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The convolution summability method is introduced as a generalization of the random-
walk method. In this paper, two well-known summability analogs concerning the strong
law of large numbers (SLLN) and the law of the single logarithm (LSL), that gives the rate
of convergence in SLLN for the random-walk method, are extended to this generalized
method.

1. Introduction

Let A = [an,k] for n,k ≥ 0 be an infinite matrix of (complex) numbers. We say that a
sequence {si}i≥0 is A-summable to s (summable to s by the A method) if the series

(As)n :=
∞∑
k=0

skan,k −→ s (n−→∞); (1.1)

we then write sn → s(A), where A is the A method of summability. Appropriate choices
of A= [an,k] for n,k ≥ 0 give the classical methods [2]. In this paper, we present various
summability analogs of the strong law of large numbers (SLLN) and their rates of con-
vergence in an unified setting, beyond the class of random-walk methods. A convolution
summability method introduced in the next section as an extension of the random-walk
method generalizes the classical Euler, Borel, Taylor, and Meyer-König type matrix meth-
ods [16]. This corresponds to the distribution of sums of independent and identically
distributed (i.i.d.) integer-valued random variables. The identically distributed condi-
tion is relaxed to some extent in the convolution summability method to include other
summability methods.

Chow [5] gave the following analog of almost sure convergence of the Borel B and the
Euler Ep methods of summability to µ requiring the finiteness of the second moment for
sequence of i.i.d. random variables.
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Theorem 1.1 (Chow [5]). If Z, {Zi}i≥1 is a sequence of i.i.d. random variables, then the
following statements are equivalent:

(1) Var(Z) <∞, EZ = µ,
(2) Zn→ µ(B) a.s., where B is the Borel method,
(3) Zn→ µ(Ep) for some (all) p ∈ (0,1), a.s., where Ep is the Euler method with param-

eter p.

A similar characterization has been considered for the Cesàro method of order α > 1
and the Abel method of summability [17]. Issues involving the values of α in the Cesàro
method are found in [3, 6, 8, 10, 12, 13, 14, 17, 18].

A summability matrix transformation, Rn,k = P(Sn = k) for n,k ≥ 0, where Sn = X1 +
X2 + ··· + Xn is the sum of nonnegative integer-valued random variables, is called the
random-walk method. Later Bingham and Maejima [4] extended the above theorem to
include the random-walk method as follows.

Theorem 1.2 (Bingham and Maejima [4]). If Z, {Zi}i≥1 forms a sequence of i.i.d. random
variables, then the following statement is equivalent to (1), (2), and (3) and each of those
items are equivalent to each other as stated in Theorem 1.1:

(4) Zn→ µ(R), where R is the random-walk method generated by a sequence of indepen-
dent nonnegative aperiodic integer-valued random variables with positive variance
and finite third moment.

Theorem 1.2 is now extended to a larger class, the convolution summability method.

2. Preliminaries

Much of our discussion will now revolve around the following types of summability
methods. This is a larger class of summability methods that includes random-walk
method and many others.

Definition 2.1. Let {pk}k≥0 and {qk}k≥0 be two sequences of nonnegative numbers with∑∞
k=0 pk = 1 and

∑∞
k=0 qk = 1. Define a summability matrix, C = [Cn,k], whose entries are

given by C0,k = qk and Cn+1,k := (Cn,· ∗ p)k =
∑k

j=0 pjCn,k− j for n,k ≥ 0. The matrix C is
called a convolution summability matrix.

A useful probabilistic interpretation of C is the following. Let Y ,X1,X2, . . . be a se-
quence of independent nonnegative integer-valued random variables such that Y has
probability function q and the Xi’s are identically distributed with probability function
p. Let S0 = Y and Sn = Y +X1 + ···+Xn for n≥ 1. Let {pj} j≥0 and {qj} j≥0 be the prob-
ability distributions of X1,X2, . . . and Y , respectively. The nth row and kth column en-
try of the convolution summability matrix C is the probability Cn,k = P(Sn = k). The
method C is regular if and only if P(X1 = 0) < 1 [16]. Some classical summability meth-
ods are examples of the method C. For instance, when Y = 0 and X1 ∼ Binomial(1,1/2)
(Bernoulli with p = 1/2), then C becomes the Euler method denoted by Er . When Y ∼
X1 ∼ Poisson(1), we get the Borel matrix method. When Y ∼Geometric(1− r) and X1 ∼
Y + 1, then we get the Taylor method. And when Y ∼ X1 ∼ Geometric(1− r), we get
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the Meyer-König method. We shall call C a convolution method and when Y = 0 with
probability 1, it is called the random-walk method. The method C can be extended
to nonidentically distributed random variables; however, it will serve our purpose ad-
equately as it is. Hence, it is suspected that the regular convolution summability matrix
transformation [Cn,k] for n,k ≥ 0 obeys this theorem. The regular convolution summa-
bility matrix referred to everywhere in this paper has the above construction with appro-
priate moment conditions.

It is known that the Borel method and the random-walk method are comparable
for bounded sequences [2]. Stemming from this fact, in comparing the random-walk
method with the convolution summability method, we expect them to obey the same
type of Tauberian condition, which eventually paves the way to the equivalence of these
two methods. Under similar conditions, we will prove appropriate extensions to the the-
orems of Bingham and Maejima [4] with the assumptions of finite positive variance and
third moment. This convolution summability method has a particular choice of weights,
namely, if the random-walk method is generated by a sequence of i.i.d. aperiodic nonneg-
ative integer-valued random variables {Xi}i≥1 with finite third moment, then the convo-
lution method is considered to be generated by Y , {Xi}i≥1, where {Xi}i≥1 is the same as
before and Y a nonnegative integer-valued random variable independent of {Xi}i≥1. Fur-
ther, they correspond to probability functions {p} and {q} of the convolution summa-
bility method, respectively. We certainly impose some moment conditions on Y as the
case may be. Any comparison between the random-walk method and the convolution
summability method that will be executed in this paper will be in the above setting. Of
course, the methods are assumed to be strongly regular, so that Var(X1) > 0.

The random-walk method can be considered as a particular convolution summability
method. The corresponding {p} and {q} sequences are then of the form: q = (1,0,0, . . .)
and p = (p0, p1, p2, . . .).

3. Tauberian theorems

Theorems of the type in which ordinary convergence is deduced from the fact that one
has some type of summability condition and perhaps, an additional condition are called
Tauberian theorems. On the other hand, the conditions on the sequences for which two
summability methods are equivalent are studied by another type of Tauberian theorem.

We now compare the random-walk method and the convolution summability method
subject to a given Tauberian condition with the appropriate assumptions on the moments
of random variables. Several other results immediately follow from this result. We state
them as corollaries to the main result.

We first need a lemma.

Lemma 3.1. For every fixed integer j > 0, it follows that

∞∑
k=0

√
k
∣∣P(Sn = k

)−P
(
Sn = k+ j

)∣∣= jO(1). (3.1)

Proof. The proof is accomplished by the principle of mathematical induction.
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If j = 1, then we have

∞∑
k=0

√
k
∣∣P(Sn = k

)−P
(
Sn = k+ 1

)∣∣≤ κ (3.2)

for some κ <∞ which follows from [1, Theorem 2].
Suppose that the result holds true for some j > 1, that is,

∞∑
k=0

√
k
∣∣P(Sn = k

)−P
(
Sn = k+ j

)∣∣≤ jκ. (3.3)

The result for j → j + 1 is

∞∑
k=0

√
k
∣∣P(Sn = k

)−P
(
Sn = k+ j + 1

)∣∣
≤

∞∑
k=0

√
k
∣∣P(Sn = k

)−P
(
Sn = k+ j

)∣∣
+

∞∑
k=0

√
k
∣∣P(Sn = k+ j

)−P
(
Sn = k+ j + 1

)∣∣
≤ jκ+ κ= ( j + 1)κ.

(3.4)

�

The next two theorems, Theorems 3.2 and 3.3, show that the random-walk method
and the convolution summability method are equivalent after assuming integrability con-
dition on the random variable Y .

Theorem 3.2. Let the random-walk method be generated by a sequence of independent
identically distributed aperiodic nonnegative integer-valued random variables {Xi}i≥0 with
finite third moment and positive variance and the convolution method is considered to be
generated by Y , {Xi}i≥0, with {Xi}i≥0 the same as before and Y a nonnegative integer-
valued random variable independent of {Xi}i≥0 with E|Y |3/2<∞. Then for a given sequence
{ fi}i≥0, which obeys the Tauberian condition fk = o(

√
k) for all k ≥ 1, the random-walk

method and the convolution summability method are equivalent.

Theorem 3.2 has a longer proof [11] that heavily depends on repeated applications of
the triangle inequality; telescopic effects of a series; [11, Lemmas 1, 2, and 3]; interchange
of summations; essentially moving absolute values in and out of the sums; and Bikjalis
and Jasjunas [1, Theorem 2]. However, Theorem 3.2 with somewhat weakened assump-
tions, namely, 0 < Var(X1) <∞ and E|Y | <∞ has the shortest proof and follows in a few
lines from Lemma 3.1. An estimate for Theorem 3.2 and the proof of Theorem 3.3 have
been provided to the author through personal communication with H. Kesten in 2001.
The theorem is therefore stated with the weakest assumptions and the shortest proof for
those who are just interested to know the results at their best. Theorem 3.2 now easily
follows from this revised version of the theorem.
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Theorem 3.3. Let the random-walk method be generated by a sequence of independent
identically distributed aperiodic nonnegative integer-valued random variables {Xi}i≥0 with
finite third moment and positive variance and the convolution method is considered to be
generated by Y , {Xi}i≥0, with {Xi}i≥0 the same as before and Y a nonnegative integer-valued
random variable independent of {Xi}i≥0 with E|Y | <∞. Then for a given sequence { fi}i≥0,
which obeys the Tauberian condition fk = o(

√
k) for all k ≥ 1, the random-walk method and

the convolution summability method are equivalent.

Proof. Note first that Lemma 3.1 implies that (in a somewhat relaxed notation)

∞∑
k=0

o
(√

k
)∣∣P{Sn = k

}−P
{
Sn = k− j

}∣∣
≤

j−1∑
�=0

∞∑
k=0

o
(√

k
)∣∣P{Sn = k− �

}−P
{
Sn = k− �− 1

}∣∣
≤

j−1∑
�=0

∞∑
k=0

o
(√

(k+ �)
)∣∣P{Sn = k

}−P
{
Sn = k− 1

}∣∣
≤

j−1∑
�=0

∞∑
k=0

o
(√

k+
√
�
)∣∣P{Sn = k

}−P
{
Sn = k− 1

}∣∣
≤

j−1∑
�=0

[
o(1) + o

(√
�√
n

)]

= jo(1) + o
(
j3/2√
n

)

(3.5)

as n→∞ as an easy estimate for Theorem 3.2. In the last step but one of (3.5) the follow-
ing, (3.6) is used

∞∑
k=−∞

∣∣P{Sn = k
}−P

{
Sn = k− 1

}∣∣=O
(

1√
n

)
. (3.6)

This follows from [1, Theorem 2] or [15, Theorem 3]. In addition, one also has, as
n→∞,

∞∑
k=0

o
(√

k
)∣∣P{Sn = k

}−P
{
Sn = k− j

}∣∣
≤

∞∑
k=0

[
o
(√

k
)
P
{
Sn = k

}
+ o
(√

k
)
P
{
Sn = k− j

}]
= o(1) + o

(
E
√
Sn
)

+
∞∑
k=0

o
(√

k+ j
)
P
{
Sn = k

}
≤ o
(√

n
)

+
∞∑
k=0

o
(√

k+
√
j
)
P
{
Sn = k

}
≤ o
(√

n
)

+ o
(√

j
)
.

(3.7)
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Consequently

∣∣∣∣∣
∞∑
k=0

Cn,k fk −
∞∑
k=0

Rn,k fk

∣∣∣∣∣≤
∞∑
k=0

∣∣ fk∣∣ ∞∑
j=0

qj

∣∣P{Sn = k− j
}−P

{
Sn = k

}∣∣
≤

n∑
j=0

qj jo(1) +
∑
j>n

qjo
(√

j
)
= o(1).

(3.8)

This means that the sequence { fi}i≥1 is summable to L by the random-walk method.
This completes the proof of the required assertion. �

Remark 3.4. In conclusion, all members of the convolution summability methods; Euler,
Borel, Taylor, Meyer-König methods, and so forth are equivalent to their corresponding
random-walk method for a sequence { f (k)}k≥0 with fk = o(

√
k).

Since

E
[|Y |3/2] <∞, fk =O(1)=⇒ E

[|Y |] <∞, fk =O
(√

k
)

, (3.9)

the following two corollaries are trivial consequences of Theorem 3.3.

Corollary 3.5. Let the random-walk method be generated by a sequence of independent
identically distributed nonnegative aperiodic integer-valued random variables {Xi}i≥0 with
finite third moment and Var(X1) > 0 and the convolution method is considered to be gen-
erated by Y , {Xi}i≥0, with {Xi}i≥0 is same as before, and Y a nonnegative integer-valued
random variable independent of {Xi}i≥1 with E|Y | <∞. Then for a bounded sequence, the
random-walk method and the convolution summability method are equivalent.

Corollary 3.6. Let {Xi}i≥1 be independent identically distributed random variables with
finite third moment, Var(X1) > 0, and let {Y , Ŷ} be two random variables independent of
{Xi}i≥1 with E|Y |, E|Ŷ | <∞. Then for a given sequence { fi}i≥0, which obeys the Tauberian
condition fk = o(

√
k) for all k ≥ 1, two convolution methods generated by two sequences

of independent aperiodic nonnegative integer-valued random variables Y , {Xi}i≥1 and Ŷ ,
{Xi}i≥1 are equivalent.

Borrowing the statement of [1, Theorem 2] and [15, Theorem 3], we could restate
the relevant theorems in order to make the results more self-apparent. The appropriate
statement for Theorem 3.3 is the following.

Theorem 3.7. Let the random-walk method be generated by a sequence of independent
identically distributed integer-valued random variables {Xi}i≥0 having distribution function
F and the convolution method is considered to be generated by Y , {Xi}i≥0, with {Xi}i≥0

the same as before, and Y an integer-valued random variable independent of {Xi}i≥1 with
E|Y | <∞. If, either

(a) F is concentrated on the sequence {k + nh : n = 0,±1, . . .} for some h > 0, then for
each fixed integer i with P{Si− lk = ih} > 0 for some l, or

(b) Fk has an absolutely continuous component for some k,
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then for a given sequence, { fi}i≥0, which obeys the Tauberian condition fk = o(
√
k) for all

k ≥ 1, the random-walk method and the convolution summability method are equivalent.

Remark 3.8. In conclusion, with above F, all members of the convolution summability
methods; Euler, Borel, Taylor, Meyer-König methods, and so forth are equivalent to their
corresponding random-walk method for a sequence { f (k)}k≥0 with f (k)= o(

√
k).

4. Almost sure convergence

The results in the preceding sections will lead to the extension of the corresponding al-
most sure convergence analogue of Bingham and Maejima [4] to the convolution summa-
bility method of our choice with the assumption of the finite third moment of the random
variable.

In pursuit of this, we prove the following theorem.

Theorem 4.1. Let Z, {Zi}i≥1 be a sequence of i.i.d. random variables with finite variance.
Let Y , {Xi}i≥1 with E|Y | <∞ be independent and let {Xi}i≥1 be i.i.d. aperiodic nonnegative
integer-valued random variables with finite third absolute moment and Var(X1) > 0. Denote
P(Y = k)= qk and P(X1 = k)= pk and the resulting random-walk method by R(p) and the
convolution method by C(p,q). Then the following are equivalent:

(I) EZ = µ, Var(Z) <∞,
(II) Zn→ µ a.s. R(p) for R some (any) random-walk method,

(III) Zn→ µ a.s. C(p,q) for C some (any) convolution summability method.

Proof. (I) implies (II) and (II) implies (I) are already known [4]. Next, by the Borel-
Cantelli lemma, we have Var(Z) <∞ if and only if Zn = o(

√
n) a.s. So if (I) holds, then

(II) holds by [4]. If Zn = o(
√
n) a.s. and (II) holds, then by Theorem 3.2, (III) holds a.s.

for a particular convolution summability method C(p,q), where R is generated by {p}.
This gives that (I) implies (III) for a given method.

Finally, to show that (III) implies (I), we use the similar argument from [4]. Since

P
(
ξ1 + ξ2 + ···+ ξn = j

)= 1
τ(2πn)1/2

exp
{
− 1

2
( j−nν)2

nτ2

}
+ o
(

1√
n

)
(4.1)

uniformly in j, where ξ1,ξ2, . . . ,ξn, . . . is a sequence of i.i.d. random variables with finite
third moment [17], it follows for the convolution summability weights

Cn, j =
j∑

k=0

qkP
(
Sn = j− k

)

=
j∑

k=0

qk

{
1

τ(2πn)1/2
exp

{
− 1

2
( j− k−nν)2

nτ2

}
+ o
(

1√
n

)}
.

(4.2)

This yields

Cn,[nν] ∼ 1
τ(2πn)1/2

. (4.3)
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Our assumption is

∞∑
j=0

Cn, jZj −→ µ a.s., as n−→∞. (4.4)

Write Zs
j for the symmetrization of Zj . Then

∞∑
j=0

Cn, jZ
s
j −→ 0 a.s., as n−→∞. (4.5)

The above sum exists a.s. by the three-series theorem of Kolmogorov (see [7]). Put Yn =∑
j≤nνCn, jZ

s
j and Wn =

∑
j>nνCn, jZ

s
j . Then (Y1,Y2, . . . ,Yn) and Wn are independent for

each n, and

Yn +Wn −→ 0 a.s., (4.6)

so in probability. Since Yn and Wn are independent and symmetric, we use the Lévy sym-
metrization inequalities [9, Chapter V.5, Lemma 2] to deduce

Yn −→ 0 in probability. (4.7)

Use of [5, Lemma 2] now yields

Yn −→ 0 a.s. (4.8)

Recall that Yn is a sum over j ≤ νn. Separate the last term of this sum from the previous
terms, and apply the same argument to them as just applied to Wn and Yn. We have

Cn,[νn]Z
s
[νn] −→ 0 a.s., as n−→∞. (4.9)

Since Cn,[νn] ∼ 1/τ(2πn)1/2, we obtain

Zs
n√
n
−→ 0 a.s., as n−→∞. (4.10)

By the Borel-Cantelli lemma, we obtain E(|Zs|2) <∞. From

E
(∣∣Zs

∣∣2
)
=Var

(
Zs
)= 2Var(Z), (4.11)

we deduce that Var(Z) <∞. Now (I) holds with µ= EZ.
We know that (I) implies (II) for any random-walk methodR(p) with positive variance

and finite third moment, where {p} is the common distribution of {Xi, i≥ 1}. Then (II)
implies (III), where C(p,q) is the convolution method with

∑
j jq j <∞ (E|Y | <∞). Then

(III) implies (I). We show that any convolution method C(s,q), where {s} is not same as
{p}, can also be used. By (I) and (II) we note that R(p) can be replaced by R(s). This then
implies that C(p,q) can be replaced by C(s,q). This now completes the proof. �

Remark 4.2. In conclusion, all members of the convolution summability methods; Eu-
ler, Borel, Taylor, Meyer-König methods and so forth obey the theorem of almost sure
convergence.
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5. Law of the single logarithm

The classical law of the iterated logarithm gives us the rate at which the convergence in
Zn→ µ(C,1) a.s. for a sequence of i.i.d. random variables takes place. Gaposhkin [10] has
established the law of the iterated logarithm for the (C,α) and the Abel methods in the
case, Z1 is bounded. Actually Gaposhkin’s results are extended by Lai [17] to the case,
0 < E(Z1)2 <∞. The extension is the sharpest possible in the sense that its converse also
holds [17]. The primary interest in this section is to prove an analogue of the law of iter-
ated logarithm already established for the random-walk method [4] for the convolution
summability method. More precisely, we prove the law of the single logarithm (LSL) that
contains the result of [4], as stated below.

The results derived from the preceding two sections will be utilized to extend this LSL
[4] to the convolution summability method of given structure. It gives the rate at which
the convergence in the previous theorems take place.

Theorem 5.1. Let Z,{Zi}i≥1 be a sequence of i.i.d. random variables with finite variance.
For Y ,{Xi}i≥1 being independent with E|Y | <∞ and {Xi}i≥1 being i.i.d. aperiodic nonneg-
ative integer-valued random variables with finite positive variance, σ2 and third absolute
moment, the following are equivalent:

(I) EZ = 0, Var(Z)= d2 ∈ (0,∞), and E[Z4/(1 + log+ |Z|)2] <∞;
(II) limsupn→∞(4πn)1/4(d2 logn)−1/2|∑∞

j=0Rn, jZj| = 1/σ1/2 a.s. for some (any) random-
walk method R(p) or circle method C with E|Xi|3 <∞ for i = 1,2, . . . , where Rn, j

denotes the weights of the random-walk method R(p) or circle method C;
(III) limsupn→∞(4πn)1/4(d2 logn)−1/2|∑∞

j=0Cn, jZj| = 1/σ1/2 a.s. for some (any) convo-
lution summability method C(p,q) with E|Xi|3 <∞ for i = 1,2, . . . and E(Y) <∞,
where Cn, j denotes the weights of the convolution summability method C(p,q).

Proof. (I) is equivalent to (II) by Bingham and Maejima [4]. The following argument is
usually omitted, but given for the sake of completeness. As shown, the moment condition
E[Z4/(1 + log+ |Z|)2] <∞ in (I) is equivalent to Zj = o( j1/4 log1/2 j) a.s. for all j ≥ 1.

For brevity, denote the events {Z4
n/(1 + log+ |Zn|)2 ≥ n} by An and {(1 + log+ |Zn|) ≤

logn} by Bn, respectively.
In terms of An and Bn,

P

{
Z4
n(

1 + log+ |Zn|
)2 ≥ n

}
= P

(
An∩Bn

)
+P
(
An∩BC

n

)
. (5.1)

So,
∑

n P(An)≤∑n P(An∩Bn) +
∑

n P(BC
n ) and now consider

∑
n

P
(
BC
n

)=∑
n

P
(

log+∣∣Zn

∣∣ > logn− 1
)

=
∑
n

P
(

log+∣∣Zn

∣∣ > logn− 1,
∣∣Zn

∣∣≤ 1
)

+
∑
n

P
(

log+∣∣Zn

∣∣ > logn− 1,
∣∣Zn

∣∣ > 1
)

for n≥ 3.

(5.2)
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The first event is an impossible event, whereas the second term on the right is

∑
n

P
(

log+∣∣Zn

∣∣ > logn− 1,
∣∣Zn

∣∣ > 1
)≤∑

n

P
(∣∣Zn

∣∣ > αn
)
<∞ for some α > 0, (5.3)

if and only if E|Zn| <∞ which is true as a result of E(Z2) = d2 <∞. Hence, we require
that

∑
n P(An∩Bn) <∞, which is satisfied if and only if E[Z4/(1 + log+ |Z|)2] <∞. Then,

by Borel-Cantelli lemma, we have P(An, i. o.)= 0. This implies

Zn

n1/4 log1/2n
−→ 0 a.s. (5.4)

This is the same as saying Zn = o(n1/4 log1/2n) a.s. In particular, Zn = o(
√
n) a.s. This

means that for a sequence of i.i.d. random variables {Zi}i≥1 with Tauberian condition
Zn = o(n1/4 log1/2n) a.s., any two random-walk methods are equivalent. We could also
show that under the same Tauberian condition, any random-walk method in (II) and any
convolution summability method in (III) are equivalent. But for Zn = o(

√
n), the result

holds as Zn = o(n1/4 log1/2n) implies Zn = o(
√
n) and, the two methods are equivalent.

Suppose (I) holds, then (II) holds. Since Zj = o( j1/4 log1/2 j) a.s. for all j ≥ 1 and (II)
implies (III), we have that (I) implies (III) for a particular convolution summability
method. (III) implies (II) will be shown similarly. The following two inequalities will
assist in justifying these two assertions:

P
{

limsup
n→∞

∣∣(4πn)1/4(d2 logn
)−1/2∣∣ ∞∑

j=0

Rn, jZj

∣∣∣∣− 1
σ1/2

∣∣∣∣≥ ε}

≤ P
{

limsup
n→∞

∣∣(4πn)1/4(d2 logn
)−1/2∣∣ ∞∑

j=0

Cn, jZj

∣∣∣∣− 1
σ1/2

∣∣∣∣≥ ε}

+P
{

limsup
n→∞

∣∣(4πn)1/4(d2 logn
)−1/2∣∣

×
∣∣∣∣ ∞∑

j=0

Rn, jZj

∣∣− (4πn)1/4(d2 logn
)−1/2∣∣ ∞∑

j=0

Cn, jZj

∣∣∣∣≥ ε},

(5.5)

P
{

limsup
n→∞

∣∣(4πn)1/4(d2 logn
)−1/2∣∣ ∞∑

j=0

Cn, jZj

∣∣∣∣− 1
σ1/2

∣∣∣∣≥ ε}

≤ P
{

limsup
n→∞

∣∣(4πn)1/4(d2 logn
)−1/2∣∣ ∞∑

j=0

Rn, jZj

∣∣∣∣− 1
σ1/2

∣∣∣∣≥ ε}

+P
{

limsup
n→∞

∣∣(4πn)1/4(d2 logn
)−1/2∣∣

×
∣∣∣∣ ∞∑

j=0

Cn, jZj

∣∣− (4πn)1/4(d2 logn
)−1/2∣∣ ∞∑

j=0

Rn, jZj

∣∣∣∣≥ ε}.

(5.6)
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As we have seen before, for a sequence {Zi}i≥1 satisfying a Tauberian condition

Zj = o(
√
j) a.s. for all j ≥ 1, any two random-walk methods are equivalent. Since

√
j ≥

j1/4 log1/2 j for all j ≥ 2, the equivalence of these two methods holds for a sequence of
random variables with Tauberian condition Zj = o( j1/4 log1/2) a.s. for all j ≥ 1. And also
for this Tauberian condition any random-walk method and any convolution method are
equivalent. Hence the equivalence of (II) and (III) hold true not only for a particular
method, but also for any other method under consideration. �

Remark 5.2. In conclusion, all members of the convolution summability methods; Euler,
Borel, Taylor, Meyer-König methods, and so forth obey the LSL.
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