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The Pólya-Aeppli process as a generalization of the homogeneous Poisson process is de-
fined. We consider the risk model in which the counting process is the Pólya-Aeppli pro-
cess. It is called a Pólya-Aeppli risk model. The problem of finding the ruin probability
and the Cramér-Lundberg approximation is studied. The Cramér condition and the
Lundberg exponent are defined. Finally, the comparison between the Pólya-Aeppli risk
model and the corresponding classical risk model is given.

1. Introduction

The standard model of an insurance company, called risk process {X(t), t ≥ 0}, defined
on the complete probability space (Ω,�,P), is given by

X(t)= ct−
N(t)∑
k=1

Zk,

( 0∑
1

= 0

)
. (1.1)

Here c is a positive real constant representing the gross risk premium rate. The sequence
{Zk}∞k=1 of mutually independent and identically distributed random variables (r.v.’s)
with common distribution function F, F(0) = 0, and mean value µ is independent of
the counting process N(t), t ≥ 0. The process N(t) is interpreted as the number of claims
on the company during the interval [0, t].

In the classical risk model, the process N(t) is a stationary Poisson counting process;
see for instance Grandell [4]. In this case, the aggregate claim amounting up to time t

is given by the compound Poisson process S(t)=∑N(t)
i=1 Zi. If the number of claims N(t)

forms a renewal counting process, the model (1.1) is called a renewal risk model. There
are many directions in which the classical risk model and the renewal model are gener-
alized in order to become a reasonably realistic description. Dickson [2] studied a gen-
eralization of the renewal model, assuming that claims occur as an Erlang process, and
extended several classical results. References are given in Asmussen [1] and Rolski et al.
[9]. Our interest is in the generalization of the counting process N(t). In [7, 8], a new
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family of discrete probability distributions is introduced. The classical Poisson, negative
binomial, binomial, and logarithmic distributions are generalized by adding a new pa-
rameter ρ ∈ [0,1). The generalized distributions are called inflated-parameter distribu-
tions according to the interpretation of the parameter ρ. The new family of distributions
is called inflated-parameter generalized power series distributions (IGPSD). In the case of
ρ = 0, the IGPSD becomes the family of generalized power series distributions (GPSD) or
the classical discrete distributions. A natural question is: what will be the corresponding
generalization of the classical risk model?

We give useful interpretation of the model. Suppose that any insurance policy pro-
duces two types of claims named “success” with probability 1− ρ and “failure” with
probability ρ. Define the r.v. N to equal the number of trials until the ith successive claim
appears. The r.v. N is negative binomial distributed with parameters 1− ρ and i. The
probability mass function of N is given by

P(N = k)=
(
k− 1
k− i

)
ρk−i(1− ρ)i, k = i, i+ 1, . . . . (1.2)

The r.v. N , given by (1.2), can be represented as a sum N = X1 + ··· + Xi, where {Xj ,
j = 1,2, . . .} are independent identically Ge1(1− ρ)-distributed r.v.’s. The parameter i in
(1.2) represents the number of geometrically distributed r.v.’s. If we suppose that i is an
outcome of the r.v. Y , independent of {Xj , j = 1,2, . . .}, and Y has the GPSD, then N
has the IGPSD; see [8]. In particular, if Y has the Poisson distribution with parameter
λ (Po(λ)), N has the inflated-parameter Poisson distribution (IPo(λ,ρ)). The IPo(λ,ρ)
distribution coincides with the Pólya-Aeppli distribution (see [5]) and has the following
probability mass function:

P(N = n)=



e−λ, n= 0,

e−λ
n∑
i=1

(
n− 1
i− 1

)[
λ(1− ρ)

]i
i!

ρn−i, n= 1,2, . . . .
(1.3)

In the next section, we will define the Pólya-Aeppli process in order to describe the ag-
gregate claim amount process as a compound Pólya-Aeppli process. Section 3 deals with
the risk model in the case of Pólya-Aeppli counting process. The ruin probability in two
cases, ordinary and stationary, is studied. In Section 4, the Cramér-Lundberg approxima-
tion is given. A comparison between the Pólya-Aeppli risk model and the corresponding
classical risk model is given in Section 5.

2. The Pólya-Aeppli process

The IPo(λ,ρ) distribution is a generalization of the classical Po(λ) distribution. In this
section, we will define the corresponding generalization of the Poisson process.

We consider the sequence T1,T2, . . . of nonnegative, mutually independent r.v.’s and
the corresponding renewal process

Sn =
n∑

k=1

Tk, n= 1,2, . . . , S0 = 0. (2.1)
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The process Sn can be interpreted as a sequence of renewal epochs. T1 is the time until the
first renewal epoch and {Tk}k≥2 are the interarrival times.

Let N(t)= sup{n≥ 0, Sn ≤ t}, t ≥ 0, be the number of renewals occurring up to time t.
The distribution of N(t) is related to that of Sn, and for any t ≥ 0 and n≥ 0, the following
probability relation holds:

P
(
N(t)= n

)= P
(
Sn ≤ t

)−P
(
Sn+1 ≤ t

)
, n= 0,1,2, . . . . (2.2)

We will suppose that N(t) is described by the IPo(λt,ρ) distribution (or Pólya-Aeppli
distribution), with mean function (λ/(1− ρ))t, that is,

P
(
N(t)= n

)=


e−λt, n= 0,

e−λt
n∑
i=1

(
n− 1
i− 1

)[
λ(1− ρ)t

]i
i!

ρn−i, n= 1,2, . . . .
(2.3)

We denote by LSX(s) = ∫∞0 e−sxdFX(x) the Laplace-Stieltjes transform (LST) of any
r.v. X with distribution function FX(x). Let pn(t)= P(N(t)= n).

For the next considerations, we need the following result.

Lemma 2.1. The LST of pn(t) is given by

LSpn(t)(s)=
∫∞

0
e−stdpn(t)=



− λ

s+ λ
, n= 0,

(1− ρ)
λ

s+ λ

s

s+ λ

[
ρ+ (1− ρ)

λ

s+ λ

]n−1

, n= 1,2, . . . .

(2.4)

Now we will show that the renewal process is characterized by the fact that T1 is expo-
nentially distributed and {T2,T3, . . .} are identically distributed. Moreover, T2 is zero with
probability ρ, and with probability 1− ρ, exponentially distributed with parameter λ. This
means that the probability density functions and the mean values are the following:

fT1 (t)= λe−λt, t ≥ 0, ET1 = 1
λ

, (2.5)

fT2 (t)= ρδ0(t) + (1− ρ)λe−λt, t ≥ 0, ET2 = 1− ρ

λ
, (2.6)

where

δ0(t)=

1, if t = 0,

0, otherwise.
(2.7)

The process Sn is called a delayed renewal process with a delay T1.

Theorem 2.2. There exists exactly one renewal process such that the number of renewals up
to time t has the Pólya-Aeppli distribution (2.3). In this case, the time until the first renewal
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epoch T1 is exponentially distributed with parameter λ. The interarrival times T2,T3, . . . are
zero with probability ρ, and with probability 1− ρ, exponentially distributed with parame-
ter λ.

Proof. To prove the theorem, it suffices to show that the LST of the r.v. Sn is as follows:

LSSn(s)= λ

s+ λ

[
ρ+ (1− ρ)

λ

s+ λ

]n−1

. (2.8)

We will prove it by induction using the relations (2.2). For n= 0, (2.2) becomes

P
(
N(t)= 0

)= 1−P
(
T1 ≤ t

)= 1−FT1 (t), (2.9)

where FT1 (t) is the distribution function of T1. On the other hand, from (2.3), it follows
that

P
(
N(t)= 0

)= e−λt. (2.10)

Combining (2.9) and (2.10) gives that FT1 (t)= 1− e−λt, that is, the r.v. T1 is exponentially
distributed with parameter λ and LST λ/(s+ λ).

Now from (2.2), for n= 1, we get

P
(
N(t)= 1

)= P
(
S1 ≤ t

)−P
(
S2 ≤ t

)
. (2.11)

Taking the LST leads to

(1− ρ)
λ

s+ λ

s

s+ λ
= LSS1 (s)−LSS2 (s). (2.12)

After some algebra, we arrive at

LST1+T2 (s)= λ

s+ λ

[
ρ+ (1− ρ)

λ

s+ λ

]
, (2.13)

which means that T2 is independent of T1. Moreover, T2 is an exponentially distributed
r.v. with parameter λ and mass at zero equal to ρ. The probability density function of T2

is given by (2.6).
Suppose now that for any n≥ 2, the LST of Sn is given by (2.8). Taking the LST in (2.2),

we get

LSSn+1 (s)=
∫∞

0
e−stdP

(
Sn+1 ≤ t

)

=
∫∞

0
e−stdP

(
Sn ≤ t

)−
∫∞

0
e−stdpn(t).

(2.14)
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Applying Lemma 2.1, one can show that the LST of the renewal process Sn+1 is equal to

LSSn+1 (s)= λ

s+ λ

[
ρ+ (1− ρ)

λ

s+ λ

]n
. (2.15)

This proves the theorem. �

Remark 2.3. In the case of ρ = 0, the LST (2.8) becomes the LST of Gamma (n,λ) (or Er-
lang (n)) distributed r.v. This case coincides with the usual homogeneous Poisson process.

Remark 2.4. We note that the probability distribution function of T2 is given by

FT2 (t)= 1− (1− ρ)e−λt, t ≥ 0. (2.16)

That family of distributions has a jump at zero, that is, P(T2 = 0)= ρ.

Remark 2.5. It is easy to see that the exponential distribution function of the delay, FT1 (t),
and the distribution function FT2 (t) satisfy the following relation:

FT1 (t)= 1
ET2

∫ t

0

[
1−FT2 (u)

]
du. (2.17)

In this case, the delayed renewal counting process is the only stationary renewal pro-
cess; see [6]. From the renewal theory, it is known that under condition (2.17), the de-
layed renewal counting process has stationary increments; see for instance Rolski et al. [9,
Theorem 6.1.8].

We proved the theorem using the LST and basic relation (2.2). The converse theorem
is also true.

Theorem 2.6. Suppose that the interarrival times {Tk}k≥2 of the stationary renewal process
are equal to zero with probability ρ, and with probability 1− ρ, exponentially distributed
with parameter λ. Then the number of renewals up to time t has the Pólya-Aeppli distribu-
tion.

Now we can define the inflated-parameter Poisson process, or the Pólya-Aeppli pro-
cess.

Definition 2.7. A counting process {N(t), t ≥ 0} is said to be a Pólya-Aeppli process if

(a) it starts at zero, N(0)= 0;
(b) it has independent, stationary increments;
(c) for each t > 0, N(t) is Pólya-Aeppli distributed.

The Pólya-Aeppli process is a time-homogeneous process. In the case of ρ = 0, it
becomes a homogeneous Poisson process. So, we have a homogeneous process with an
additional parameter. The additional parameter ρ has an interpretation as a correlation
coefficient; see [8].
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3. The Pólya-Aeppli risk model

We consider the risk process X , defined by (1.1), where N(t) is the Pólya-Aeppli pro-
cess independent of the claim sizes {Zk}∞k=1. We will call this process a Pólya-Aeppli risk
process.

The relative safety loading θ is defined by

θ = c(1− ρ)− λµ

λµ
= c(1− ρ)

λµ
− 1, (3.1)

and in the case of positive safety loading θ > 0, c > λµ/(1− ρ).
The survival probability, or nonruin probability Φ(u), of a company having initial cap-

ital u is given by

Φ(u)= P
{

inf
t≥0

X(t)≥−u
}
. (3.2)

The ruin probability is defined by the equality Ψ(u)= 1−Φ(u). We suppose that u≥ 0.
The occurrence of the claims in the risk process (1.1) is described by a delayed renewal

counting process. We will study the ruin probability in two cases following the renewal
arguments described by Feller [3] and Grandell [4].

3.1. The ordinary case. We suppose that the first claim has occurred and the subsequent
claims occur as an ordinary renewal process. The interoccurrence times Tk, k = 1,2, . . . ,
are exponentially distributed with mass at zero equal to ρ and probability density function
given by (2.6). The claim sizes Z1,Z2, . . . are independent and identically distributed r.v.’s
with common distribution function F(x) with F(0)= 0 and mean value µ. Let

FI(x)= 1
µ

∫ x

0

[
1−F(z)

]
dz (3.3)

be the integrated tail distribution. We define the function

H(z)= ρF(z) +
λµ

c
FI(z) (3.4)

and note that

H(∞)= ρF(∞) +
λ

c

∫∞
0

[
1−F(z)

]
dz = ρ+

λµ

c
< 1. (3.5)

If we denote by Φ0(u) and Ψ0(u) the nonruin and ruin probabilities, respectively, in
the ordinary case, then the following result holds.

Proposition 3.1. The nonruin function Φ0(u) satisfies the integral equation

Φ0(u)=Φ0(0) +
∫ u

0
Φ0(u− z)dH(z), u≥ 0, (3.6)

where H(z) is defined by (3.4).
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Proof. Suppose that the first claim occurs at epoch s. For no ruin to occur according to
the renewal argument, we get

Φ0(t)=
∫∞

0−

[
ρδ0 + (1− ρ)λe−λs

]∫ t+cs

0
Φ0(t+ cs− z)dF(z)ds

= ρ
∫ t

0−
Φ0(t− z)dF(z) + (1− ρ)

∫∞
0−
λe−λs

∫ t+cs

0
Φ0(t+ cs− z)dF(z)ds, t ≥ 0.

(3.7)

Change of variables and differentiation leads to

Φ0′(t)= ρΦ0(0)F′(t) + ρ
∫ t

0−
Φ0′(t− z)dF(z) +

λ

c

[
Φ0(t)− λ

c

∫ t

0
Φ0(t− z)dF(z)

]
,

(3.8)

where Φ0′(t) is the derivative of Φ0(t). Integrating (3.8) in t over [0,u] and performing
integration by parts, one gets

Φ0(u)=Φ0(0) + ρ
∫ u

0−
Φ0(u− z)dF(z) +

λ

c

∫ u

0
Φ0(u− z)

[
1−F(z)

]
dz, (3.9)

which is just (3.6). �

Corollary 3.2. The ruin probability Ψ0(u) satisfies the following integral equation:

Ψ0(u)=H(∞)−H(u) +
∫ u

0
Ψ0(u− z)dH(z), u≥ 0. (3.10)

Proof. Equation (3.10) follows directly from (3.6). �

Since H(∞) < 1, (3.6) and (3.10) are defective renewal equations.
Recalling that H(∞)= ρ+ λµ/c and Φ0(∞)= 1, in the case of positive safety loading,

we conclude that

Φ0(0)= 1−H(∞)= (1− ρ)
[

1− λµ

c(1− ρ)

]
,

Ψ0(0)= 1−Φ0(0)=H(∞).
(3.11)

Define LΦ0 (s) to be the Laplace transform (LT) of Φ0(u). Taking the LT of (3.6), we get

LΦ0 (s)= Φ0(0)
s
[
1−LSH(s)

] , (3.12)

where LSH(s) is the LST of H(u). Using the standard properties of the transforms and
their inversions leads to

Φ0(u)= (1−H(∞)
) ∞∑
n=0

H∗n(u), u≥ 0, (3.13)
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where H∗n(u) means the nth convolution of H(u) with itself. The same result can be de-
rived by using the fact that renewal equation (3.6) has a unique solution; see for instance
[9, Lemma 6.1.2].

Now we define

H1(u)= H(u)
H(∞)

= H(u)
ρ+ λµ/c

, (3.14)

which is a proper probability distribution. For the nonruin probability, we have

Φ0(u)= [1−H(∞)
] ∞∑
n=0

[
H(∞)

]n
H∗n

1 (u), u≥ 0, (3.15)

and for the ruin probability,

Ψ0(u)= [1−H(∞)
] ∞∑
n=1

[
H(∞)

]n
H̄∗n

1 (u), u≥ 0, (3.16)

where H̄1(u)= 1−H1(u).
In the above formula, we recognize a version of the Pollaczeck-Khinchin formula (or

Beekman convolution formula); see [9].
According the definition of the relative safety loading (3.1), the following relations

hold:

1−H(∞)= (1− ρ)
θ

1 + θ
, H(∞)= 1 + θρ

1 + θ
. (3.17)

So,

Ψ0(u)= (1− ρ)
θ

1 + θ

∞∑
n=1

(
1 + θρ

1 + θ

)n
H̄∗n

1 (u), u≥ 0. (3.18)

In the case of ρ = 0, H1(u) =H(u) = G(u) and (3.18) coincides with the ruin proba-
bility of the classical risk model.

Example 3.3. We consider the case of exponentially distributed claim sizes, that is, F(u)=
1− e−u/µ, u≥ 0, µ > 0. In this case, the integrated tail distribution FI(u) is exponential also
and H(u)= (ρ+ λµ/c)[1− e−u/µ]. So, H1(u)= 1− e−u/µ.

Taking into account that the nth convolution ofH1(u) is an Erlang (n,1/µ) distribution
with distribution function

H∗n
1 (u)= 1− e−u/µ

n−1∑
j=0

(u/µ) j

j!
, (3.19)

relation (3.15) leads to

Φ0(u)= 1−H(∞)exp
{
− 1−H(∞)

µ
u
}
. (3.20)
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The ruin probability in terms of the relative safety loading is given by

Ψ0(u)= 1 + θρ

1 + θ
exp

{
− 1− ρ

µ

θ

1 + θ
u
}
. (3.21)

If ρ = 0, the result coincides with the example of Grandell [4, pages 5–6] related to the
ruin probability for the classical risk model. The example is to be continued.

3.2. The stationary case. According to the arguments described by Grandell [4], if Φ0(u)
and Ψ0(u) are nonruin and ruin probabilities, respectively, in the ordinary case, then in
the stationary case, we have the following result.

Proposition 3.4. The nonruin probability Φ(u) and the ruin probability Ψ(u) in the sta-
tionary case satisfy the integral representations

Φ(u)=Φ(0) +
λ

c(1− ρ)

∫ u

0
Φ0(u− z)

(
1−F(z)

)
dz, (3.22)

Ψ(u)= λ

c(1− ρ)

[∫∞
u

(
1−F(z)

)
dz+

∫ u

0
Ψ0(u− z)

(
1−F(z)

)
dz
]
. (3.23)

Since Φ(∞)=Φ0(∞)= 1 when c > λµ/(1− ρ), we have

Φ(0)= 1−H(∞)
1− ρ

= 1− λµ

c(1− ρ)
. (3.24)

Taking the LP of (3.22) and applying (3.12), we have

LΦ(s)= Φ(0)
s

+
λµ

c(1− ρ)
LSFI (s)

Φ0(0)
s
[
1−LSH(s)

] . (3.25)

Again, the standard properties of the transforms lead to

LSΦ(s)= 1−H(∞)
1− ρ

+
H(∞)− ρ

1− ρ
LSFI (s)

[
1−H(∞)

] ∞∑
n=0

[
LSH(s)

]n
. (3.26)

So, the ruin probability in the stationary case is given by

Ψ(u)= H(∞)− ρ

1− ρ

[
F̄I(u) +FI(u)∗ [1−H(∞)

] ∞∑
n=1

[
H(∞)

]n
H̄∗n

1 (u)
]

, (3.27)

where H̄1(u)= 1−H1(u) and F̄I(u)= 1−FI(u).
In terms of the relative safety loading, the ruin probability is given by

Ψ(u)= 1
1 + θ

F̄I(u) +
1

1 + θ
FI(u)

(1− ρ)θ
1 + θ

∞∑
n=1

(
1 + θρ

1 + θ

)n
H̄∗n

1 (u). (3.28)
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Example 3.5. Again, consider the case in which the claim amount distribution is expo-
nential with mean value µ. Applying the argument of Example 3.3 to the ruin probability
(3.27) yields

Ψ(u)= H(∞)− ρ

1− ρ
exp

{
− 1−H(∞)

µ
u
}

, (3.29)

and in terms of the relative safety loading,

Ψ(u)= 1
1 + θ

exp
{
− 1− ρ

µ

θ

1 + θ
u
}
. (3.30)

In the case of ρ= 0, (3.30) coincides with that of Grandell [4, Example 6, page 69].

4. The Cramér-Lundberg approximation

4.1. The ordinary case. We return to the defective integral equation (3.10) for the ruin
probability in the ordinary case. Assume that there exists a constant R > 0 such that

∫∞
0
eRzdH(z)= 1, (4.1)

where H(z) is given by (3.4), and denote h(R)= ∫∞0 eRzdF(z)− 1. Relation (4.1) is known
as the Cramér condition. The constant R, if it exists, is called adjustment coefficient or
Lundberg exponent. For any functions f1(x) and f2(x), we write f1(x)∼ f2(x) for x→∞
if limx→∞( f1(x)/ f2(x))= 1.

Theorem 4.1. Let, for the Pólya-Aeppli risk model, the Cramér condition (4.1) holds and
h′(R) <∞. Then

Ψ0(u)∼ µθA(µ,θ,R,ρ)
A2(µ,θ,R,ρ)h′(R)−µ(1 + θ)

e−Ru, (4.2)

where A(µ,θ,R,ρ)= (1− [1−µ(1 + θ)R]ρ)/(1− ρ).

Proof. Multiplying (3.10) by eRu yields

eRuΨ0(u)= eRu
(
H(∞)−H(u)

)
+
∫ u

0
eR(u−z)Ψ0(u− z)eRzdH(z). (4.3)

It follows from the definition of R that integral equation (4.3) is a renewal equation.
The mean value of the probability distribution, given by

G(t)=
∫ t

0
eRzdH(z), (4.4)

is ∫∞
0
zeRzdH(z)= λ

cR

(
1 +

c

λ
Rρ
)
h′(R)− 1− ρ

R
(
1 + (c/λ)Rρ

) . (4.5)



Leda D. Minkova 231

Since ∫∞
0
eRu
(
H(∞)−H(u)

)
dz = 1−H(∞)

R
= 1− (ρ+ λµ/c)

R
, (4.6)

by the key renewal theorem, we have

Ψ0(u)∼
(
1 + (c/λ)Rρ

)(
(1− ρ)(c/λ)−µ

)
(
1 + (c/λ)Rρ

)2
h′(R)− (1− ρ)(c/λ)

e−Ru. (4.7)

Taking into account that c/λ= µ(1 + θ)/(1− ρ), we get the Cramér-Lundberg approx-
imation in terms of the relative safety loading given by (4.2). �

If ρ = 0, A(µ,θ,R,0) = 1 and (4.2) coincides with the Cramér-Lundberg approxima-
tion for the classical risk model [4, page 7].

Example 4.2. If we take F(x)= 1− exp(−x/µ), then h(R)= µR/(1−µR). The constant R
is a positive solution of the equation

(
1 +

c

λ
Rρ
)

µR

1−µR
= (1− ρ)

c

λ
R, (4.8)

that is,

R= 1− ρ

µ

(
1− λµ

c(1− ρ)

)
= 1− ρ

µ

θ

1 + θ
, (4.9)

and A(µ,θ,R,ρ)= 1 + θρ.
So, the Cramér-Lundberg approximation is exact when the claims are exponentially

distributed and given by

Ψ0(u)∼ 1 + θρ

1 + θ
e−Ru. (4.10)

4.2. The stationary case. We write integral representation (3.23) for the ruin probability
in the stationary case in the following equivalent form:

Ψ(u)= λµ

c(1− ρ)

[
F̄I(u)−

∫ u

0
Ψ0(u− z)dF̄I(z)

]
. (4.11)

Taking into account the Cramér-Lundberg approximation in the ordinary case, we
have

Ψ(u)∼ (1− ρ)(c/λ)−µ(
1 + (c/λ)Rρ

)2
h′(R)− (1− ρ)(c/λ)

e−Ru, (4.12)

and in terms of the relative safety loading,

Ψ(u)∼ µθ

A2(µ,θ,R,ρ)h′(R)−µ(1 + θ)
e−Ru. (4.13)
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In the case of ρ = 0, asymptotic relation (4.13) coincides with the Cramér-Lundberg
approximation in the classical risk model.

Example 4.3. Again, in the case of exponentially distributed claim sizes, the Cramér-
Lundberg approximation is exact and is given by

Ψ(u)∼ 1
1 + θ

e−Ru, (4.14)

where R is a positive solution of (4.8).

5. Comparison of ruins

The value of the Lundberg exponent is a measure of the dangerousness of the risk busi-
ness. Relative to this measure, the ordinary and the stationary cases are equally dangerous;
see [4, page 70].

We will compare the Pólya-Aeppli risk model with the corresponding classical model.
According to the definition given by De Vylder and Goovaerts [2], corresponding risk
models are models with the same claim size distribution, the same expected number of
claims in any time interval [0, t], the same security loading, and the same initial risk re-
serve. The classical risk model corresponding to the Pólya-Aeppli risk model has a Poisson
counting process with intensity λ/(1− ρ) and a relative safety loading given by (3.1). The
interarrival times are exponentially distributed with parameter λ/(1− ρ). Now we need
the following lemma [4].

Lemma 5.1. Let T1 and T2 be two r.v.’s representing the interarrival times of two risk models.
Let R1 and R2 be the corresponding Lundberg exponents. If LST1 (s) ≤ LST2 (s) for all s > 0,
then R1 ≥ R2.

Let Tcl and T be two r.v.’s representing the interarrival times of the corresponding
classical risk model and the Pólya-Aeppli risk model. Then

LSTcl (s)= λ/(1− ρ)
s+ λ/(1− ρ)

, LST(s)= ρ+ (1− ρ)
λ

s+ λ
. (5.1)

It is easy to see that LSTcl (s)≤LST(s), s>0. Applying Lemma 5.1, it follows that Rcl ≥ R,
where Rcl is the Lundberg exponent for the classical model. This means that the Pólya-
Aeppli risk model is more dangerous than the corresponding classical model.

The comparison of the exact ruin probabilities depends on the claim size distribu-
tion. We can compare analytically the particular cases of exponentially distributed claim
sizes. At first, we compare the ruin probability of the stationary case (3.30) with the ruin
probability of the corresponding classical risk model given by

Ψcl(u)= 1
1 + θ

exp
{
− 1
µ

θ

1 + θ
u
}
. (5.2)

It is easy to see that for all u≥ 0,

Ψ(u)≥Ψcl(u). (5.3)
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On the other hand, the comparison between (3.21) and (3.30) states that for all u≥ 0,

Ψ0(u)≥Ψ(u). (5.4)

So, in the case of exponentially distributed claim sizes, the most dangerous is the ordinary
case and the less dangerous is the classical risk model.

Comparing the ruin probabilities, it is natural to mention the difference between the
Pólya-Aeppli risk model and the classical model in the case of ρ = 0. It suffices to compare
the ruin probability in the stationary case (3.30) and the corresponding ruin probability,

Ψ{ρ=0}(u)= 1
1 + θ{ρ=0}

exp
{
− 1
µ

θ{ρ=0}
1 + θ{ρ=0}

u
}

, (5.5)

in the case of ρ = 0. From (3.1), it follows that

θ{ρ=0} ≥ θ. (5.6)

Then for all u≥ 0, we have

Ψ{ρ=0}(u)≤Ψ(u). (5.7)

In this case, again the Pólya-Aeppli risk model is more dangerous than the classical risk
model.

It is useful to analyze the differences between the ruin probabilities even in the particu-
lar cases. The distributions of the interarrival times of the corresponding models have the
same expected values. In the Pólya-Aeppli risk model, we have P(T2 = 0)= ρ > 0, that is,
the probability that the claims arrive simultaneously is not equal to zero. This can cause
the ruin and the ruin probability is greater.
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