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For the initial value problem trx′(t) = at + b1x(t) + b2x(q1t) + b3trx′(q2t) + ϕ(t,x(t),
x(q1t),x′(t),x′(q2t)), x(0) = 0, where r > 1, 0 < qi � 1, i ∈ {1,2}, we find a nonempty
set of continuously differentiable solutions x : (0,ρ] → R, each of which possesses nice
asymptotic properties when t→ +0.

1. Introduction

In this paper, we will consider singular initial value problems for a class of functional
differential equations (FDEs). This problem has received very little attention in the litera-
ture to date; we refer the reader to [2, 3, 5, 7] where the question of solvability (in various
spaces) and the number of solutions have been discussed. We remark that, even now, the
asymptotic properties of solutions of FDEs are only partially understood. Our approach
to this problem is essentially different from others known in the literature. In particu-
lar, we use qualitative methods [1, 7, 8] together with standard fixed point theorems [6].
Our technique leads to the existence of continuously differentiable solutions with nice
asymptotic properties.

2. Main result

Consider the initial value problem

trx′(t)= at+ b1x(t) + b2x
(
q1t
)

+ b3t
rx′
(
q2t
)

+ϕ
(
t,x(t),x

(
q1t
)
,x′(t),x′

(
q2t
))

,
(2.1)

x(0)= 0, (2.2)

where t ∈ (0,τ) is a real variable, x : (0,τ)→ R is a real unknown function, r, a, b1, b2,
b3, q1, q2 are constants, r > 1, b1 �= 0, 0 < qi � 1, i∈ {1,2}, and ϕ : �→R is a continuous
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function; here

�= {(t, y1, y2, y3, y4
)

: t ∈ (0,τ),
∣∣y1
∣∣ < ν1t,∣∣y2

∣∣ < ν1q1t,
∣∣y3
∣∣ < ν2t

1−r ,
∣∣y4
∣∣ < ν2

(
q2t
)1−r}

.
(2.3)

In what follows, we will assume that the following conditions are satisfied:

∣∣ϕ(t, y1, y2, y3, y4
)−ϕ(s, y1, y2, y3, y4

)∣∣
� l1(µ)|t− s|, (

t, y1, y2, y3, y4
)∈�,

(
s, y1, y2, y3, y4

)∈�, 0 < µ� t, 0 < µ� s,∣∣ϕ(t, y1, y2, y3, y4
)−ϕ(t,z1,z2,z3,z4

)∣∣
� l2(t)

(∣∣y1− z1
∣∣+

∣∣y2− z2
∣∣+ tr

∣∣y3− z3
∣∣+ tr

∣∣y4− z4
∣∣),(

t, y1, y2, y3, y4
)∈�,

(
t,z1,z2,z3,z4

)∈�,
(2.4)

where l1 : (0,τ)→ (0,+∞) is a continuous nonincreasing function, l2 : (0,τ)→ (0,+∞) is
a continuous nondecreasing function, limt→+0 l2(t)= 0, and

|a| < ν1
∣∣b1 + b2q1

∣∣, (2.5)

q1
∣∣b2
∣∣ < ∣∣b1

∣∣(1− 2
∣∣b3
∣∣q1−r

2

)
. (2.6)

Further, we will assume that

∣∣ϕ(t,ct,cq1t,c,c
)∣∣� tβ(t), t ∈ (0,τ), (2.7)

where c = −a(b1 + b2q1)−1, β : (0,τ)→ (0,+∞) is a continuously differentiable function
and, moreover,

lim
t→+0

β(t)= 0, lim
t→+0

tr−1(β(t)
)−1 = L1, lim

t→+0
tβ′(t)

(
β(t)

)−1 = L2,

0 � Li < +∞, i∈ {1,2}.
(2.8)

Definition 2.1. For any ρ ∈ (0,τ), a continuously differentiable function x : (0,ρ]→ R is
said to be ρ-solution of problem (2.1), (2.2) if

(1) (t,x(t),x(q1t),x′(t),x′(q2t))∈� for all t ∈ (0,ρ];
(2) x identically satisfies the differential equation (2.1) for all t ∈ (0,ρ].

We denote by �(ρ,M) the set of all continuously differentiable functions u : (0,ρ]→R

such that |u(t)− ct|�Mtβ(t), t ∈ (0,ρ]; here ρ, M are (positive) constants, ρ < τ.
The main result of this paper is the following theorem.

Theorem 2.2. There exist constants ρ, M such that

(a) if b1 > 0, then problem (2.1), (2.2) possesses an infinite set of ρ-solutions x : (0,ρ]→
R, each of which belongs to �(ρ,M). Moreover, for any constant α which satisfies the
condition |α− cρ| <Mρβ(ρ), there exists at least one ρ-solution xα ∈�(ρ,M) such
that xα(ρ)= α;
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(b) if b1 < 0, then problem (2.1), (2.2) possesses at least one ρ-solution x : (0,ρ] → R

which belongs to �(ρ,M).

Proof. We can choose constants Q and M (cf. (2.6)) so that

2
∣∣b1
∣∣ < Q < qr−1

2

∣∣b3
∣∣−1(∣∣b1

∣∣− q1
∣∣b2
∣∣),

M >
(∣∣(b3− 1

)
c
∣∣L1 + 1

)(∣∣b1
∣∣− q1

∣∣b2
∣∣−Q∣∣b3

∣∣q1−r
2

)−1
.

(2.9)

Next, we choose ρ such that

0 < ρ < min
1�i�9

ρi, (2.10)

where all the ρi are defined below (we choose ρ small enough, M and Q large enough so
that the choice of Q, M, and ρ ensures the validity of all the reasoning given below).

Let � be the space of continuously differentiable functions x : [0,ρ] → R with the
norm

‖x‖� = max
t∈[0,ρ]

(∣∣x(t)
∣∣+

∣∣x′(t)∣∣). (2.11)

Let �⊆� be such that for every element u∈�, u : [0,ρ]→R satisfies the inequalities

∣∣u(t)− ctr+1
∣∣�Mtr+1β(t),∣∣u′(t)− (r + 1)ctr

∣∣�QMtβ(t), t ∈ (0,ρ],
(2.12)

and u(0)= 0, u′(0)= 0; moreover,

∀ε > 0, ∀u∈�, ∀ti ∈ [0,ρ], i∈ {1,2} :
∣∣t1− t2∣∣� δ(ε)=⇒ ∣∣u′(t1)−u′(t2)∣∣� ε,

(2.13)

where δ(ε) = ε(8B(tε))−1; here B(tε) = l1(tε) + t−rε , tε is a constant such that tε ∈ (0,ρ),
and if t ∈ (0, tε], then the following inequalities are satisfied:

QMtβ(t) � ε

33
, (1 + r)|c|tr � ε

33
. (2.14)

It is easy to see that � is a closed, bounded, and convex set. Moreover, � is a compact set
(use the Arzelá theorem).

There exists a (small enough) ρ1 > 0 such that if ρ < ρ1, then

(
t,u(t)t−r ,u

(
q1t
)(
q1t
)−r

,u′(t)t−r − ru(t)t−r−1,u′
(
q2t
)(
q2t
)−r − ru(q2t

)(
q2t
)−r−1

)
∈�

(2.15)

for all u∈�, t ∈ (0,ρ].
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Let x = yt−r , where y : (0,τ) → R is a new unknown function. Then we obtain the
following initial value problem:

y′(t)= at+ b1y(t)t−r + r y(t)t−1 + b2y
(
q1t
)(
q1t
)−r

+ b3q
−r
2 y′

(
q2t
)− rb3q

−r−1
2 t−1y

(
q2t
)

+ϕ
(
t, y(t)t−r , y

(
q1t
)(
q1t
)−r

, y′(t)t−r − r y(t)t−r−1,

y′
(
q2t
)(
q2t
)−r − r y(q2t

)(
q2t
)−r−1

)
,

y(0)= 0.

(2.16)

Now we will consider the initial value problem

y′(t)= at+ b1y(t)t−r + r y(t)t−1 + b2u
(
q1t
)(
q1t
)−r

+ b3q
−r
2 u′

(
q2t
)− rb3q

−r−1
2 t−1u

(
q2t
)

+ϕ
(
t,u(t)t−r ,u

(
q1t
)(
q1t
)−r

,u′(t)t−r

− ru(t)t−r−1,u′
(
q2t
)(
q2t
)−r − ru(q2t

)(
q2t
)−r−1

)
,

(2.17)

y(0)= 0, (2.18)

where u∈� is an arbitrary but fixed function. Let

�0 =
{

(t, y) : t ∈ (0,ρ], y ∈R
}
. (2.19)

In �0, for (2.17), conditions for the existence and uniqueness theorem [4] and conditions
for the continuous dependence of the initial data theorem [4] are fulfilled.

Now we denote

Φ1 =
{

(t, y) : t ∈ (0,ρ],
∣∣y− ctr+1

∣∣=Mtr+1β(t)
}

,

�1 =
{

(t, y) : t ∈ (0,ρ],
∣∣y− ctr+1

∣∣ <Mtr+1β(t)
}

,

H = {(t, y) : t = ρ,
∣∣y− cρr+1

∣∣ <Mρr+1β(ρ)
}
.

(2.20)

Let the function A1 : �0 → [0,+∞) be defined by the equality

A1(t, y)= (y− ctr+1)2(
tr+1β(t)

)−2
(2.21)

and let a1 : �0 →R be the derivative of the function A1. Using (2.17), we have

a1(t, y)= 2
(
tr+1β(t)

)−2
t−r
((
b1− tr−1

(
1 + tβ′(t)

(
β(t)

)−1
))(

y− ctr+1)2

+
(
y− ctr+1)Λ1(t)

)
,

(2.22)
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where

∣∣Λ1(t)
∣∣�Mtr+1β(t)

(
q1
∣∣b2
∣∣+Q

∣∣b3
∣∣

qr−1
2

+

∣∣(b3− 1
)
c
∣∣L1 + 1

M
+ω1(t)

)
, lim

t→+0
ω1(t)= 0.

(2.23)

There exists a (small enough) ρ2 > 0 (see our choice of M at the beginning of the proof)
such that if ρ < ρ2, then

∣∣Λ1(t)
∣∣ <Mtr+1β(t)

∣∣b1
∣∣, t ∈ (0,ρ]. (2.24)

Since Mtr+1β(t)= |y− ctr+1| when (t, y)∈Φ1, it is easy to see that

signa1(t, y)= signb1 when (t, y)∈Φ1. (2.25)

(1) Let b1 > 0 and therefore a1(t, y) > 0 when (t, y) ∈Φ1. We prove that the integral
curve of (2.17) which intersects Φ1 at an arbitrary point (t0, y0) for sufficiently small
|t− t0| (t � ρ) lies in �1 if t < t0 and lies outside of �1 if t > t0. In fact, let P(t0,x0) be an
arbitrary point belonging to Φ1 and let JP : (t, yP(t)) be the integral curve of (2.17) which
passes through the point P. Then

A1
(
t0, yP

(
t0
))=M2, a1

(
t0, yP

(
t0
))
> 0. (2.26)

Therefore, if t0 ∈ (0,ρ), then there exists δ > 0 such that

sign
(
A1
(
t, yP(t)

)−A1
(
t0, yP

(
t0
)))= sign

(
t− t0

)
,
∣∣t− t0∣∣ < δ, (2.27)

or

sign
(∣∣yP(t)− ctr+1

∣∣(tr+1β(t)
)−1−M

)
= sign

(
t− t0

)
,
∣∣t− t0∣∣ < δ. (2.28)

But this means that (t, yP(t)) lies in �1 if t ∈ (t0− δ, t0) and (t, yP(t)) lies outside of �1 if
t ∈ (t0, t0 + δ). If t0 = ρ, then there exists δ > 0 such that

A1
(
t, yP(t)

)
< A1

(
ρ, yP(ρ)

)
, t ∈ (ρ− δ,ρ), (2.29)

or

∣∣yP(t)− ctr+1
∣∣(tr+1β(t)

)−1
<M, t ∈ (ρ− δ,ρ), (2.30)

and this means that (t, yP(t)) lies in �1, t ∈ (ρ− δ,ρ). It follows from this that each of the
integral curves of (2.17) which intersect H remains in �1 for all t ∈ (0,ρ]. We consider
an arbitrary point G(ρ, yG)∈H and let Ju : (t, yu(t)) be the integral curve of (2.17) such
that yu(ρ)= yG. It is easy to see that

∣∣yu(t)− ctr+1
∣∣�Mtr+1β(t), t ∈ (0,ρ], (2.31)∣∣y′u(t)− (r + 1)ctr

∣∣�
(
2
∣∣b1
∣∣+ω2(t)

)
Mtβ(t), lim

t→+0
ω2(t)= 0. (2.32)
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There exists a (small enough) ρ3 > 0 such that if ρ < ρ3 (see our choice of Q at the begin-
ning of the proof), then

∣∣y′u(t)− (r + 1)ctr
∣∣�QMtβ(t), t ∈ (0,ρ]. (2.33)

Now we set

yu(0)= 0, y′u(0)= 0. (2.34)

Now we will prove that condition (2.13) is fulfilled. Let ε > 0 be given. We consider arbi-
trary points ti ∈ [0,ρ], i∈ {1,2}. We have the following.

(a) If ti ∈ [0, tε], i∈ {1,2}, then, in view of (2.14), (2.33),
∣∣y′u(t1)− y′u

(
t2
)∣∣�

∣∣y′u(t1)− (1 + r)ctr1
∣∣+ (1 + r)|c|tr1 +

∣∣y′u(t2)− (1 + r)ctr2
∣∣

+ (1 + r)|c|tr2 �QMt1β
(
t1
)

+ (1 + r)|c|tr1
+QMt2β

(
t2
)

+ (1 + r)|c|tr2 � 4
33
ε <

ε

8
< ε.

(2.35)

(b) If ti ∈ [tε,ρ], i∈ {1,2}, and |t1− t2|� δ(ε), then it is easy to see that there exists a
(small enough) ρ4 > 0 such that if ρ < ρ4, then

∣∣y′u(t1)− y′u
(
t2
)∣∣� l2

(
t1
)∣∣u′(t1)−u′(t2)∣∣

+
(∣∣b3

∣∣+ l2
(
t1
))
q−r2

∣∣u′(q2t1
)−u′(q2t2

)∣∣+B
(
tε
)∣∣t1− t2∣∣. (2.36)

Moreover, there exists a (small enough) ρ5 > 0 such that if ρ < ρ5, then

l2(t) � 1
8

, l2(t) � qr2
8

, t ∈ (0,ρ]. (2.37)

In addition to this, it follows from (2.6) that

∣∣b3
∣∣q−r2 <

1
2
. (2.38)

Therefore,

∣∣y′u(t1)− y′u
(
t2
)∣∣� 1

8

∣∣u′(t1)−u′(t2)∣∣

+
5
8

∣∣u′(q2t1
)−u′(q2t2

)∣∣+B
(
tε
)∣∣t1− t2∣∣.

(2.39)

By assumption, |u′(t1)−u′(t2)|� ε. Moreover, since q2ti ∈ [0,ρ], i∈ {1,2}, and

∣∣q2t1− q2t2
∣∣= q2

∣∣t1− t2∣∣� q2δ(ε) � δ(ε), (2.40)

we have, at the same time, |u′(q2t1)−u′(q2t2)|� ε. Thus,

∣∣y′u(t1)− y′u
(
t2
)∣∣� ε

8
+

5ε
8

+B
(
tε
)
δ(ε)= 7ε

8
< ε. (2.41)
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(c) If t1 ∈ [0, tε], t2 ∈ [tε,ρ], or vice versa, and |t1− t2|� δ(ε), then we have t1, tε be-
longing to [0, tε], tε, t2 belonging to [tε,ρ], and |tε− t2|� |t1− t2|� δ(ε).

Therefore, in view of (2.35) and (2.41),

∣∣y′u(t1)− y′u
(
t2
)∣∣�

∣∣y′u(t1)− y′u
(
tε
)∣∣+

∣∣y′u(tε)− y′u
(
t2
)∣∣ < ε

8
+

7ε
8
= ε. (2.42)

This completes the proof of yu ∈�. �

(2) Let b1 < 0 and therefore a1(t, y) < 0 when (t, y)∈Φ1. Similarly, as in the case b1 > 0,
it can be proved that if an integral curve of (2.17) intersects Φ1 at an arbitrary point
(t0, y0), then for sufficiently small |t− t0| (t � ρ), the curve indicated lies in �1 if t > t0
and it lies outside of �1 if t < t0. It follows that at least one of the integral curves of (2.17)
which intersect H is defined for all t ∈ (0,ρ] and lies in �1 if t ∈ (0,ρ]. In fact, if an
integral curve of (2.17) intersects Φ1, then it has to intersectH . Let the mapping ψ : Φ1 →
H be defined in the following way: the point ψ(P) ∈H is assigned to the point P ∈Φ1

if both of these points belong to a common integral curve of (2.17). We denote ψ(Φ1)=
{ψ(P) : P ∈Φ1}. The set H\ψ(Φ1) is a nonempty one (H is a closed set, but ψ(Φ1) is a
nonclosed set since ψ(Φ1) is the image of the nonclosed set Φ1). Let Ju : (t, yu(t)) be an
integral curve of (2.17) such that (ρ, yu(ρ)) ∈H\ψ(Φ1). Then Ju : (t, yu(t)) cannot have
common points with Φ1. Therefore, Ju : (t, yu(t)) is defined for all t ∈ (0,ρ] and it lies in
�1 if t ∈ (0,ρ]. As in the case b1 > 0, we can prove that the inequalities (2.31), (2.33) are
fulfilled, and we can introduce notation (2.34) and prove that condition (2.13) is fulfilled.
Thus, yu ∈�.

Now we will prove in the case b1 < 0 that if t→ +0, then all integral curves of (2.17)
leave the set �1\{(0,0)}, with one exception, Ju : (t, yu(t)). Let b1 < 0; we denote

Φ2(ν)= {(t, y) : t ∈ (0,ρ],
∣∣y− yu(t)

∣∣= νtr+1β(t)(− ln t)
}

,

�2(ν)= {(t, y) : t ∈ (0,ρ],
∣∣y− yu(t)

∣∣ < νtr+1β(t)(− ln t)
}

,
(2.43)

where ν is a parameter, ν ∈ (0,1]. Let the function A2 : �0 → [0,+∞) be defined by the
equality

A2(t, y)= (y− yu(t)
)2(

tr+1β(t)(− ln t)
)−2

(2.44)

and let a2 : �0 →R be the derivative of the function A2. Using (2.17), we have

a2(t, y)= 2
(
tr+1β(t)(− ln t)

)−2
t−r
(
y− yu(t)

)2
(
b1− tr−1

(
1 + tβ′(t)

(
β(t)

)−1
+ (ln t)−1

))
.

(2.45)

There exists a (small enough) ρ6 > 0 such that if ρ < ρ6, then a2(t, y) < 0 when (t, y)∈
�0, y �= yu(t). In particular, a2(t, y) < 0 when (t, y)∈Φ2(ν) for any ν∈ (0,1]. Therefore,
for any ν∈ (0,1], an integral curve of (2.17) which intersects Φ2(ν) in an arbitrary point
(t0, y0), for sufficiently small |t− t0| (t � ρ), lies in �2(ν) if t > t0 and lies outside of �2(ν)
if t < t0 (the proof is similar to the one for Φ1). Let P∗(t∗, y∗)∈�1\{(0,0)}, y∗ �= yu(t∗).
Then there exists ν∗ ∈ (0,1] such that P∗ ∈Φ2(ν∗). As above, the integral curve of (2.17)
J∗ : (t, y∗(t)), which passes through P∗, lies outside of �2(ν∗) if t ∈ (t−, t∗), where (t−, t∗)
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is the left maximal existence interval for the solution y∗. On the other hand, if (t, y) ∈
�1\{(0,0)}, then

∣∣y− yu(t)
∣∣�

∣∣y− ctr+1
∣∣+

∣∣yu(t)− ctr+1
∣∣� 2Mtr+1β(t) < ν∗tr+1β(t)(− ln t) (2.46)

if t ∈ (0, t∗∗), where t∗∗ ∈ (0,ρ) and t∗∗ is small enough. Thus, if (t, y) ∈ �1\{(0,0)}
and t ∈ (0, t∗∗), then (t, y)∈�2(ν∗). Let t∗ =min{t∗, t∗∗}. As above, the integral curve
J∗ : (t, y∗(t)) lies outside of �1\{(0,0)} if t ∈ (t−, t∗) and we have proved our statement.

Now we can introduce an operator T : �→� by (Tu)(t) = yu(t). We prove that T :
� →� is a continuous operator. Let ui ∈�, i ∈ {1,2}, be arbitrary functions and let
Tui = yi, i∈ {1,2}. If u1 = u2, then y1 = y2. Let ‖u1−u2‖� = d, d > 0. We will investigate
the behavior of the integral curves of the differential equation

y′(t)= at+ b1y(t)t−r + r y(t)t−1 + b2u1
(
q1t
)(
q1t
)−r

+ b3q
−r
2 u′1

(
q2t
)− rb3q

−r−1
2 t−1u1

(
q2t
)

+ϕ
(
t,u1(t)t−r ,u1

(
q1t
)(
q1t
)−r

,u′1(t)t−r

− ru1(t)t−r−1,u′1
(
q2t
)(
q2t
)−r − ru1

(
q2t
)(
q2t
)−r−1

)
.

(2.47)

(It is obvious that y1 : (0,ρ]→ R is the solution of (2.47).) We introduce the following
notations:

Φ3 =
{

(t, y) : t ∈ (0,ρ],
∣∣y− y2(t)

∣∣= γdν
(
tr+1β(t)

)1−ν}
,

�3 =
{

(t, y) : t ∈ (0,ρ],
∣∣y− y2(t)

∣∣ < γdν
(
tr+1β(t)

)1−ν}
,

(2.48)

where ν= (r + 2)−1, γ = 3|b1|−1(2M)1−ν(|b2|+ 1) + 1.
Let the function A3 : �0 → [0,+∞) be defined by the equality

A3(t, y)= (y− y2(t)
)2(

tr+1β(t)
)−2(1−ν)

(2.49)

and let a3 : �0 →R be the derivative of the function A3. Using (2.47), we have

a3(t, y)= 2
(
t1+rβ(t)

)−2(1−ν)
t−r
((
b1 +

(
− 1 + ν(1 + r)

− (1− ν)tβ′(t)
(
β(t)

)−1
)
tr−1

)(
y− y2(t)

)2

+
(
y− y2(t)

)
Λ3(t)

)
,

(2.50)

and there exists a (small enough) ρ7 > 0 such that if ρ < ρ7, then

∣∣Λ3(t)
∣∣� (2M)1−ν

(∣∣b2
∣∣+ 1

)
dν
(
t1+rβ(t)

)1−ν

<

∣∣b1
∣∣

3

∣∣y− y2(t)
∣∣ when (t, y)∈Φ3,

(2.51)
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since
∣∣u1(t)−u2(t)

∣∣� dν
(
2Mt1+rβ(t)

)1−ν
,

∣∣u1
(
qit
)−u2

(
qit
)∣∣� dν

(
2M
(
qit
)1+r

β
(
qit
))1−ν

, i∈ {1,2},
∣∣u′1(t)−u′2(t)

∣∣� dν
(
2QMtβ(t)

)1−ν
,

∣∣u′1(q2t
)−u′2(q2t

)∣∣� dν
(
2QMq2tβ

(
q2t
))1−ν

, t ∈ (0,ρ]

(2.52)

and the constant γ is large enough.
There exists a (small enough) ρ8 > 0 such that if ρ < ρ8, then

signa3(t, y)= signb1 when (t, y)∈Φ3. (2.53)

(1) Let b1 > 0 and therefore a3(t, y) > 0 when (t, y) ∈ Φ3. Then an integral curve of
(2.47) which intersects Φ3 in an arbitrary point (t0, y0), for sufficiently small |t − t0|
(t � ρ), lies in �3 if t < t0 and lies outside of �3 if t > t0. (The proof is similar to the
one for Φ1 in the case b1 > 0.) In addition, y1(ρ)= y2(ρ)= yG. Thus, if t decreases from
t = ρ to t = 0, then the integral curve of (2.47), J : (t, y1(t)), lies in �3 for all t ∈ (0,ρ]
because this integral curve cannot intersect Φ3. We have

∣∣y1(t)− y2(t)
∣∣� γdν

(
tr+1β(t)

)1−ν
, t ∈ (0,ρ],

∣∣y′1(t)− y′2(t)
∣∣�

((∣∣b1
∣∣+ rtr−1)γ+ (2M)1−ν

(∣∣b2
∣∣+ 1

))
t(1+r)(1−ν)−r(β(t)

)1−ν
dν.
(2.54)

Here 1− ν > 0, (1 + r)(1− ν)− r = (r + 2)−1 > 0. Thus, there exists a (small enough)
ρ9 > 0 such that if ρ < ρ9, then

∣∣y1(t)− y2(t)
∣∣+

∣∣y′1(t)− y′2(t)
∣∣� dν, t ∈ (0,ρ]. (2.55)

(2) Let b1 < 0 and therefore a3(t, y) < 0 when (t, y) ∈ Φ3. Then an integral curve of
(2.47) which intersects Φ3 in an arbitrary point (t0, y0), for sufficiently small |t − t0|
(t � ρ), lies in �3 if t > t0 and lies outside of �3 if t < t0. (The proof is similar to the
one for Φ1 in the case b1 < 0.) In addition,

∣∣y1(t)− y2(t)
∣∣�

∣∣y1(t)− ctr+1
∣∣+

∣∣y2(t)− ctr+1
∣∣� 2Mtr+1β(t) < γdν

(
tr+1β(t)

)1−ν

(2.56)

when t ∈ (0, t(d)], where t(d)∈ (0,ρ) is small enough. Therefore, if t ∈ (0, t(d)], then the
integral curve of (2.47), J : (t, y1(t)), lies in �3. As above, if t increases from t = t(d) to
t = ρ, then the integral curve of (2.47), J : (t, y1(t)), cannot intersect Φ3 and therefore this
curve lies in �3 for all t ∈ (0,ρ]. Further, we can get (2.54) and (2.55) as in the case b1 > 0.

Thus, if ‖u1−u2‖� = d < δ(ε)= (ε/2)1/ν, then

max
t∈[0,ρ]

(∣∣y1(t)− y2(t)
∣∣+

∣∣y′1(t)− y′2(t)
∣∣)

= ∥∥y1− y2
∥∥

� =
∥∥Tu1−Tu2

∥∥
� � ε

2
< ε.

(2.57)
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The reasoning given above does not depend on the choice of ε > 0 and ui ∈�, i ∈
{1,2}. Therefore T : � → � is the continuous operator. To complete the proof of the
theorem, it suffices to apply the Schauder fixed point theorem to the operator T : �→�.
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