1]. We now consider the inverse
Perron-Frobenius problem: suppose we are given a probability density function g(x) on
R, can we find a transformation τ such that g(x) is the unique probability density func-
tion invariant under τ? This problem has been dealt with by Ershov and Malinetskiı̆ [2]
and in [3] from a computational perspective.

We solve the inverse Perron-Frobenius problem by applying (2.3), that is, we find h
such that

( f ◦h) ·h′ = g, (2.4)

where we have assumed, without loss of generality, that h is an increasing function on R.
Now, let

F(x)=
∫ x

−∞
f (y)dy (2.5)

be the distribution function associated with f . Then, from (2.4) and the change-of-
variable formula, we have

F
(
h(x)

)=
∫ x

−∞
g(y)dy. (2.6)

Since F is a monotonically increasing function, it has a unique inverse and

h(x)= F−1

(∫ x

−∞
g(y)dy

)
. (2.7)

Thus, we have found h(x) such that τ = h−1 ◦T ◦ h has the probability density func-
tion g(x). Summarizing, given any probability density function g(x), we have proven the
existence of a point transformation τ whose probability density function is g(x).

Example 2.1. Let

T(x)= a tanx, x �= kπ

2
, k =±1,±3, . . . , (2.8)
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and a>1. Then the probability density function invariant under T is [1]

f (x)= p

π
(
p2 + x2

) , (2.9)

where p > 0 satisfies the equation a tanh(p)= p. For p > 2, a≈ p and we can assume that
T(x)= p tanx. Hence, for p = 4, say,

f (x)= 4
π
(
16 + x2

) ,

F(x)=
∫ x

−∞
4

π
(
16 + y2

)dy = 1
2

+
1
π

arctan
(
x

4

)
,

F−1(x)=−4cot(πx).

(2.10)

Now, suppose we want to find a map τ whose unique invariant probability density func-
tion is given by g(x)= (cos8x)exp(−3x2). We obtain

∫ x

−∞
(cos8x)exp

(− 3x2)dy = 2exp
(− 2x2

)
(2/π)cos2(8x)

1 + exp(−64/3)
(2.11)

from which we can determine h(x) using (2.7). Once h is known, so is τ = h−1 ◦ T ◦ h
whose probability density function is g(x).

The foregoing method can be extended to a family of probability density functions
{gt(y) : t ∈ I}. In this case, the homeomorphism h becomes a family of homeomorphisms
{ht : t ∈ I} parameterized by t, where

ht(x)= F−1

(∫ x

−∞
gt(y)dy

)
. (2.12)

3. Chaotic map description of diffusions

Consider the diffusion equation

∂ρ(x, t)
∂t

=−∇(v(x, t)ρ(x, t)
)=− ∂

∂x

[
b(x, t)ρ(x, t)− 1

2
∂ρ(x, t)
∂x

]
, (3.1)

where b(x, t) is the forward drift coefficient. Our objective is to prove the existence of a
family of point transformations {τt ∈ Γ : t > 0} whose invariant probability density func-
tions are {ρt : t > 0}. To do this, we let T be the transformation defined by (2.8) and
we derive a partial differential equation for ht(x) such that {τt = h−1

t ◦T ◦ ht} possesses
{ρ(x, t) : t > 0} as the associated family of invariant probability density functions.

Since

ht(x)= F−1

(∫ x

−∞
ρ(y, t)dy

)
, (3.2)
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we have

∂

∂t
ht(x)= (F−1)′(∫ x

−∞
ρ(y, t)dy

)(∫ x

−∞
∂

∂t
ρ(y, t)dy

)
. (3.3)

Noting that

(
F−1)′(∫ x

−∞
ρ(y, t)dy

)
= 1

F′
(
F−1

(∫ x
−∞ ρ(y, t)dy

)) (3.4)

and using (3.1), we obtain

∂

∂t
ht(x)= 1

f
(
ht
) ∫ x

−∞

[
− ∂

∂y
b(y, t)ρ(y, t) +

1
2
∂2

∂y2

(
ρ(y, t)

)]
dy. (3.5)

Thus,

f
(
ht(x)

) ∂
∂t
ht(x)=−b(x, t)ρ(x, t) +

1
2
∂

∂x

(
ρ(x, t)

)
+ q(t), (3.6)

where q(t) is an unknown function of t only. To find q(t), we return to (3.3) and write

f
(
ht(x)

) ∂
∂t
ht(x)= ∂

∂t

∫ x

−∞
ρ(y, t)dy. (3.7)

We assume that ρ(y, t) and (∂/∂x)(ρ(x, t)) both go to 0 as x→∞; then the right-hand
side of (3.7) also goes to 0 since

∫∞
−∞

ρ(y, t)dy = 1 (3.8)

for all t ≥ 0. Hence, q(t)= 0 for all t ≥ 0. Thus, (3.6) reduces to

f
(
ht(x)

) ∂
∂t
ht(x)=−b(x, t) f

(
ht(x)

) ∂
∂t
ht(x) +

1
2
∂

∂x

(
f
(
ht(x)

) ∂
∂t
ht(x)

)
(3.9)

or

(
1 + b(x, t)

)
f
(
ht(x)

) ∂
∂t
ht(x)= 1

2
∂

∂x

(
f
(
ht(x)

) ∂
∂t
ht(x)

)
, (3.10)

whose solution is the family of homeomorphisms {ht} which determine the family of
deterministic chaotic maps {τt = h−1

t ◦T ◦ ht}, whose probability density functions are
equal to ρ(x, t).
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