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For independent random variables, the order of growth of the convergent series Sn is
studied in this paper. More specifically, if the series Sn converges almost surely to a ran-
dom variable, the tail series is a well-defined sequence of random variables and converges
to 0 almost surely. For the almost surely convergent series Sn, a tail series strong law of
large numbers (SLLN) is constructed by investigating the duality between the limiting
behavior of partial sums and that of tail series.

1. Introduction

Let {Xn, n≥ 1} be a sequence of random variables defined on a probability space (Ω,�,
P) and, as usual, their partial sums are denoted by Sn =

∑n
j=1Xj , n ≥ 1. The sequence

of random variables {Xn, n ≥ 1} (such that the series Sn diverges almost surely (a.s.))
is said to obey the strong law of large numbers (SLLN) with positive norming constants
{an, n≥ 1} if

Sn
an
−→ 0 a.s. (1.1)

If the series Sn converges a.s. to a random variable S, then (set S0 = X0 = 0) the tail series

Tn = S− Sn−1 =
∞∑
j=n

Xj , n≥ 1, (1.2)

is a well-defined sequence of random variables and converges to 0 a.s. In the same way,
a sequence of random variables {Xn, n ≥ 1} is said to obey the tail series SLLN with
norming constants {bn, n≥ 1} if the tail series Tn is well defined and for a given sequence
of positive constants with bn = o(1),

Tn
bn
−→ 0 a.s. (1.3)
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In this paper, for independent random variables, we will be concerned with the rate in
which Sn converges to a random variable S, or equivalently, in which the tail series Tn
converges to 0. As will be seen, many results for partial sums Sn can be paired with analo-
gous results for tail series Tn. Most of the limit laws for tail series have been developed by
discovering and investigating this duality.

Pioneering work on the limiting behavior of {Tn, n≥ 1} was conducted by Chow and
Teicher [3], where they obtained for a tail series of suitably bounded and independent
summands a counterpart to Kolmogorov’s celebrated law of the iterated logarithm (LIL)
(see, e.g., Chow and Teicher [4, Theorem 10.2.1, page 373] or Petrov [15, Theorem 7.1,
page 239]). Barbour [1] then established a tail series analogue of the Lindeberg-Feller
version of the central limit theorem. Other numerous investigations on the tail series LIL
problem have followed; see Heyde [7], Wellner [20], Kesten [8], Budianu [2], Chow et al.
[5], Klesov [9], Rosalsky [16], Mikosch [11], and Tomkins [19] for such work. The tail
series SLLN problem was studied by Klesov [9, 10], Mikosch [11], and Nam and Rosalsky
[12]. Also, Nam and Rosalsky [13] constructed a limit law which implies a tail series weak
law of large numbers, and then this result was not only generalized by Sung and Volodin
[18], but it was also generalized and simplified by Rosalsky and Rosenblatt [17].

For independent random variables, Petrov [14] proved a SLLN for partial sums, and
Klesov [9, 10] then developed a tail series SLLN which provided a tail series counterpart to
Petrov’s [14] SLLN. It will be shown that Klesov’s [10] tail series SLLN can be extended to
a wider class of random variables in this paper. As will become apparent, the formulation
and proof of the ensuing Theorem 3.1 owe much to the work of Klesov [9, 10].

2. Preliminary lemmas

Several lemmas are needed to establish the main results. Some of Klesov’s [9, 10] work
will now be described. Let Ψ∗ be the class of positive and nondecreasing functions ψ∗(x)
such that the series

∑∞
n=1 1/nψ∗(n) converges and xψ∗(x−1) tends monotonically to 0 as

x ↓ 0.

Lemma 2.1 (Klesov [9, 10]). Let {cn, n ≥ 1} be a sequence of nonnegative constants such
that

∑∞
n=1 cn <∞. If Cn ≡

∑∞
j=n cj > 0, n ≥ 1, then

∑∞
n=1(cn/Cnψ∗(C−1

n )) <∞ obtains for
each function ψ∗(x)∈Ψ∗.

Lemma 2.2 (Heyde [7], Rosalsky [16], and Klesov [10]). Let {xn, n ≥ 1} be a sequence
of constants and let {bn, n≥ 1} be a sequence of positive constants with bn ↓ 0. If the series∑∞

n=1(xn/bn) converges, then (1/bn)
∑∞

j=n xj −→ 0.

Lemma 2.3 (Petrov [15, Theorem 6.4, page 207]). Let {Xn, n≥ 1} be independent random
variables and let {gn(x), n≥ 1} be nondecreasing functions defined on [0,∞) such that

gn(0)= 0, lim
x→∞gn(x)=∞, n≥ 1. (2.1)

Suppose that one of the following three conditions prevails:

(i) x/gn(x) is nondecreasing in x > 0 for each n≥ 1;
(ii) gn(x)/x and x2/gn(x) are nondecreasing in x > 0, and also E(Xn)= 0, for each n≥ 1;
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(iii) x2/gn(x) is nondecreasing in x > 0, and Xn has a symmetric distribution, for each
n≥ 1.

Further, let {bn, n≥ 1} be a sequence of positive constants. If the series

∞∑
n=1

E
(
gn
(∣∣Xn∣∣))
gn
(
bn
) <∞, (2.2)

then the series
∑∞

n=1 b
−1
n Xn converges a.s.

Under hypothesis (i) or (ii), Lemma 2.3 was proved, for the case gn ≡ g, by Chung [6].
Using Lemmas 2.2 and 2.3, we obtain the following lemma. Not only does Lemma 2.4
imply Klesov [10, Assertion 3], but it also obtains a tail series analogue of Petrov [15,
Theorem 6.5, page 209]. Note that the assumptions of the lemma entail (3.2) which, as
will be demonstrated in the proof of Theorem 3.1, ensures that {Tn, n ≥ 1} is a well-
defined sequence of random variables.

Lemma 2.4. Let {Xn, n ≥ 1} be independent random variables and let {gn(x), n ≥ 1} be
nondecreasing functions defined on [0,∞) satisfying (2.1). Suppose that one of conditions (i),
(ii), and (iii) of Lemma 2.3 holds. Let {bn, n ≥ 1} be a sequence of positive constants with
bn ↓ 0. If gn(bn)=O(1) and (2.2) holds, then the tail series SLLN Tn/bn→ 0 a.s. obtains.

3. The main result

For independent random variables {Xn, n ≥ 1}, a tail series SLLN, which implies the
result of Klesov [10, Assertion 4] by taking gn ≡ g under hypothesis (i) or (ii), is obtained
in Theorem 3.1. Assume that {Xn, n≥ 1} are not eventually degenerate at 0.

Theorem 3.1. Let {Xn, n≥ 1} be independent random variables and let {gn(x), n≥ 1} be
strictly increasing functions defined on [0,∞) such that (2.1) holds, and assume that

gn(x) is nondecreasing in n for each fixed x > 0. (3.1)

Suppose that one of the following three conditions prevails:

(i) x/gn(x) is nondecreasing in x > 0 for each n≥ 1;
(ii) gn(x)/x and x2/gn(x) are nondecreasing in x > 0; and also E(Xn)= 0, for each n≥ 1;

(iii) x2/gn(x) is nondecreasing in x > 0, and Xn has a symmetric distibution, for each
n≥ 1.

If the series

∞∑
n=1

E
(
gn
(∣∣Xn∣∣)) <∞, (3.2)

then setting Bn =
∑∞

j=n E(gj(|Xj|)), n≥ 1, the tail series SLLN

Tn
g−1
n

(
Bnψ∗

(
B−1
n

)) −→ 0 a.s. for each function ψ∗(x)∈Ψ∗, (3.3)

obtains, where g−1
n denotes the inverse function of gn.
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Remark 3.2. Given that gn(x) is a nondecreasing function, each gn(x) is necessarily a
continuous function for each of conditions (i), (ii), and (iii).

Proof of Theorem 3.1. First, it will be verified, by employing the Kolmogorov three-series
criterion, that

∑∞
n=1Xn converges a.s. For n≥ 1,

P
{∣∣Xn∣∣ > 1

}= P{gn(∣∣Xn∣∣) > gn(1)
}≤ E

(
gn
(∣∣Xn∣∣))
gn(1)

(3.4)

by the Markov inequality, and so
∑∞

n=1P{|Xn| > 1} <∞. Under hypothesis (i), note that
x2 ≤ gn2(x)/gn2(1) ≤ gn(x)/g1(1), x ≤ 1. Now, under hypothesis (ii) or (iii), also observe
that x2/gn(x)≤ 1/gn(1) and so x2 ≤ gn(x)/g1(1), x ≤ 1. Thus

E
(
X2
nI[|Xn|≤1]

)≤ E
(
gn
(∣∣Xn∣∣I[|Xn|≤1]

))
g1(1)

≤ E
(
gn
(∣∣Xn∣∣))
g1(1)

(3.5)

implying that
∑∞

n=1 Var(XnI[|Xn|≤1]) <∞ for each case. Furthermore, under hypothesis (i),
since x/gn(x)≤ 1/gn(1), x ≤ 1,

E
(
XnI[|Xn|≤1]

)≤ E
(
gn
(∣∣Xn∣∣I[|Xn|≤1]

))
gn(1)

≤ E
(
gn
(∣∣Xn∣∣))
g1(1)

. (3.6)

Also under hypothesis (ii), since x/gn(x)≤ 1/gn(1), x > 1,

∣∣E(XnI[|Xn|≤1]
)∣∣= ∣∣E(XnI[|Xn|>1]

)∣∣≤ E
(
gn
(∣∣Xn∣∣I[|Xn|>1]

))
gn(1)

. (3.7)

In the case of (iii), note that E(XnI[|Xn|≤1]) = 0. Then
∑∞

n=1E(XnI[|Xn|≤1]) <∞ is ensured
for each case by (3.2). Therefore, the Kolmogorov three-series criterion guarantees that
{Tn, n≥ 1} is a well-defined sequence of random variables.

Next, let cn = E(gn(|Xn|)), n≥ 1, and note that Bn =
∑∞

j=n cj > 0; then Lemma 2.1 en-
sures that for each function ψ∗(x)∈Ψ∗,

∞∑
n=1

E
(
gn
(∣∣Xn∣∣))

gn
(
g−1
n

(
Bnψ∗

(
B−1
n

))) =
∞∑
n=1

E
(
gn
(∣∣Xn∣∣))

Bnψ∗
(
B−1
n

) <∞. (3.8)

Therefore, by setting bn = g−1
n (Bnψ∗(B−1

n )), the theorem is obtained by Lemma 2.4. �

The counterpart of Theorem 3.1 for partial sums, which generalizes Petrov [14, Theo-
rem 5 or 15, Theorem 6.13, page 220], can be proved by the same argument as in Theorem
3.1. In the following corollaries, we obtain two truncated versions of Theorem 3.1, which
improve the result of the theorem.

Corollary 3.3. Let {Xn, n≥ 1} be independent random variables and let {gn(x), n≥ 1}
be strictly increasing functions defined on [0,∞) satisfying (2.1) and (3.1). Suppose that one
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of conditions (i), (ii), and (iii) of Theorem 3.1 holds. If

∞∑
n=1

P
{∣∣Xn∣∣ > Cn} <∞, (3.9)

∞∑
n=1

E
(
gn
(∣∣XnI[|Xn|≤Cn]

∣∣)) <∞ (3.10)

are satisfied for some sequence of positive constants {Cn, n ≥ 1}, then, setting B∗n =∑∞
j=n E(gj(|XjI[|Xj |≤Cj ]|)), n≥ 1, the tail series SLLN

Tn
g−1
n

(
B∗n ψ∗

(
B∗n

−1)) −→ 0 a.s. for each function ψ∗(x)∈Ψ∗, (3.11)

obtains, where g−1
n denotes the inverse function of gn.

Remark 3.4. With the aid of the Borel-Cantelli lemma, a necessary condition for (3.11)
to hold is given by (3.9) with Cn = g−1

n (B∗n ψ∗(B∗n
−1)).

Proof of Corollary 3.3. Set Zn = XnI[|Xn|≤Cn], n≥ 1. Then, by applying Theorem 3.1 to the
random variables {Zn, n ≥ 1}, the tail series T∗n ≡

∑∞
j=n Zj is well defined and the tail

series SLLN

T∗n
g−1
n

(
B∗n ψ∗

(
B∗n

−1)) −→ 0 a.s. for each function ψ∗(x)∈Ψ∗, (3.12)

obtains. Since {Xn,n≥ 1} and {XnI[|Xn|≤Cn], n≥ 1} are equivalent in the sense of Khint-
chine, {Tn, n≥ 1} is well defined and the corollary follows. �

Corollary 3.5. Let {Xn, n ≥ 1} be independent random variables and let {gn(x),n ≥ 1}
be strictly increasing functions defined on [0,∞) satisfying (2.1) and (3.1). Suppose that one
of conditions (i), (ii), and (iii) of Theorem 3.1 holds. If (3.9) and

∞∑
n=1

E
(
gn
(∣∣XnI[|Xn|≤Cn]−E

(
XnI[|Xn|≤Cn]

)∣∣)) <∞ (3.13)

are satisfied for some sequence of positive constants {Cn, n ≥ 1}, then, setting B̃n =∑∞
j=n E(gj(|XjI[|Xj |≤Cj ]−E(XjI[|Xj |≤Cj ])|)) and

T̃n =
∞∑
j=n

{
Xj −E

(
XjI[|Xj |≤Cj ]

)}
, n≥ 1, (3.14)

the tail series SLLN

T̃n
g−1
n

(
B̃nψ∗

(
B̃−1
n

)) −→ 0 a.s. for each function ψ∗(x)∈Ψ∗, (3.15)

obtains, where g−1
n denotes the inverse function of gn.
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Proof. Set

Zn = XnI[|Xn|≤Cn]−E
(
XnI[|Xn|≤Cn]

)
, n≥ 1. (3.16)

Then the corollary follows from (3.9) and (3.13) by the argument in the proof of Corollary
3.3 mutatis mutandis. �

4. Examples

Three examples are provided to illustrate the current results as well as to compare some
of them with related results in the literature.

Example 4.1. Let {Xn, n≥ 1} be independent random variables such that

P
{
Xn = 1

nα

}
= P

{
Xn =− 1

nα

}
= 1

2
, α >

1
2
. (4.1)

Theorem 3.1 and the theorem of Klesov [10, Assertion 4] will be employed to determine
the rate of almost sure convergence of the series Sn =

∑n
j=1Xj . Define

gn(x)= nα−1/2x2, n≥ 1, (4.2)

and g(x)= g1(x)= x2, x ≥ 0. Then

E
(
gn
(∣∣Xn∣∣))= n−(α+1/2), E

(
g
(∣∣Xn∣∣))= n−2α, (4.3)

implying that all the hypotheses of Theorem 3.1 as well as Klesov’s [10] theorem are
satisfied. Now, for n≥ 1,

Bn =
∞∑
j=n

E
(
gj
(∣∣Xj

∣∣))∼M1n
−(α−1/2), (4.4)

�n =
∞∑
j=n

E
(
g
(∣∣Xj

∣∣))∼M2n
−(2α−1), (4.5)

where M1 = (α− 1/2)−1 and M2 =M1/2. If ψ∗(x) is taken to be the function

ψ∗(x)=√x, (4.6)

then

Bnψ
∗(B−1

n

)∼M1/2
1 n−(1/2)(α−1/2), �nψ

∗(�−1
n

)∼M1/2
2 n−(α−1/2), (4.7)

and so, respectively,

g−1
n

(
Bnψ

∗(B−1
n

))∼M1/4
1 n−(3/4)(α−1/2),

g−1(�nψ
∗(�−1

n

))∼M1/4
2 n−(1/2)(α−1/2).

(4.8)
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Thus, by applying Theorem 3.1 and the theorem of Klesov [10], the tail series SLLNs

n(3/4)(α−1/2)Tn −→ 0 a.s., (4.9)

n(1/2)(α−1/2)Tn −→ 0 a.s., (4.10)

obtain, respectively. Hence, recalling α > 1/2, (4.9) dominates (4.10). Therefore, Theorem
3.1 gives us a sharper result than that which can be obtained by Klesov’s [10] theorem
with ψ∗(x) as in (4.6).

Next, by taking

ψ∗(x)= ( log1 x
)1+ε

, ε > 0, (4.11)

where

log1 x =



logx if x ≥ e,
e−1x if x < e,

for the natural logarithm logx (x ≥ e), (4.12)

the two relations in (4.4) and (4.5) yield the asymptotic relations

Bnψ
∗(B−1

n

)∼M3n
−(α−1/2)( log1n

)1+ε
,

�nψ
∗(�−1

n

)∼M4n
−(2α−1)( log1n

)1+ε
,

(4.13)

where M3 = (α− 1/2)ε and M4 = 2εM3, and so, respectively,

g−1
n

(
Bnψ

∗(B−1
n

))∼M1/2
3 n−(α−1/2)( log1n

)(1+ε)/2
,

g−1(�nψ
∗(�−1

n

))∼M1/2
4 n−(α−1/2)( log1n

)(1+ε)/2
.

(4.14)

Hence, by either Theorem 3.1 or the theorem of Klesov [10], the tail series SLLN

nα−1/2

(
log1n

)(1+ε)/2Tn −→ 0 a.s., (4.15)

obtains. Therefore, there is no advantage of Theorem 3.1 over Klesov’s [10] theorem
when ψ∗(x) is as in (4.11).

In particular, by taking α= 1 in Example 4.1, the harmonic series Sn =
∑n

j=1Xj with a
random choice of signs is obtained in the following example.

Example 4.2. Let {Xn, n≥ 1} be independent random variables such that

P
{
Xn = 1

n

}
= P

{
Xn =−1

n

}
= 1

2
, n≥ 1. (4.16)

Let 0 < β < 1 and define

gn(x)= n1−βx2, n≥ 1, (4.17)
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and g(x)= g1(x)= x2, x ≥ 0. Then

E
(
gn
(∣∣Xn∣∣))= n−(1+β), E

(
g
(∣∣Xn∣∣))= n−2, (4.18)

and so, all the hypotheses of both Theorem 3.1 and Klesov’s [10] theorem are satisfied.
Now, for n≥ 1,

Bn =
∞∑
j=n

E
(
gj
(∣∣Xj

∣∣))∼Mn−β, �n =
∞∑
j=n

E
(
g
(∣∣Xj

∣∣))∼ n−1, (4.19)

where M = β−1. If ψ∗(x) is taken to be the function as in (4.6), then

Bnψ
∗(B−1

n

)∼M1/2n−β/2, �nψ
∗(�−1

n

)∼ n−1/2, (4.20)

and so, respectively,

g−1
n

(
Bnψ

∗(B−1
n

))∼M1/4n−(1/2−β/4), g−1(�nψ
∗(�−1

n

))∼ n−1/4. (4.21)

Thus, by applying Theorem 3.1, we obtain the tail series SLLN

n1/2−β/4Tn −→ 0 a.s., (4.22)

which dominates the tail series SLLN

n1/4Tn −→ 0 a.s., (4.23)

given by the theorem of Klesov [10]. Hence, Theorem 3.1 gives us a sharper result than
that which can be obtained by Klesov’s [10] theorem. Also, if we include α = 1 in (4.9)
for the harmonic series, (4.22) with β < 1/2 dominates (4.9). Therefore, by taking gn(x)
as in (4.17) instead of as in (4.2), this example gives us a better result than that which was
obtained in Example 4.1.

Example 4.3. Let {Xn, n≥ 1} be independent random variables such that

P
{
Xn = 1

}= 1− 1
n2

, P
{
Xn = en

}= 1
n2

, n≥ 1. (4.24)

Let 1/2 < p ≤ 1 and let gn(x) ≡ |x|p, n ≥ 1. Then, by setting Cn ≡ 1 for all n ≥ 1, all the
assumptions of Corollary 3.5 are satisfied since

E
(
gn
(∣∣XnI[|Xn|≤Cn]−E

(
XnI[|Xn|≤Cn]

)∣∣))= 1
n2p

(
1− 1

n2

)
+
(

1− 1
n2

)p 1
n2
. (4.25)

Next, for n≥ 1,

B̃n =
∞∑
j=n

E
(
gn
(∣∣XnI[|Xn|≤Cn]−E

(
XnI[|Xn|≤Cn]

)∣∣))∼M−1n−(2p−1), (4.26)
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where M = 2p− 1. If ψ∗(x) is taken to be the function as in (4.11), then

B̃nψ
∗(B̃−1

n

)∼Mεn−(2p−1)( log1n
)1+ε = o(1), ε > 0, (4.27)

and so

g−1
n

(
B̃nψ

∗(B̃−1
n

))∼Mε/pn−(2−1/p)( log1n
)(1+ε)/p

. (4.28)

Thus, the tail series SLLN

n2−1/p

(
log1n

)(1+ε)/p T̃n −→ 0 a.s., (4.29)

obtains by Corollary 3.5, where the tail series {T̃n, n≥ 1} are defined as in (3.14).
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