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We investigate a model parabolic mixed problem with purely boundary integral condi-
tions arising in the context of thermoelasticity. Using the Rothe method which is based on
a semidiscretization of the given problem with respect to the time variable, the questions
of existence, uniqueness, and continuous dependence upon data of a weak solution are
proved. Moreover, we establish convergence and derive an error estimate for a semidis-
crete approximation.

1. Introduction

In this paper, we make use of the Rothe time-discretization method to determine a func-
tion v = v(x, t) which satisfies, in a weak sense, the diffusion equation

∂v

∂t
− ∂2v

∂x2
= f(x, t), (x, t)∈ (0,1)× (0,T], (1.1)

with the initial condition

v(x,0)=V0(x), 0 � x � 1, (1.2)

as well as the integral boundary conditions∫ 1

0
v(x, t)dx = E(t), 0 � t � T ,∫ 1

0
xv(x, t)dx =G(t), 0 � t � T ,

(1.3)

where f , V0, E, and G are sufficiently regular given functions of the indicated variables
and T is a positive constant.

This mathematical model, recently studied in [4], describes the quasistatic flexure
of a thermoelastic rod, where conditions (1.3) represent, respectively, the average and
weighted average of the entropy v.
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Although an increasing attention has been recently given to evolution problems which
involve nonlocal boundary conditions (see, for instance, [2, 3, 7, 8, 9, 10] and the refer-
ences therein), only few works have been consecrated to mixed parabolic problems with
purely integral boundary conditions over the spatial domain [1, 4, 5]. Contrary to these
papers, the subject of the present paper is motivated, in essence, by our intention to de-
velop the Rothe method to this relatively new type of evolution problems. We will point
out that, in addition to the fact that Rothe’s method is a convenient tool for the theoreti-
cal analysis of evolution problems, it is of particular interest from the numerical point of
view.

The plan of the paper is as follows. First, in the next section, we transform problem
(1.1)–(1.3) to an equivalent one with homogeneous integral conditions, namely, problem
(2.3)–(2.6). Then, we specify notations and assumptions on data before stating the precise
sense of the desired solution. In Section 3, by the Rothe discretization in time method,
we construct approximate solutions to problem (2.3)–(2.6). Some a priori estimates for
the approximations are derived in Section 4, while convergence and existence result for
problem (2.3)–(2.6) are established in Section 5.

2. Preliminaries

It is convenient at the beginning to reduce problem (1.1)–(1.3) with inhomogeneous in-
tegral conditions (1.3) to an equivalent one with homogeneous conditions. For this, we
introduce a new unknown function u by setting

u(x, t)= v(x, t)−R(x, t), (x, t)∈ (0,1)× [0,T], (2.1)

where

R(x, t)= 6
(
2G(t)−E(t)

)
x− 2

(
3G(t)− 2E(t)

)
. (2.2)

Then, the function u is seen to be the solution of the following problem:

∂u

∂t
− ∂2u

∂x2
= f (x, t), (x, t)∈ (0,1)× (0,T], (2.3)

u(x,0)=U0(x), 0 � x � 1, (2.4)∫ 1

0
u(x, t)dx = 0, 0 � t � T , (2.5)∫ 1

0
xu(x, t)dx = 0, 0 � t � T , (2.6)

where

f (x, t)= f(x, t)− ∂R(x, t)
∂t

,

U0(x)=V0(x)−R(x,0).
(2.7)

Hence, instead of looking for the function v, we search for the function u. The solution
of problem (1.1)–(1.3) will be simply given by the formula v(x, t)= u(x, t) +R(x, t).
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Throughout this paper, (·,·) denotes the usual inner product in L2(0,1) and ‖ · ‖ the
corresponding norm. H2(0,1) is the usual second-order Sobolev space on (0,1) with
norm ‖ · ‖H2(0,1). To take into consideration the integral conditions (2.5) and (2.6), we
will make use of the space V which we define as follows:

V :=
{
φ ∈ L2(0,1);

∫ 1

0
φ(x)dx =

∫ 1

0
xφ(x)dx = 0

}
. (2.8)

Since V is the null space of the continuous linear mapping � : L2(0,1)→R2, φ �→ �(φ)=
(
∫ 1

0 φ(x)dx,
∫ 1

0 xφ(x)dx), it is a closed linear subspace of L2(0,1), consequently V is a
Hilbert space endowed with the inner product (·,·).

Our analysis also requires the use of the nonclassical function space B1
2(0,1) first intro-

duced by Bouziani in [1]. It is considered as the completion of the space C0(0,1) of real
continuous functions with compact support in (0,1) with respect to the inner product

(u,v)B1
2 (0,1) =

∫ 1

0
�xu ·�xvdx, (2.9)

where �xv =
∫ x

0 v(ξ)dξ for every fixed x ∈ (0,1). We recall that, if ‖ · ‖B1
2 (0,1) denotes the

corresponding norm, that is,

‖v‖B1
2 (0,1) =

√
(v,v)B1

2 (0,1), (2.10)

then, the inequality

‖v‖2
B1

2 (0,1) � 1
2
‖v‖2 (2.11)

holds for every v ∈ L2(0,1), and the embedding L2(0,1)→ B1
2(0,1) is continuous.

Moreover, we need the standard functional spaces C([0,T];X), C0,1([0,T];X), L2(0,T ;
X), and L∞(0,T ;X) of continuous, Lipschitz continuous, L2-Bochner integrable, and es-
sentially bounded mappings from [0,T] into a normed linear space X , respectively, see
[12]. It is known that C([0,T];X) and L2(0,T ;X) are complete with respect to their usual
norms if X is a Banach space. This is the case, for instance, when X =V or X = B1

2(0,1).
Any given real function θ(x, t) on (0,1)× (0,T) is always identified with the cor-

responding abstract function t �→ θ(t) = θ(·, t) defined from (0,T) into some function
space on (0,1) by setting (θ(t))(x) = θ(x, t). Strong or weak convergence is denoted by
→ or⇀, respectively. The letter C will stand for generic positive constants which may be
different in the same discussion.

The following lemma will be useful to us thereafter.

Lemma 2.1 (Lax and Milgram). Let H be a real Hilbert space with norm ‖ · ‖H . Let (u,v) �→
a(u,v) be a bilinear form on H ×H and let v �→ L(v) be a continuous linear form on H .
Suppose that a(·,·) is continuous and H-elliptic, that is, there exist two positive constants M
and α such that

(i) |a(u,v)|�M‖u‖H‖v‖H , for all u,v ∈H ;
(ii) a(v,v) � α‖v‖2

H , for all v ∈H .
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Then, there exists a unique u∈H satisfying

a(u,v)= L(v), ∀v ∈H. (2.12)

For the proof of Lemma 2.1, see, for instance, [6, page 84].
In the sequel, we make the following assumptions:

(H1) f (t)∈ L2(0,1) for each t ∈ [0,T] and f ∈ C0,1([0,T];B1
2(0,1));

(H2) U0 ∈H2(0,1);
(H3) compatibility conditions

∫ 1
0 U0(x)dx = 0 and

∫ 1
0 xU0(x)dx = 0.

We will be concerned with a weak solution in the following sense.

Definition 2.2. Under a weak solution of problem (2.3)–(2.6), we understand a function
u : [0,T]→ L2(0,1) such that

(i) u∈ L∞(0,T ;V)∩C([0,T];B1
2(0,1));

(ii) u has (a.e. in [0,T]) a strong derivative du/dt ∈ L∞(0,T ;B1
2(0,1));

(iii) u(0)=U0 in B1
2(0,1);

(iv) the identity

(
du

dt
(t),φ

)
B1

2 (0,1)
+
(
u(t),φ

)= ( f (t),φ
)
B1

2 (0,1) (2.13)

holds for all φ ∈V and a.e. t ∈ [0,T].

Note that since u ∈ C([0,T];B1
2(0,1)), the condition (iii) makes sense, and by virtue

of (i), (ii), and assumption (H1), each term in (2.13) is well defined. On the other hand,
the fulfillment of the integral conditions (2.5) and (2.6) is guaranteed by the fact that
u(t)∈V for a.e. t ∈ [0,T].

3. Construction of approximate solutions

In order to solve problem (2.3)–(2.6) by the Rothe method, we divide the time interval
[0,T] into n subintervals [t j−1, t j], j = 1, . . . ,n, where t j = jh and h= T/n. Then, replacing
the first time derivative of u by the corresponding standard difference quotient, problem
(2.3)–(2.6) may be approximated at each point t = t j , j = 1, . . . ,n, by the following time
discretized problem.

Find a function uj : (0,1)→R, such that

δuj −
d2uj

dx2
= f j , x ∈ (0,1), (3.1)∫ 1

0
uj(x)dx = 0, (3.2)∫ 1

0
xuj(x)dx = 0, (3.3)
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where u0 is given by

u0(x)=U0(x), x ∈ (0,1), (3.4)

and where δuj := (uj −uj−1)/h and f j = f (·, t j).
Obviously, this is a recurrent system of boundary value problems, for the approximates

uj , to be solved successively for j = 1, . . . ,n, starting from the initial function from (2.4).
To prove the existence and uniqueness of such uj , we adapt an idea of [14] in the following
way: for all j = 1, . . . ,n, we associate with problem (3.1)–(3.3) the Dirichlet boundary
value problem for the second order linear ordinary differential equation

−d2wj

dx2
+

1
h
wj = f j +

1
h
wj−1, x ∈ (0,1), (3.5)

wj(0)= λ, (3.6)

wj(1)= µ, (3.7)

where (λ,µ) is for the moment an arbitrary, but fixed-ordered, pair of real numbers, and
where w0 =U0.

Since f1 + (1/h)U0 ∈ L2(0,1), Lemma 2.1 implies the existence and uniqueness of a
strong solution w1 ∈H2(0,1) to the elliptic problem (3.5)1–(3.7)1. Similarly, due to the
fact that f2 + (1/h)w1 ∈ L2(0,1), by Lemma 2.1, the existence of a unique strong solution
w2 ∈ H2(0,1) to problem (3.5)2–(3.7)2 follows. Step by step, each wj is then uniquely
determined in terms of U0, w1, . . . , wj−1. Thus, the following Lemma holds.

Lemma 3.1. For all n � 1, and for all pair (λ,µ) ∈ R2, the auxiliary discretized problems
(3.5)–(3.7), j = 1, . . . ,n, have unique solutions wj ∈H2(0,1).

Since the functions wj depend on the parameters λ and µ, we will write wj(x;λ,µ)
instead of wj(x). In the sequel, we wish to show that, for each j = 1, . . . ,n, λ and µ can be
chosen in a suitable way such that the corresponding function wj(·;λ,µ) is a solution of
problem (3.1)–(3.3) provided that n is large enough.

Evidently, the function wj(·;λ,µ) will be a solution to problem (3.1)–(3.3) if and only
if the pair (λ,µ) is a solution to the following system of equations:

∫ 1

0
wj(x;λ,µ)dx = 0,∫ 1

0
xwj(x;λ,µ)dx = 0,

(3.8)

that is, solving (3.8) will provide all the solutions to problem (3.1)–(3.3). If, in particular,
(3.8) admits a unique solution, so is problem (3.1)–(3.3). The solvability of system (3.8)
needs the explicit expression of wj(·;λ,µ) in terms of λ and µ. It is clear that wj(·;λ,µ)
can be obtained as the sum of two functions w̃ j and wj , where w̃ j (dependent on neither
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λ nor µ) and wj are the solutions to the following problems, respectively:

−d2w̃ j

dx2
+

1
h
w̃j = f j +

1
h
wj−1, x ∈ (0,1),

w̃ j(0)= 0,

w̃ j(1)= 0,

−d2wj

dx2
+

1
h
wj = 0, x ∈ (0,1),

wj(0)= λ,

wj(1)= µ.

(3.9)

One easily checks that wj is given by

wj(x)= c1e
x/
√
h + c2e

−x/√h, (3.10)

where c1 and c2 are two real constants to be selected such that wj(0) = λ and wj(1) = µ
hold. An easy computation leads to

c1 = µ− λe−1/
√
h

e1/
√
h− e−1/

√
h

, c2 = λe1/
√
h−µ

e1/
√
h− e−1/

√
h
. (3.11)

Substituting (3.10) in (3.8), we get

∫ 1

0
w̃ j(x)dx+ c1

∫ 1

0
ex/

√
hdx+ c2

∫ 1

0
e−x/

√
hdx = 0,∫ 1

0
xw̃j(x)dx+ c1

∫ 1

0
xex/

√
hdx+ c2

∫ 1

0
xe−x/

√
hdx = 0.

(3.12)

Computing the integrals and performing some elementary simplifications taking into
account (3.11), we finally obtain the equivalent linear algebraic system

λ+µ= sinh(1/
√
h)√

h
(
1− cosh(1/

√
h)
) ∫ 1

0
w̃ j(x)dx,

(
1−

√
hsinh

1√
h

)
λ+
(√

hsinh
1√
h
− cosh

1√
h

)
µ= sinh(1/

√
h)√

h

∫ 1

0
xw̃j(x)dx,

(3.13)

whose determinant

Φ(h)= 2
√
hsinh

1√
h
− cosh

1√
h
− 1 (3.14)

vanishes only for the value h = h 
 3.448× 1015. Hence, for all h < h0 :=min{h,T}, the
system (3.13), and consequently (3.8), admits a unique solution (λj ,µj) in R2. Thus, if
n0 denotes the smallest positive integer satisfying T/n0 � h0, we can state the following
result.
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Theorem 3.2. For all n > n0 and for all j = 1, . . . ,n, problem (3.1)–(3.3) admits a unique
solution uj in H2(0,1), namely,

uj(x)=wj
(
x;λj ,µj

)
, x ∈ (0,1), (3.15)

where wj(x;λj ,µj) is the solution of (3.5)–(3.7) with (λj ,µj) being the unique solution of the
linear system (3.13).

Now, for all n > n0, we introduce the Rothe function u(n) : [0,T]→ H2(0,1)∩V de-
fined by

u(n)(t)= uj−1 + δuj
(
t− t j−1

)
, t ∈ [t j−1, t j

]
, j = 1, . . . ,n, (3.16)

and the corresponding step function u(n) : [0,T]→H2(0,1)∩V defined as follows:

u(n)(0)=U0, u(n)(t)= uj for t ∈ (t j−1, t j
]
, j = 1, . . . ,n. (3.17)

4. A priori estimates for the approximations

It seems plausible that for n→∞ (i.e., h→ 0) the limit function (in the sense given later)
of the sequence {u(n)}n>n0 will be the required solution of our problem (2.3)–(2.6). The
establishment of this fact requires some a priori estimates which are based on the follow-
ing lemma.

Lemma 4.1. There existsC>0 such that, for all n > n0, the solutions uj of the time-discretized
problem (3.1)–(3.3), j = 1, . . . ,n, satisfy the estimates

∥∥uj

∥∥� C, (4.1)∥∥δuj

∥∥
B1

2 (0,1) � C. (4.2)

Proof. To derive these estimates, we need to write problem (3.1)–(3.3) in a variational
formulation.

Suppose n > n0 and let φ be any function from the space V defined in (2.8). A standard
integration by parts yields∫ x

0
(x− ξ)φ(ξ)dξ =�2

xφ, ∀x ∈ (0,1), (4.3)

where

�2
xφ :=�x

(�ξφ
)= ∫ x

0
dξ
∫ ξ

0
φ(η)dη. (4.4)

Hence, taking x = 1 in (4.3), we get

�2
1φ=

∫ 1

0
(1− ξ)φ(ξ)dξ =

∫ 1

0
φ(ξ)dξ −

∫ 1

0
ξφ(ξ)dξ = 0. (4.5)
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Next, multiplying for all j = 1, . . . ,n, (3.1) by �2
xφ and integrating over (0,1), we get∫ 1

0
δuj(x)�2

xφdx−
∫ 1

0

d2uj

dx2
(x)�2

xφdx =
∫ 1

0
f j(x)�2

xφdx. (4.6)

Performing some integrations by parts and using (4.5), we obtain, for each term in (4.6),∫ 1

0
δuj(x)�2

xφdx =
∫ 1

0

d

dx

(�x
(
δuj
))�2

xφdx

=�x
(
δuj
)�2

xφ
∣∣x=1
x=0−

∫ 1

0
�x
(
δuj
)�xφdx

=−(δuj ,φ
)
B1

2 (0,1),∫ 1

0

d2uj

dx2
(x)�2

xφdx =
duj

dx
(x)�2

xφ
∣∣∣∣x=1

x=0
−
∫ 1

0

duj

dx
(x)�xφdx

=−
∫ 1

0

duj

dx
(x)�xφdx

=−uj(x)�xφ
∣∣x=1
x=0 +

∫ 1

0
uj(x)φ(x)dx

= (uj ,φ
)
,∫ 1

0
f j(x)�2

xφdx =
∫ 1

0

d

dx

(�x f j
)�2

xφdx

=�x f j�2
xφ
∣∣x=1
x=0−

∫ 1

0
�x f j�xφdx

=−( f j ,φ)B1
2 (0,1),

(4.7)

so that (4.6) becomes finally(
δuj ,φ

)
B1

2 (0,1) +
(
uj ,φ

)= ( f j ,φ)B1
2 (0,1), ∀ j = 1, . . . ,n. (4.8)

Particularly, from (4.8)1, one obtains(
δu1,φ

)
B1

2 (0,1) +h
(
δu1,φ

)= ( f1,φ
)
B1

2 (0,1)−
(
U0,φ

)
. (4.9)

Then, integrating by parts the second term in the right-hand side, it follows that

(
U0,φ

)= ∫ 1

0
U0(x)

d

dx

(�xφ
)
dx

=U0(x)�xφ
∣∣x=1
x=0−

∫ 1

0

dU0

dx
(x)�xφdx

=−
∫ 1

0

dU0

dx
(x)�xφdx,

(4.10)

but

�x

(
d2U0

dx2

)
= dU0

dx
(x)− dU0

dx
(0), ∀x ∈ (0,1), (4.11)
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whence, due to (4.5),

(
U0,φ

)=−∫ 1

0
�x

(
d2U0

dx2

)
�xφdx− dU0

dx
(0)�2

1φ

=−
∫ 1

0
�x

(
d2U0

dx2

)
�xφdx

=−
(
d2U0

dx2
,φ
)
B1

2 (0,1)
,

(4.12)

in light of which, (4.9) becomes

(
δu1,φ

)
B1

2 (0,1) +h
(
δu1,φ

)= ( f1 +
d2U0

dx2
,φ
)
B1

2 (0,1)
. (4.13)

Testing this identity with φ = δu1 = (u1 −U0)/h which is in V , thanks to (3.2)1–(3.3)1

and assumption (H3), we get, with the help of Cauchy-Schwarz inequality,

∥∥δu1
∥∥2
B1

2 (0,1) +h
∥∥δu1

∥∥2 �
[∥∥ f1∥∥B1

2 (0,1) +
∥∥∥∥d2U0

dx2

∥∥∥∥
B1

2 (0,1)

]∥∥δu1
∥∥
B1

2 (0,1). (4.14)

Consequently,

∥∥δu1
∥∥
B1

2 (0,1) � ‖ f ‖C([0,T];B1
2 (0,1)) +

∥∥∥∥d2U0

dx2

∥∥∥∥
B1

2 (0,1)
. (4.15)

On the other hand, taking the difference of relations (4.8) j–(4.8) j−1, j = 2, . . . ,n, tested
with φ= δuj which belongs to V , in view of (3.2)–(3.3) and (3.2) j−1–(3.3) j−1, we have

∥∥δuj

∥∥2
B1

2 (0,1) +
1
h

∥∥uj −uj−1
∥∥2 = ( f j − f j−1,δuj

)
B1

2 (0,1) +
(
δuj−1,δuj

)
B1

2 (0,1). (4.16)

Hence, using Cauchy-Schwarz inequality,∥∥δuj

∥∥2
B1

2 (0,1) �
∥∥ f j − f j−1

∥∥
B1

2 (0,1)

∥∥δuj

∥∥
B1

2 (0,1) +
∥∥δuj−1

∥∥
B1

2 (0,1)

∥∥δuj

∥∥
B1

2 (0,1), (4.17)

accordingly, due to assumption (H1), we get∥∥δuj

∥∥
B1

2 (0,1) � lh+
∥∥δuj−1

∥∥
B1

2 (0,1), (4.18)

where l is the constant of Lipschitz continuity of f : [0,T]→ B1
2(0,1). Then, iterating this

inequality, we arrive at ∥∥δuj

∥∥
B1

2 (0,1) � l( j− 1)h+
∥∥δu1

∥∥
B1

2 (0,1), (4.19)

or, by virtue of (4.15),

∥∥δuj

∥∥
B1

2 (0,1) � lT +‖ f ‖C([0,T];B1
2 (0,1)) +

∥∥∥∥d2U0

dx2

∥∥∥∥
B1

2 (0,1)
, (4.20)
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for every j = 1, . . . ,n. Thus, (4.2) is proved with

C = C1 := lT +‖ f ‖C([0,T];B1
2 (0,1)) +

∥∥∥∥d2U0

dx2

∥∥∥∥
B1

2 (0,1)
. (4.21)

As for estimate (4.1), we put φ = uj −uj−1 in (4.8) and we apply the identity

(
uj ,uj −uj−1

)= 1
2

(∥∥uj −uj−1
∥∥2

+
∥∥uj

∥∥2−∥∥uj−1
∥∥2)

, (4.22)

to get

h
∥∥δuj

∥∥2
B1

2 (0,1) +
1
2

∥∥uj −uj−1
∥∥2

+
1
2

∥∥uj

∥∥2 = ( f j ,uj −uj−1
)
B1

2 (0,1) +
1
2

∥∥uj−1
∥∥2
. (4.23)

Ignoring the first two terms in the left-hand side, we have∥∥uj

∥∥2 � 2
∥∥ f j∥∥B1

2 (0,1)

∥∥uj −uj−1
∥∥
B1

2 (0,1) +
∥∥uj−1

∥∥2
, (4.24)

whence, using (4.20), ∥∥uj

∥∥2 � 2C1h‖ f ‖C([0,T];B1
2 (0,1)) +

∥∥uj−1
∥∥2
. (4.25)

From this recurrent inequality, we successively estimate∥∥uj

∥∥2 � 2C1 jh‖ f ‖C([0,T];B1
2 (0,1)) +

∥∥U0
∥∥2

, (4.26)

from where estimate (i) follows with

C = C2 := {2C1T‖ f ‖C([0,T];B1
2 (0,1)) +

∥∥U0
∥∥2}1/2

, (4.27)

and so the proof is complete. �

Corollary 4.2. For all n > n0, the functions u(n) and u(n) satisfy the inequalities

∥∥u(n)(t)
∥∥� C,

∥∥u(n)(t)
∥∥� C, ∀t ∈ [0,T], (4.28)

∥∥∥∥du(n)

dt
(t)
∥∥∥∥
B1

2 (0,1)
� C, a.e. in [0,T], (4.29)

∥∥u(n)(t)−u(n)(t)
∥∥
B1

2 (0,1) � Ch, ∀t ∈ [0,T]. (4.30)

Proof. Inequalities (4.28) are direct consequences of (4.1) with the same constant C = C2,
whereas inequalities (4.29) and (4.30) follow immediately from (4.2), also with the same
constant C = C1, noting that

du(n)

dt
(t)= δuj , t ∈ (t j−1, t j

]
, 1 � j � n,

u(n)(t)−u(n)(t)= (t j − t
)
δuj , t ∈ (t j−1, t j

]
, 1 � j � n,

(4.31)



N. Merazga and A. Bouziani 23

and, consequently,∥∥∥∥du(n)

dt
(t)
∥∥∥∥
B1

2 (0,1)
� max

1� j�n

∥∥δuj

∥∥
B1

2 (0,1), a.e. in [0,T],∥∥u(n)(t)−u(n)(t)
∥∥
B1

2 (0,1) � h max
1� j�n

∥∥δuj

∥∥
B1

2 (0,1), ∀t ∈ [0,T].
(4.32)

�

5. Convergence and existence result

For all n > n0, the variational equations (4.8) may be rewritten in the form(
du(n)

dt
(t),φ

)
B1

2 (0,1)
+
(
u(n)(t),φ

)= ( f (n)
(t),φ

)
B1

2 (0,1)
, (5.1)

for all φ ∈V and a.e. t ∈ [0,T], where f
(n)

: I → L2(0,1) is the step function defined by

f
(n)

(t)=
 f j if t ∈ (t j−1, t j

]
, j = 1, . . . ,n,

f0 if t = 0.
(5.2)

Before carrying out the limiting process in the approximation scheme (5.1), we prove
some assertions.

Theorem 5.1. The sequence {u(n)}n converges in the norm of the space C([0,T];B1
2(0,1))

to some function u∈ C([0,T];B1
2(0,1)) and the error estimate∥∥u(n)−u

∥∥
C([0,T];B1

2 (0,1)) � Ch1/2 (5.3)

holds for all n > n0.

Proof. The proof is quite similar to that of [13, Theorem 4.6]. To make the proof more
transparent, we outline a few major steps. The basic idea consists in showing that {u(n)}n
is a Cauchy sequence in the Banach space C([0,T];B1

2(0,1)).
First, estimating the identity

(
u(n)(t),φ

)= ( f (n)
(t)− du(n)

dt
(t),φ

)
B1

2 (0,1)
, ∀φ ∈V , for a.e. t ∈ [0,T], (5.4)

resulting from (5.1), we readily find owing to (4.29) that(
u(n)(t),φ

)
� C3‖φ‖B1

2 (0,1), ∀φ ∈V , for a.e. t ∈ [0,T], (5.5)

with

C3 = lT + 2‖ f ‖C([0,T];B1
2 (0,1)) +

∥∥∥∥d2U0

dx2

∥∥∥∥
B1

2 (0,1)
. (5.6)

Next, let u(n) and u(m) be the Rothe approximations corresponding to the step lengths
hn = T/n and hm = T/m, respectively, with m,n > n0. For all t ∈ (0,T], there exist two
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integers k = k(n) and i= i(m) such that t ∈ (tk−1, tk]∩ (ti−1, ti]. Hence, from the Lipschitz
continuity of f assumed in (H1), it follows that

∥∥ f (n)
(t)− f

(m)
(t)
∥∥
B1

2 (0,1) =
∥∥ f (tk)− f

(
ti
)∥∥

B1
2 (0,1) � l

∣∣tk − ti
∣∣, (5.7)

consequently,

∥∥ f (n)
(t)− f

(m)
(t)
∥∥
B1

2 (0,1) � l
(
hn +hm

)
, ∀t ∈ [0,T]. (5.8)

Now, if we subtract (5.1)m from (5.1) with φ = u(n)(t)−u(m)(t)(∈V) noting that(
d

dt

(
u(n)(t)−u(m)(t)

)
,u(n)(t)−u(m)(t)

)
B1

2 (0,1)
= 1

2
d

dt

∥∥u(n)(t)−u(m)(t)
∥∥2
B1

2 (0,1), (5.9)

we derive after some rearrangement,

1
2
d

dt

∥∥u(n)(t)−u(m)(t)
∥∥2
B1

2 (0,1) +
∥∥u(n)(t)−u(m)(t)

∥∥2

= (u(n)(t)−u(m)(t),u(n)(t)−u(m)(t)−u(n)(t) +u(m)(t)
)

+
(
f

(n)
(t)− f

(m)
(t),u(n)(t)−u(m)(t)

)
B1

2 (0,1), a.e. in [0,T].

(5.10)

Therefore, by the aid of (5.5), (5.8), (4.28), and (4.30), we estimate

1
2
d

dt

∥∥u(n)(t)−u(m)(t)
∥∥2
B1

2 (0,1) +
∥∥u(n)(t)−u(m)(t)

∥∥2

� 2C3
(∥∥u(n)(t)−u(n)(t)

∥∥
B1

2 (0,1) +
∥∥u(m)(t)−u(m)(t)

∥∥
B1

2 (0,1)

)
+
∥∥ f (n)

(t)− f
(m)

(t)
∥∥
B1

2 (0,1)

(∥∥u(n)(t)
∥∥
B1

2 (0,1) +
∥∥u(m)(t)

∥∥
B1

2 (0,1)

)
� 2C2

3

(
hn +hm

)
+ 2C2l

(
hn +hm

)
,

(5.11)

hence,

1
2
d

dt

∥∥u(n)(t)−u(m)(t)
∥∥2
B1

2 (0,1) � C
(
hn +hm

)
, ∀t ∈ [0,T]. (5.12)

Then, integrating this last inequality between 0 and t, taking into account that u(n)(0)=
u(m)(0)=U0, we derive∥∥u(n)(t)−u(m)(t)

∥∥2
B1

2 (0,1) � C
(
hn +hm

)
T , ∀t ∈ [0,T], (5.13)

whence ∥∥u(n)−u(m)
∥∥
C([0,T];B1

2 (0,1)) � C
√
hn +hm, (5.14)

from which we conclude that there exists u ∈ C([0,T];B1
2(0,1)) such that u(n) → u in

C([0,T];B1
2(0,1)). Besides, lettingm→∞ in (5.14), we obtain the required error estimate,

which finishes the proof. �
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Next, on the basis of Corollary 4.2, uniform convergence property from Theorem 5.1
and the continuous embedding V↩B1

2(0,1), [11, Lemma 1.3.15] allows us to write di-
rectly without proof.

Theorem 5.2. The function u from Theorem 5.1 possesses the following properties:

(i) u∈ L∞(0,T ;V)∩C0,1([0,T];B1
2(0,1));

(ii) u is strongly differentiable a.e. in [0,T] and du/dt ∈ L∞(0,T ;B1
2(0,1));

(iii) u(n)(t),u(n)(t)⇀ u(t) in V for all t ∈ [0,T];
(iv) du(n)/dt⇀ du/dt in L2(0,T ;B1

2(0,1)).

Now we are ready to state our existence theorem.

Theorem 5.3. The limit function u from Theorem 5.1 is the unique weak solution to prob-
lem (2.3)–(2.6) in the sense of Definition 2.2. Moreover, u depends continuously upon data
f and U0, namely,

‖u‖C([0,T];B1
2 (0,1)) � C

(‖ f ‖C([0,T];B1
2 (0,1)) +

∥∥U0
∥∥
H2(0,1)

)
, (5.15)

where C > 0 depends neither on f nor on U0.

Proof. Firstly, one should note that conditions (i) and (ii) from Definition 2.2 are already
established in Theorem 5.2(i) and (ii). Secondly, as u(n) → u in C([0,T];B1

2(0,1)) when
n→∞ and, by definition, u(n)(0)=U0, it follows that u(0)=U0 holds in B1

2(0,1) so the
initial condition (2.4) is fulfilled. It remains to show that u satisfies the integral equation
(2.13). Integrating (5.1) over (0, t) (0 < t � T) and using the fact that u(n)(0) = U0, we
have

(
u(n)(t)−U0,φ

)
B1

2 (0,1) +
∫ t

0

(
u(n)(τ),φ

)
dτ =

∫ t

0

(
f

(n)
(τ),φ

)
B1

2 (0,1)
dτ. (5.16)

To investigate the behavior of (5.16) as n→∞, we prove some convergence statements.
Since u(n)(t)⇀ u(t) in V for all t ∈ [0,T] and since for all fixed φ ∈ V , the functional
v �→ (v,φ)B1

2 (0,1) is an element of the dual space of V , we have

(
u(n)(t),φ

)
B1

2 (0,1) −→
(
u(t),φ

)
B1

2 (0,1), ∀φ ∈V , ∀t ∈ [0,T]. (5.17)

On the other hand, in view of the assumed Lipschitz continuity of f , we have∥∥∥ f (n)
(τ)− f (τ)

∥∥∥
B1

2 (0,1)
= ∥∥ f (t j)− f (τ)

∥∥
B1

2 (0,1) � l
∣∣t j − τ

∣∣, (5.18)

for all τ ∈ (t j−1, t j], 1 � j � n, and hence,

∥∥∥ f (n)
(τ)− f (τ)

∥∥∥
B1

2 (0,1)
� C

n
−−−→
n→∞ 0, ∀τ ∈ [0,T], (5.19)

therefore, (
f

(n)
(τ),φ

)
B1

2 (0,1)
−→ ( f (τ),φ

)
B1

2 (0,1), ∀φ ∈V , ∀τ ∈ [0,T]. (5.20)
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Moreover, from the definition of f
(n)

, we have, for all τ ∈ [0,T],∣∣∣( f (n)
(τ),φ

)
B1

2 (0,1)

∣∣∣�
∥∥∥ f (n)

(τ)
∥∥∥
B1

2 (0,1)
‖φ‖B1

2 (0,1) � max
0� j�n

∥∥ f j∥∥B1
2 (0,1)‖φ‖B1

2 (0,1), (5.21)

hence,∣∣∣( f (n)
(τ),φ

)
B1

2 (0,1)

∣∣∣� ‖ f ‖C([0,T];B1
2 (0,1))‖φ‖B1

2 (0,1), ∀τ ∈ [0,T], ∀n > n0. (5.22)

Now, due to (5.5) and (5.22), the sequences {(u(n)(τ),φ)}n and {( f (n)
(τ),φ)B1

2 (0,1)}n are
uniformly bounded with respect to both τ and n, so the Lebesgue theorem of majorized
convergence is applicable to the convergence statement (iii) from Theorem 5.2 as well as
to (5.20), giving ∫ t

0

(
u(n)(τ),φ

)
dτ −→

∫ t

0

(
u(τ),φ

)
dτ,∫ t

0

(
f

(n)
(τ),φ

)
B1

2 (0,1)
dτ −→

∫ t

0

(
f (τ),φ

)
B1

2 (0,1)dτ,

(5.23)

as n→∞. Then, passing to the limit n→∞ in (5.16), we obtain, owing to (5.17) and
(5.23),

(
u(t)−U0,φ

)
B1

2 (0,1) +
∫ t

0

(
u(τ),φ

)
dτ =

∫ t

0

(
f (τ),φ

)
B1

2 (0,1)dτ (5.24)

for all φ ∈V and t ∈ [0,T]. Finally, differentiating (5.24) with respect to t having in mind
that u : [0,T]→ B1

2(0,1) is strongly differentiable for a.e. t ∈ [0,T], we get the required
relation (2.13) due to the identity

d

dt

(
u(t),φ

)
B1

2 (0,1) =
(
du

dt
(t),φ

)
B1

2 (0,1)
, ∀φ∈V , for a.e. t ∈ [0,T]. (5.25)

Thus, u is a weak solution to problem (2.3)–(2.6). The uniqueness may be argued in
the usual manner. Indeed, let û and ũ be two weak solutions of (2.3)–(2.6). Taking the
difference of the relations (2.13) corresponding to û and ũ, tested with the function φ =
û(t)− ũ(t) and using the notation u= û− ũ, we find(

du

dt
(t),u(t)

)
B1

2 (0,1)
+
∥∥u(t)

∥∥2 = 0, for a.e. t ∈ [0,T]. (5.26)

Hence, integrating over (0, t) taking into account that ((du/dt)(t),u(t))B1
2 (0,1) = (1/2)(d/

dt)‖u(t)‖2
B1

2 (0,1) and u(0)= 0, we get

1
2

∥∥u(t)
∥∥2
B1

2 (0,1) +
∫ t

0

∥∥u(τ)
∥∥2
dτ = 0, ∀t ∈ [0,T], (5.27)

from where it follows that ‖u(t)‖2
B1

2 (0,1) = 0, for all t ∈ [0,T], which means that û= ũ.
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Next, from estimate (4.28) combined with the inequality (2.11), the uniform conver-
gence property from Theorem 5.1 enables us to derive

‖u‖C([0,T];B1
2 (0,1)) �

{
C1T‖ f ‖C([0,T];B1

2 (0,1)) +

∥∥U0
∥∥2

2

}1/2

. (5.28)

Hence, we conclude that the linear mapping ( f ,U0) �→u fromC([0,T];B1
2(0,1))×H2(0,1)

into C([0,T];B1
2(0,1)) is bounded on the unit ball{(

f ,U0
)
; ‖ f ‖C([0,T];B1

2 (0,1)) +
∥∥U0

∥∥
H2(0,1) � 1

}
, (5.29)

and therefore continuous. The inequality (5.15) follows then for C = √T(lT + 1) + 1/2
which expresses the continuous dependence of u on data f and U0, and the proof is
complete. �

We do not end this paper without summarizing all the obtained results into the fol-
lowing theorem.

Theorem 5.4. Under assumptions (H1)–(H3), problem (2.3)–(2.6) has a unique weak so-
lution u in the sense of Definition 2.2 with additional regularity, u∈ C0,1([0,T];B1

2(0,1)).
The Rothe approximations u(n) possess the following convergence properties:

u(n)(t)⇀ u(t) in V , ∀t ∈ [0,T];

u(n) −→ u in C
(
[0,T];B1

2(0,1)
)

with the rate O
(

1
n1/2

)
;

du(n)

dt
⇀ du

dt
in L2(0,T ;B1

2(0,1)
)
,

(5.30)

as n tends to infinity.
Besides, u depends continuously on the right-hand side of (2.3) and on the initial function.
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