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An algebraic fixed point theorem involving the three operators in a Banach algebra is
proved using the properties of cones and they are further applied to a certain nonlinear

integral equations of mixed type x(t) = k(t,x(µ(t))) + [ f (t,x(θ(t)))](q(t) +
∫ σ(t)

0 v(t,
s)g(s,x(η(s)))ds) for proving the existence of maximal and minimal solutions. Our re-
sults include the earlier fixed point theorems of Dhage (1992 and 1999) as special cases
with a different but simple method.

1. Introduction

It is known that the algebraic methods are useful for proving the existence of extremal
solutions for various classes of differential and integral equations under certain mono-
tonicity conditions. The exhaustive account of this subject appears in Amann [1], Deim-
ling [4], and Heikkilä and Lakshmikantham [12] and the references therein. The existence
theorems for nonlinear integral equations of mixed type are generally obtained by using
the fixed point theorems of Krasnosel’skii [13] and Dhage [6, 8]. Most recently, the au-
thor in [6, 7] proved some fixed point theorems involving two operators in a Banach
algebra via the use of measure of noncompactness and they are further applied to a cer-
tain nonlinear integral equation in Banach algebras for proving the existence of extremal
solutions under the mixed algebraic and topological conditions, such as monotonicity
and continuity of the nonlinearities involved in the equation. In this paper, we generalize
the fixed point theorem of Dhage [6, 7] to three operators under the weaker conditions
with a different method and apply the newly developed fixed point theorem to a cer-
tain nonlinear integral equation in Banach algebras for proving the existence of extremal
solutions.

2. Abstract results

Let X be a Banach space with norm ‖ · ‖. A nonempty closed subset K of Banach algebra
X is called a cone if
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(i) K +K ⊆ K ,
(ii) λK ⊆ K whenever λ∈R and λ≥ 0,

(iii) −K ∩K = {0}, where 0 is a zero element of X .

Further, a cone K is called positive if

(iv) K ◦K ⊂ K , where ◦ is the multiplicative composition in X .

We define an order relation ≤ in X as follows. Let x, y ∈ X . Then

x ≤ y⇐⇒ y− x ∈ K. (2.1)

Notice that condition (iv) implies that if x ≤ y and z ∈ K , then xz ≤ yz.
A cone K is normal if the norm in X is semimonotone on K , that is, if 0 ≤ x ≤ y,

then ‖x‖ ≤N‖y‖ for some real number N > 0. The details of cones and their properties
may be found in the monographs like Guo and Lakshmikantham [11] and Heikkilä and
Lakshmikantham [12].

Let u,v ∈ X be such that u≤ v. Then the set

[u,v]= {x ∈ X | u≤ x ≤ v} (2.2)

is called an order interval in X . Since K is closed, every order interval is closed in X .

Definition 2.1. A mapping T : X → X is called increasing if for all x, y ∈ X , Tx ≤ Ty
whenever x ≤ y.

A mapping A : X → X is called �-Lipschitzian if there exists a continuous nondecreas-
ing function φ : R+ →R+ satisfying

‖Ax−Ay‖ ≤ φA
(‖x− y‖) (2.3)

for all x, y ∈ X with φA(0) = 0. Sometimes the function φA is called a �-function of A
on X . In the special case when φA(r)= αr, α > 0, A is called a Lipschitzian with a Lipschitz
constant α. In particular, if α < 1, A is called a contraction with a contraction constant α.
Further, if φA(r) < r for r > 0, then A is called a nonlinear contraction on X .

The following fixed point theorem for the nonlinear contraction is well known and is
useful for proving the existence and the uniqueness theorems for the nonlinear differen-
tial and integral equations.

Theorem 2.2 (Boyd and Wong [2]). Let A : X → X be a nonlinear contraction. Then A has
a unique fixed point x∗ and the sequence {Anx} of successive iterations of A converges to x∗

for each x ∈ X .

An operator T : X → X is called compact if T(X) is a compact subset of X . Similarly,
T : X → X is called totally bounded if T maps a bounded subset of X into the relatively
compact subset of X . Finally, T : X → X is called completely continuous operator if it is
continuous and totally bounded operator onX . However, the two notions of compactness
and total boundedness of T are equivalent on bounded subsets of X .

The following theorem of [7] is well known and is useful in the theory of nonlinear
differential and integral equations in Banach algebras.
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We note that an operator T on a Banach space X into itself is called positive if
range(T)⊆ K .

Theorem 2.3. Let the order cone K of a real algebra X be positive and normal, and let
u,v ∈ X be such that u≤ v. Let A,B : [u,v]→ X be two positive operators such that

(a) A is �-Lipschitzian and increasing,
(b) B is completely continuous and increasing,
(c) MφA(r) < r for r > 0, where M = ‖B([u,v])‖ = sup{‖B(x)‖ : x ∈ [u,v]},
(d) AxBx ∈ [u,v] for all x ∈ [u,v].

Then operator equation AxBx = x has a least solution and a greatest one in [u,v].

Theorem 2.4. Let the order cone K of a real algebra X be positive and normal, and let
u,v ∈ X be such that u≤ v. Let A,B : [u,v]→ K and C : [u,v]→ X be three operators such
that

(a) A is �-Lipschitzian and increasing,
(b) B is completely continuous and increasing,
(c) C is �-Lipschitzian and increasing,
(d) MφA(r) +φC(r) < r for r > 0, where M = ‖B([u,v])‖ = sup{‖B(x)‖ : x ∈ [u,v]},
(e) u≤AuBu+Cu and AvBv+Cv ≤ v.

Then operator equation AxBx+Cx = x has a least solution and a greatest one in [u,v].

Proof. Clearly [u,v] is convex and closed subset of X which is further bounded in view of
the normality of the cone K in X .

Let y ∈ [u,v] be a fixed element. Define an operator Ay : [u,v]→ X by

Ay(x)=AxBy +Cx, x ∈ [u,v]. (2.4)

Since A and B are positive and increasing, one has

Ay(u)=AxBy +Cx ≤AvBy +Cv = Ay(v). (2.5)

Moreover, condition (e) implies that

u≤ AuBu+Cu≤ AuBy +Cu≤AvBv+Cv ≤ v. (2.6)

Hence Ay defines a mapping Ay : [u,v]→ [u,v]. Then for any x1,x2 ∈ [u,v], we have

∥∥Ay
(
x1
)−Ay

(
x2
)∥∥= ∥∥Ax1By−Ax2By

∥∥+
∥∥Cx1−Cx2

∥∥
≤ ∥∥Ax1−Ax2

∥∥‖By‖+
∥∥Cx1−Cx2

∥∥
≤MφA

(∥∥x1− x2
∥∥)+φC

(∥∥x1− x2
∥∥).

(2.7)

This shows that Ay is a nonlinear contraction on X in view of the hypothesis (c). There-
fore, an application of Theorem 2.2 yields that Ay has a unique fixed point, say x∗, in
[u,v] and the sequence {An

y(u)} converges to x∗. By the definition of Ay ,

Ay
(
x∗
)= Ax∗By +Cx∗ = x∗. (2.8)
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Similarly, if w ∈ [u,v], then the operator Aw(x)= AxBw +Cx is a nonlinear contraction
on [u,v] into itself and the sequence {An

w(u)} converges to a unique fixed point z∗ of Aw.
If y ≤w, then

Ay(u)=AuBy +Cu≤AuBw+Cu= Aw(u). (2.9)

It is easy to prove that An
y(u)≤ An

w(u) for all n∈N. Hence we have

x∗ = lim
n→∞A

n
y(u)≤ lim

n→∞A
n
w(u)= z∗. (2.10)

Define a mappingN : [u,v]→ X byNy = z, where z is the unique solution of the equation
z =AzBy +Cz, z ∈ [u,v]. We show that N is continuous on [u,v]. Let {yn} be a sequence
in [u,v] converging to a point y.

Now∥∥Nyn−Ny
∥∥= ∥∥AN(yn)Byn−AN(y)By

∥∥+
∥∥C(Nyn

)−C(Ny)
∥∥

≤ ∥∥AN(yn)Byn−AN(y)Byn
∥∥+

∥∥AN(y)Byn−AN(y)By
∥∥

+
∥∥C(Nyn

)−C(Ny)
∥∥

≤ ∥∥ANyn−AN(y)
∥∥∥∥Byn∥∥+

∥∥AN(y)
∥∥∥∥Byn−By

∥∥
+
∥∥C(Nyn

)−C(Ny)
∥∥

≤MφA
(∥∥Nyn−Ny

∥∥)+‖ANy‖∥∥Byn−By
∥∥

+φC
(∥∥Nyn−Ny

∥∥).

(2.11)

Taking the limit superior as n→∞ and using the fact that φA and φC are continuous
functions, we obtain

limsup
n→∞

∥∥Nyn−Ny
∥∥≤MφA

(
limsup
n→∞

∥∥Nyn−Ny
∥∥)

+‖ANy‖
(

limsup
n→∞

∥∥Byn−By
∥∥)

+φC

(
limsup
n→∞

∥∥Nyn−Ny
∥∥).

(2.12)

Now from hypothesis (c), it follows that limn→∞‖Nyn −Ny‖ = 0. This shows that N is
continuous on [u,v]. Next we show that N is totally bounded on [u,v]. Let S be any subset
of [u,v]. Since [u,v] is norm bounded, S is a norm bounded subset of [u,v]. Now for any
z ∈ S, we have

‖Az‖ ≤ ‖Aa‖+‖Az−Aa‖ ≤ ‖Aa‖+α‖z− a‖ ≤ c, (2.13)

where c = ‖Aa‖+αdiam(S) and a∈ S, a fixed element.
Let ε > 0 be given. Since B is completely continuous, B(S) is totally bounded. Then

there is a set Y = {y1, . . . , yn} in S such that

B(S)⊂
n⋃
i=1

�δ
(
wi
)
, (2.14)
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where wi = B(yi) and δ = ((1− (αM +β))/c)ε and �δ(wi) is an open ball centered at wi

of radius δ. Therefore, for any y ∈ S, we have a yk ∈ Y such that

∥∥By−Byk
∥∥≤ (1− (αM +β)

c

)
ε. (2.15)

Also we have∥∥Ny−Nyk
∥∥≤ ∥∥AzBy−AzkByk

∥∥+
∥∥Cz− czk

∥∥
≤ ∥∥AzBy−AzkBy

∥∥+
∥∥AzkBy−AzkBzk

∥∥+
∥∥Cz− czk

∥∥
≤ ∥∥Az−Azk

∥∥‖By‖+
∥∥Azk∥∥∥∥Byk −By

∥∥+
∥∥Czk − cz

∥∥
≤ (αM +β)

∥∥z− zk
∥∥+‖Az‖∥∥Byk −By

∥∥
≤ c

1− (αM +β)

∥∥By−Byk
∥∥ < ε.

(2.16)

This is true for every y ∈ S and hence

N(S)⊂
n⋃
i=1

�
(
zi
)
, (2.17)

where zi = Nyi. As a result, N(S) is totally bounded. Since N is continuous, it is a com-
pact operator on S. Moreover, N is increasing because A, B, and C are increasing on
[u,v]. Hence {Nn(u)} is an increasing sequence and {Nn(v)} is a decreasing sequence in
N([u,v])⊂ [u,v]. Now the limits of these sequences exist (see Heikkilä and Lakshmikan-
tham [12]) and they belong to the order interval [u,v].

Denote

x∗ = lim
n→∞N

nu, x∗ = lim
n→∞N

nv. (2.18)

By the continuity of N , we obtain

Nx∗ =N
(

lim
n→∞N

nu
)
= lim

n→∞N
n+1(u)= x∗,

Nx∗ =N
(

lim
n→∞N

nv
)
= lim

n→∞N
n+1(v)= x∗,

(2.19)

and since N is increasing, it follows that x∗ ≤ x∗. Assume that x ∈ [u,v] is a fixed point
of the operator N . Then by the definition of S,

x =Nx =A(Nx)Bx+C(Nx)= AxBx+Cx, (2.20)

and so the operator equation x = AxBx +Cx has a solution in [u,v]. As a result, x∗ and
x∗ are solutions of the operator equation AxBx+Cx = x.

Assume that z ∈ [u,v] is a solution of the operator equation AxBx + Cx = x. Then
from the definitions of N , it follows that z is also a fixed point of N . Since u≤ z ≤ v, we
have Nu ≤ Nz = z ≤ Nv. Proceeding in this way, by induction, we get Nnu≤ z ≤Nnv,
and so x∗ ≤ x∗. Thus x∗ is the least solution and x∗ is the greatest one of the equation
AxBx+Cx = x in [u,v]. This completes the proof. �
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Notice that the proof of Theorem 2.3 involves only the elementary ideas of functional
analysis and does not involve the use of the advanced notion of measure of noncompact-
ness in Banach spaces.

As a consequence of Theorem 2.3, we obtain Corollary 2.5 in its applicable form to the
nonlinear equations.

Corollary 2.5. Let the order cone K of a real algebra X be positive and normal, and let
u,v ∈ X be such that u ≤ v. Let A,B : X → K and C : X → X be three increasing operators
such that

(a) A and B are Lipschitzians with Lipschitz constants α and β, respectively,
(b) B is completely continuous,
(c) αM +β < 1, where M = ‖B([u,v])‖ = sup{‖B(x)‖ : x ∈ [u,v]},
(e) u≤AuBu+Cu and AvBv+Cv ≤ v.

Then operator equation AxBx+Cx = x has a least solution and a greatest one in [u,v].

When C ≡ 0 and φ(r)= αr, 0≤ α < 1, in Theorem 2.4, we get the interesting Corollary
2.6 to [7, Theorem 2.3] which has numerous applications in the theory of nonlinear dif-
ferential and integral equations.

Corollary 2.6. Let the order cone K of a real Banach algebra X be positive and normal,
and let u,v ∈ X be such that u≤ v. Let A,B : X → K be two increasing operators such that

(a) A is Lipschitzian with a Lipschitz constant α and is increasing on [u,v],
(b) B is continuous and compact on [u,v],
(c) αM < 1, where M = ‖B([u,v])‖ = sup{‖B(x)‖ : x ∈ [u,v]},
(d) u≤AuBu and AvBv ≤ v.

Then operator equation AxBx = x has a least solution and a greatest one in [u,v].

3. Functional integral equations

Let R denote the real line. Given a closed and bounded interval J = [0,1] in R, consider
the nonlinear functional integral equation (in short FIE)

x(t)= k
(
t,x
(
µ(t)

))
+
[
f
(
t,x
(
θ(t)

))](
q(t) +

∫ σ(t)

0
v(t,s)g

(
s,x
(
η(s)

))
ds

)
(3.1)

for all t ∈ J , where µ,θ,σ ,η : J → J , q : J →R, v : J × J →R, and f ,g,k : J ×R→R.
The special cases of the FIE (3.1) occur in some natural, physical, and social sciences;

see Chandrasekhar [3] and Deimling [4] and the references therein. The FIE (3.1) and
some of its special cases have been discussed in Dhage [5, 8] and Dhage and O’Regan
[9] for the existence results. In this section, we will prove the existence theorem for the
extremal solutions of FIE (3.1) by an application of the abstract fixed point theorem em-
bodied in Corollary 2.5.

Let M(J ,R) and B(J ,R) denote, respectively, the spaces of all measurable and bounded
real-valued functions on J . We will seek the solution of FIE (3.1) in the space BM(J ,R) of



B. C. Dhage 277

bounded and measurable real-valued functions on J . Define a norm

‖x‖BM =max
t∈J

∣∣x(t)
∣∣. (3.2)

Clearly, BM(J ,R) is a Banach algebra with this maximum norm. We define an order re-
lation ≤ in BM(J ,R) with the help of the cone K in BM(J ,R) defined by

K = {x ∈ BM(J ,R) | x(t)≥ 0∀t ∈ J
}
. (3.3)

Clearly, K is a positive and normal cone in BM(J ,R). Let L(J ,R) denote the space of
Lebesgue integrable real-valued functions on J , with a norm ‖ · ‖L1 defined by

‖x‖ =
∫ 1

0

∣∣x(t)
∣∣dt. (3.4)

We need the following definitions in the sequel.

Definition 3.1. A mapping β : J ×R→R is said to satisfy a condition of Carathéodory or
simply is called Carathéodory if

(i) t �→ β(t,x) is measurable for each x ∈R,
(ii) x �→ β(t,x) is continuous almost everywhere for t ∈ J .

Further, a Carathéodory function β(t,x) is called L1-Carathéodory if

(iii) for each real number r > 0, there exists a function hr ∈ L1(J ,R) such that

∣∣β(t,x)
∣∣≤ hr(t) a.e. t ∈ J (3.5)

for all x ∈R with |x| ≤ r.

Definition 3.2. A solution xM of FIE (3.1) is called maximal if x is any other solution; then
x(t)≤ xM(t) for all t ∈ J . Similarly, a solution xm of FIE (3.1) is called minimal if x is any
other solution; then xm(t)≤ x(t) for all t ∈ J .

Definition 3.3. A function a∈ BM(J ,R) is called a lower solution of FIE (3.1) if

a(t)≤ k
(
t,a
(
µ(t)

))
+
[
f
(
t,a
(
θ(t)

))](
q(t) +

∫ σ(t)

0
v(t,s)g

(
s,a
(
η(s)

))
ds

)
(3.6)

for all t ∈ J . Similarly, a function b ∈ BM(J ,R) is called an upper solution of FIE (3.1) if

b(t)≥ k
(
t,b
(
µ(t)

))
+
[
f
(
t,b
(
θ(t)

))](
q(t) +

∫ σ(t)

0
v(t,s)g

(
s,b
(
η(s)

))
ds

)
(3.7)

for all t ∈ J .

We consider the following set of assumptions.

(H0) The functions µ,θ,σ ,η : J → J are continuous.
(H1) The function q : J →R+ is continuous with Q = supt∈J |q(t)|.
(H2) The function v : J × J →R+ is continuous and V = supt,s∈J |v(t,s)|.
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(H3) The function k : J ×R→ R+ is continuous and there is a function β1 ∈ B(J ,R)
with bound ‖β1‖ such that

∣∣k(t,x)− k(t, y)
∣∣≤ β1(t)|x− y| a.e. t ∈ J (3.8)

for all x, y ∈R.
(H4) The function f : J ×R→ R+ − {0} is continuous and there is a function α1 ∈

B(J ,R) with bound ‖α1‖ such that

∣∣ f (t,x)− f (t, y)
∣∣≤ α1(t)|x− y| a.e. t ∈ J (3.9)

for all x, y ∈R.
(H5) The function g : J ×R→R+ is Carathéodory.
(H6) The functions f (t,x), g(t,x), and k(t,x) are nondecreasing in x almost every-

where for t ∈ J .
(H7) FIE (3.1) has a lower solution u and an upper solution v with u≤ v.

Remark 3.4. Suppose that hypotheses (H5), (H6), and (H7) hold. Then the function h :
J →R, defined by

h(t)= ∣∣g(t,a(t)
)∣∣+

∣∣g(t,b(t)
)∣∣ a.e. t ∈ J , (3.10)

is Lebesgue integrable and

∣∣g(t,x)
∣∣≤ h(t) (3.11)

for all t ∈ J and for all x ∈ [a,b].

Theorem 3.5. Assume that the hypotheses (H0)–(H7) hold. If

∥∥α1
∥∥(Q+V‖h‖L1

)
+
∥∥β1

∥∥ < 1, (3.12)

then FIE (3.1) has a minimal solution and a maximal one in [a,b].

Proof. Consider the order interval [a,b] in BM(J ,R) which is well defined in view of
hypothesis (H7). Define three operators A, B, and C on BM(J ,R) by

Ax(t)= f
(
t,x
(
θ(t)

))
, t ∈ J ,

Bx(t)= q(t) +
∫ σ(t)

0
v(t,s)g

(
s,x
(
η(s)

))
ds, t ∈ J ,

Cx(t)= k
(
t,x
(
µ(t)

))
, t ∈ J.

(3.13)

Then the FIE (3.1) is equivalent to the operator equation

Ax(t)Bx(t) +Cx(t)= x(t), t ∈ J. (3.14)
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We will show that the operators A, B, and C satisfy all the conditions of Theorem 2.4 on
BM(J ,R). Since the functions q, v, f , and g are nonnegative, A and B define the operators
A,B : BM(J ,R)→ K . Let x, y ∈ X be such that x ≤ y. Then we have

Ax(t)= f
(
t,x
(
θ(t)

))≤ f
(
t, y
(
θ(t)

))= By(t) (3.15)

for all t ∈ J . Hence A is increasing on X . Similarly, it is shown that the operators B and C
are also increasing on X . Let x, y ∈ BM(J ,R). Then by (H4),

∣∣Ax(t)−Ay(t)
∣∣= ∣∣ f (t,x(θ(t)

))− f
(
t, y
(
θ(t)

))∣∣
≤ α1(t)

∣∣x(θ(t)
)− y

(
θ(t)

)∣∣
≤ ∥∥α1

∥∥‖x− y‖BM.
(3.16)

Taking the maximum over t,

‖Ax−Ay‖BM ≤
∥∥α1

∥∥‖x− y‖BM. (3.17)

This shows that A is a Lipschitzian with a Lipschitz constant ‖α1‖. Similarly, it is shown
that C is a Lipschitzian with a Lipschitz constant ‖β1‖.

Next we will show that the operator B is continuous and compact on [u,v]. Since
g(t,x) is L1-Carathéodory, by using the dominated convergence theorem (see Granas et al.
[10]), it can be shown that B is continuous on BM(J ,R). Let {xn} be a sequence in [u,v].
Then by Remark 3.4,

∣∣Bxn(t)
∣∣≤ ∣∣q(t)

∣∣+

∣∣∣∣∣
∫ σ(t)

0

∣∣v(t,s)
∣∣∣∣g(s,x(η(s)

))∣∣ds
∣∣∣∣∣

≤Q+
∫ σ(t)

0
h(s)ds≤Q+V‖h‖L1

(3.18)

which further yields that ‖Bxn‖ ≤Q+V‖h‖L1 for each n∈N. As a result, {Bxn : n∈N}
is a uniformly bounded set in BM(J ,R). Let t,τ ∈ J . Then by the definition of B,

∣∣Bxn(t)−Bxn(τ)
∣∣≤ ∣∣q(t)− q(τ)

∣∣
+

∣∣∣∣∣
∫ σ(t)

0
v(t,s)g

(
s,x
(
η(s)

))
ds−

∫ σ(τ)

0
v(t,s)g

(
s,x
(
η(s)

))
ds

∣∣∣∣∣
≤ ∣∣q(t)− q(τ)

∣∣
+

∣∣∣∣∣
∫ σ(t)

0
v(t,s)g

(
s,x
(
η(s)

))
ds−

∫ σ(t)

0
v(τ,s)g

(
s,x
(
η(s)

))
ds

∣∣∣∣∣
+

∣∣∣∣∣
∫ σ(t)

0
v(τ,s)g

(
s,x
(
η(s)

))
ds−

∫ σ(τ)

0
v(τ,s)g

(
s,x
(
η(s)

))
ds

∣∣∣∣∣
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≤ ∣∣q(t)− q(τ)
∣∣+

∫ σ(t)

0

∣∣v(t,s)− v(τ,s)
∣∣∣∣g(s,x(η(s)

))∣∣ds
+

∣∣∣∣∣
∫ σ(t)

σ(τ)

∣∣v(τ,s)
∣∣h(s)ds

∣∣∣∣∣
≤ ∣∣q(t)− q(τ)

∣∣+
∫ σ(t)

0

∣∣v(t,s)− v(τ,s)
∣∣h(s)ds+

∣∣p(t)− p(τ)
∣∣,

(3.19)

where p(t) = V
∫ σ(t)

0 h(s)ds. Since q, p, and ks(t) = k(t,s) are continuous on J , they are
uniformly continuous and consequently

∣∣Bxn(t)−Bxn(τ)
∣∣−→ 0 as t −→ τ. (3.20)

Thus {Bxn : n∈ N} is in equicontinuous set in BM(J ,R). Hence B([u,v]) is compact by
Arzelá-Ascoli theorem for compactness. Thus B is a continuous and compact operator
on [u,v]. Finally, we have

MφA(r) +φC(r)= ∥∥B([u,v]
)∥∥φA(r) +φC(r)

≤ [∥∥α1
∥∥(Q+V‖h‖L1

)
+
∥∥β1

∥∥]r < r
(3.21)

for all r > 0 because ‖α1‖(Q+V‖h‖L1 ) +‖β1‖ < 1.
Thus all the conditions of Theorem 2.3 are satisfied and hence an application of it

yields that the operator equation (3.2) has a minimal solution and a maximal one in
[a,b]. This further implies that the FIE (3.1) has a minimal solution and maximal one in
[a,b]. This completes the proof. �

4. An application

Consider the following initial value problem of first-order functional differential equation
(in short FDE)

(
x(t)− k

(
t,x
(
µ(t)

))
f
(
t,x
(
θ(t)

))
)′
= g

(
s,x
(
η(t)

))
a.e. t ∈ J , (4.1)

x(0)= x0 ∈R, (4.2)

where f : J ×R→ R \ {0} is continuous, f ,k : J ×R→ R, and µ,θ,η : J → J are continu-
ous with θ(0)= 0.

By a solution of FDE (4.2)–(4.7), we mean a function x ∈ AC(J ,R) that satisfies equa-
tions (4.2)–(4.7), where AC(J ,R) is the space of all absolutely continuous real-valued
functions on J .

We define an order relation ≤ in AC(J ,R) with the help of the cone KAC defined by

KAC =
{
x ∈ AC(J ,R) | x(t)≥ 0∀t ∈ J

}
. (4.3)

Clearly, the coneKAC is positive and normal in AC(J ,R). We need the following definition
in the sequel.
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Definition 4.1. A function u∈ AC(J ,R) is called a lower solution of FDE (4.2)–(4.7) if

(
u(t)− k

(
t,u
(
µ(t)

))
f
(
t,u
(
θ(t)

))
)′
≤ g

(
s,u
(
η(t)

))
a.e. t ∈ J ,

u(0)≤ x0 ∈R.

(4.4)

Similarly, a function v ∈ AC(J ,R) is called an upper solution of (4.2)–(4.7) if

(
v(t)− k

(
t,v
(
µ(t)

))
f
(
t,v
(
θ(t)

))
)′
≥ g

(
s,v
(
η(t)

))
a.e. t ∈ J ,

v(0)≥ x0 ∈R.

(4.5)

Theorem 4.2. Assume that the hypotheses (H3)–(H7) hold. Further, suppose that

∥∥α1
∥∥(
∣∣∣∣∣ x0

f
(
0,x0

)
∣∣∣∣∣+‖h‖L1

)
+
∥∥β1

∥∥ < 1. (4.6)

Then FDE (4.2)–(4.7) has a minimal solution and a maximal one on J .

Proof. The FDE (4.2)–(4.7) is equivalent to the integral equation

x(t)= k
(
t,x
(
µ(t)

))
+
[
f
(
t,x
(
θ(t)

))]( x0

f
(
0,x0

) +
∫ t

0
g
(
s,x
(
η(s)

))
ds

)
, t ∈ J. (4.7)

Now the desired conclusion follows by an application of Theorem 2.4 with Q =
|x0/ f (0,x0)| because AC(J ,R)⊂ BM(J ,R). The proof is complete. �
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