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A random map is a discrete-time dynamical system in which one of a number of transfor-
mations is randomly selected and applied at each iteration of the process. In this paper,
we study random maps. The main result provides a necessary and sufficient condition for
the existence of absolutely continuous invariant measure for a random map with constant
probabilities and position-dependent probabilities.

1. Introduction

Random dynamical systems provide a useful framework for modeling and analyzing var-
ious physical, social, and economic phenomena. A random dynamical system of special
interest is a random map where the process switches from one map to another according
to fixed probabilities [5] or, more generally, position-dependent probabilities [1, 3, 4].
The existence and properties of invariant measures for random maps reflect their long-
term behavior and play an important role in understanding their chaotic nature.

It is well known that if a map τ : I → I , I = [0,1], is piecewise expanding, then it pos-
sesses an absolutely continuous invariant measure (ACIM) [2]. This result can be general-
ized to random maps where the condition of piecewise expanding is replaced by an aver-
age expanding condition where the weighting coefficients are the probabilities of switch-
ing [3, 4, 5]. Such results have been generalized in [1]. There are a number of interesting
examples which do not fall into the average expanding condition for which the conditions
of this paper may present a possible approach.

Consider the following simple random maps on I :

τ1(x)= x

2
, τ2(x)= (x+ 1)

2
, (1.1)

with constant probabilities p1 and p2. τ1 has an attracting fixed point at 0, while τ2 has
an attracting fixed point at 1. Thus, neither τ1 nor τ2 has an ACIM, yet any random
map based on these two maps has Lebesgue measure as its unique ACIM. This shows
that a random map does not necessarily inherit the properties of the underlying maps.
Consider now an expanding map τ1 on I and the logistic map τ2 on I . Both maps have
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an ACIM, but the “average expanding” sufficiency condition for existence of an ACIM for
the random map based on τ1 and τ2 fails since τ2 has regions of arbitrarily small slope.
Hence, in general, we cannot conclude that even such a simple random map admits an
ACIM.

The foregoing suggests the need for results that can establish existence of an ACIM
directly for random maps. To this end we generalize a theorem of Straube [7], which
provides a necessary and sufficient condition for existence of an ACIM of a nonsingular
map, to random maps. We consider both random maps with constant probabilities and
random maps with position-dependent probabilities.

In Section 2, we present the notation and summarize the results that we will need in
the sequel. In Section 3, we prove the main result.

2. Preliminaries

Let (X ,�,λ) be a measure space, where λ is an underlying measure and let τk : X → X , k =
1,2, . . . ,K be nonsingular transformations. A random map T with constant probabilities
is defined as

T = {τ1,τ2, . . . ,τK ; p1, p2, . . . , pK
}

, (2.1)

where {p1, p2, . . . , pK} is a set of constant probabilities. For any x ∈ X , T(x)= τk(x) with
probability pk and for any nonnegative integer N , TN (x)= τkN ◦ τkN−1 ◦ ··· ◦ τk1 (x) with
probability ΠN

j=1pkj . A T-invariant measure satisfies the following condition [6]:

µ(E)=
K∑
k=1

pkµ
(
τ−1
k (E)

)
, (2.2)

for any E ∈�.
A position-dependent random map T is defined as

T = {τ1,τ2, . . . ,τK ; p1(x), p2(x), . . . , pK (x)
}

, (2.3)

where {p1(x), p2(x), . . . , pK (x)} is a set of position-dependent probabilities, that is,∑K
k=1 pk(x)= 1, for any x ∈ X , T(x)= τk(x) with probability pk(x) and for any nonnega-

tive integer N , TN (x)= τkN ◦ τkN−1 ◦ ··· ◦ τk1 (x) with probability

pkN
(
τkN−1 ◦ ··· ◦ τk1 (x)

)
pkN−1

(
τkN−2 ◦ ··· ◦ τk1 (x)

)··· pk1 (x). (2.4)

In [2], it was proved that a T-invariant measure µ is given by

µ(E)=
K∑
k=1

∫
τ−1
k (E)

pk(x)dµ(x), (2.5)

for any measurable set E ∈�.
We now recall some definitions and results from [6, 7] which will be used to prove our

main results in Section 3.
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Definition 2.1. A set function φ : �→ R is finitely additive measure if
(i) −∞ < φ(E) <∞, for all E ∈�;

(ii) φ(∅)= 0;
(iii) supE∈� |φ(E)| <∞;
(iv) φ(E1∪E2)= φ(E1) +φ(E2), for all E1,E2 ∈� such that E1∩E2 =∅.

Definition 2.2. A finitely additive positive measure µ is purely additive measure if every
countably additive measure ν≥ 0, ν≤ µ is identically zero.

Theorem 2.3 [7]. Let φ be finitely additive (positive) measure. Then φ has a unique rep-
resentation φ = φc + φp, where φc is countably additive (φc ≥ 0) and φp is purely additive
(φp ≥ 0).

Lemma 2.4 [7]. If µ is a finitely additive positive measure on �, then µc is the greatest
measure among countably additive measures ν with 0≤ ν≤ µ.

Theorem 2.5 [7]. Let φ be a finitely additive positive measure on a σ-algebra � and let
ν be a countably additive positive measure on �. Then, there exists a decreasing sequence
{En}n≥1 of elements of � such that limn→∞ ν(En)= 0 and φ(En)= φ(X).

Theorem 2.6 [6]. Let (X ,B,λ) be a measure space with normalized measure λ, and let
f : X → X be a nonsingular transformation. Then, the following conditions are equivalent:

(i) there exists an f -invariant normalized measure µ which is absolutely continuous
with respect to λ;

(ii) there exists δ > 0, and α,0 < α < 1 such that

λ(E) < δ =⇒ sup
k∈N

λ
(
f −k(E)

)
< α, E ∈�. (2.6)

3. Existence of absolutely continuous invariant measures

In this section, we prove necessary and sufficient conditions for existence of an absolutely
continuous invariant measure for random maps. For notational convenience, we consider
K = 2, that is, we consider only two transformations τ1,τ2. The proofs for larger number
of maps are analogous. We first consider random maps with constant probabilities, then
random maps with position-dependent probabilities.

Theorem 3.1. Let (X ,�,λ) be a measure space with normalized measure λ and let τi : X →
X , i = 1,2 be nonsingular transformations. Consider the random map T = {τ1,τ2; p1, p2}
with constant probabilities p1, p2. Then, there exists a normalized absolutely continuous
(w.r.t. λ) T-invariant measure µ if and only if there exists δ > 0 and 0 < α < 1 such that
for any measurable set E and any positive integer k, λ(E) < δ implies

p1λ
(
τ−1

1 (E)
)

+ p2λ
(
τ−1

2 (E)
)
< α;

p2
1λ
(
τ−2

1 (E)
)

+ p1p2λ
(
τ−1

2 τ−1
1 (E)

)
+ p1p2λ

(
τ−1

1 τ−1
2 (E)

)
+ p2

2λ
(
τ−2

2 (E)
)
< α;

...∑
(i1,i2,i3,...,ik)

pi1 pi2 ··· pikλ
(
τ−1
i1 τ−1

i2 ···τ−1
ik (E)

)
< α.

(3.1)
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To prove this theorem, we first prove the following two lemmas.

Lemma 3.2. Let (X ,�,λ) be a probability measure space and let µ be absolutely continuous
with respect to λ, µ= f · λ, for f an L1(X ,�,λ) function. Then, there exists a constant M ≥ 0
and a measurable set A0 such that µ(A0)≤ 1/10 and f ≤M on X \A0.

Proof. Consider the following sets:

Bn =
{
x ∈ X : n≤ f (x) < n+ 1

}
, n= 0,1, . . . . (3.2)

Clearly, {Bn} are disjoint measurable sets and X = ∪∞n=0Bn and 1 = µ(X) =∑∞
n=0µ(Bn).

Thus, there exists an M ≥ 0 such that
∑∞

n=M µ(Bn) < 1/10. Let A0 =
⋃∞

n=M Bn. Then on
X \⋃∞n=M Bn, f (x)≤M. �

For any measure φ, any integer k, and any measurable set E, define

Λ
φ
k (E) :=

∑
(i1,i2,i3,...,ik)

pi1 pi2 ··· pikφ
(
τ−1
i1 τ−1

i2 ···τ−1
ik (E)

)
. (3.3)

It can be easily shown that Λλ
k and Λ

µ
k are normalized measures and Λ

µ
k are measures

absolutely continuous with respect to Λλ
k.

Lemma 3.3. Let M be the constant from the previous lemma and let δ be such that Mδ +
1/10 < 1/4. Then, for any n≥ 1, and any measurable set A, Λλ

n(A) < δ⇒Λ
µ
n(A) < 1/4.

Proof. Let M and A0 be as in the previous lemma. We have

Λ
µ
n(A)=

∑
(i1,i2,i3,...,in)

pi1 pi2 ··· pinµ
(
τ−1
i1 τ−1

i2 ···τ−1
in (A)

)

=
∑

(i1,i2,i3,...,in)

pi1 pi2 ··· pinµ
(
τ−1
i1 τ−1

i2 ···τ−1
in (A)∩A0

)

+
∑

(i1,i2,i3,...,in)

pi1 pi2 ··· pinµ
(
τ−1
i1 τ−1

i2 ···τ−1
in (A)∩ (X \A0

))

≤
∑

(i1,i2,i3,...,in)

pi1 pi2 ··· pin
1

10
+

∑
(i1,i2,i3,...,in)

pi1 pi2 ··· pinMλ
(
τ−1
i1 τ−1

i2 ···τ−1
in (A)

)

≤ 1
10

+MΛλ
n(A) <

1
10

+Mδ <
1
4
.

(3.4)
�

Proof of Theorem 3.1. Suppose

µ(E)=
2∑
i=1

piµ
(
τ−1
i (E)

)
, E ∈ B, µ(X)= 1, µ� λ. (3.5)

We want to prove that there exist δ > 0, 0 < α < 1 such that for any E ∈� and for any
positive integer k,

λ(E) < δ =⇒Λλ
k(E) < α. (3.6)
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Suppose not. Then, for any α, 0 < α < 1, there exists E ∈� and there exists a positive
integer n0 such that

λ(E) < δ =⇒Λλ
n0

(E) > α, (3.7)

where E ∈�.
Choose δ > 0 such that Mδ + 1/10 < 1/4, where M is the constant of Lemma 3.2. Let

n0 be the index corresponding to δ in formula (3.6). Then by Lemma 3.2, we have, for
A∈�,

λ(A) < δ =⇒ µ(A) <
1
4

;

Λλ
n0

(A) < δ =⇒Λ
µ
n0 (A) <

1
4
.

(3.8)

Let α= 1− δ/2. Then,

Λλ
n0

(X \E)= 1−Λλ
n0

(E) < 1− 1 + δ = δ. (3.9)

From our choice of δ, we get

Λ
µ
n0 (X \E) <

1
4
. (3.10)

Since µ is invariant, we have

µ(X \E)=Λ
µ
n0 (X \E) <

1
4
. (3.11)

Thus,

1= µ(X)= µ(E) +µ(X \E) <
1
4

+
1
4

, (3.12)

a contradiction.
Conversely, suppose that there exists δ > 0 and 0 < α < 1 such that for any measurable

set E and any positive integer k, λ(E) < δ implies

p1λ
(
τ−1

1 (E)
)

+ p2λ
(
τ−1

2 (E)
)
< α;

p2
1λ
(
τ−2

1 (E)
)

+ p1p2λ
(
τ−1

2 τ−1
1 (E)

)
+ p1p2λ

(
τ−1

1 τ−1
2 (E)

)
+ p2

2λ
(
τ−2

2 (E)
)
< α;

...∑
(i1,i2,i3,...,ik)

pi1 pi2 ··· pikλ
(
τ−1
i1 τ−1

i2 ···τ−1
ik (E)

)
< α.

(3.13)

We want to show that there exists a measure µ such that µ(E)=∑2
i=1 piµ(τ−1

i (E)), E ∈�,
µ(X)= 1 and µ� λ.

Consider the measures λn defined by

λn(E) := 1
n

n−1∑
k=0

Λλ
k(E), E ∈�. (3.14)
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It can be shown that for all n, λn are normalized measures. Moreover, if λ(E)= 0, then

λn(E)= λ(E) + p1λ
(
τ−1

1 (E)
)

+ p2λ
(
τ−1

2 (E)
)

+ p2
1λ
(
τ−2

1 (E)
)

+ p1p2λ
(
τ−1

2 τ−1
1 (E)

)
+ p1p2λ

(
τ−1

1 τ−1
2 (E)

)
+ p2

2λ
(
τ−2

2 (E)
)

+ ···+
∑

(i1,i2,i3,...,in)

pi1 pi2 ··· pinλ
(
τ−1
i1 τ−1

i2 ···τ−1
in (E)

)= 0,

(3.15)

by nonsingularity of τ1 and τ2. Hence λn� λ. We imbed λn in the dual space L∞(λ)∗ of
L∞(λ) in the following way:

gn( f )=
∫
X
f dλn, f ∈ L∞(λ). (3.16)

For every n,

∣∣gn( f )
∣∣=

∣∣∣∣
∫
X
f dλn

∣∣∣∣≤ ‖ f ‖∞
∫
X
dλn = ‖ f ‖∞. (3.17)

Hence, for each n, ‖gn‖ ≤ 1. Thus, the λn can be thought of as elements of the unit ball
of L∞(λ)∗. This unit ball is weak∗-compact by Alaoglu’s theorem [7]. Let ν be a cluster
point in the weak∗-topology of L∞(λ)∗ of the sequence (λn)n≥1.

Define a set function µ on � by

µ(E)= ν
(
χE
)
. (3.18)

We claim that µ is finitely additive, bounded and it vanishes on sets of λ-measure zero:
µ(∅)= ν(χ∅)= ν(0)= 0, since ν is a linear functional. For any E ∈�,

µ(E)= ν
(
χE
)= lim

s→∞gns
(
χE
)= lim

s→∞

∫
E
dλns = lim

s→∞λns(E)

= lim
s→∞

1
ns

ns−1∑
k=0

Λλ
k(E)≥ 0,

(3.19)

since Λλ
k is a measure. Thus,

0≤ µ(E)≤ µ(X)= lim
s→∞λns(X)= 1. (3.20)

Now,

µ

( m⋃
i=1

Ei

)
= lim

s→∞λns

( m⋃
i=1

Ei

)
= lim

s→∞

m∑
i=1

λns
(
Ei
)

=
m∑
i=1

lim
s→∞λns

(
Ei
)= m∑

i=1

µ
(
Ei
)
.

(3.21)

Let λ(E) = 0. Then µ(E) = lims→∞ λns(E) = 0, because λns � λ. Hence, µ is finitely addi-
tive, bounded, and it vanishes on sets of λ-measure zero.
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µ is T-invariant:

µ(E)= lim
s→∞λns(E)= lim

s→∞
1
ns

ns−1∑
k=0

Λλ
k(E)

=Λλ
0(E) +Λλ

1(E) + ···+Λλ
ns−1(E)

= lim
s→∞

1
ns

[
λ(E) + p1λ

(
τ−1

1 (E)
)

+ p2λ
(
τ−1

2 (E)
)

+ ···+
∑

(i1,i2,i3,...,ins−1)

pi1 pi2 ··· pins−1λ
(
τ−1
i1 τ−1

i2 ···τ−1
ins−1

(E)
)]

.

(3.22)

On the other hand,

2∑
i=1

piµ
(
τ−1
i (E)

)= p1µ
(
τ−1

1 (E)
)

+ p2µ
(
τ−1

2 (E)
)

= p1 lim
s→∞

1
ns

ns−1∑
k=0

Λλ
k

(
τ−1

1 (E)
)

+ p2 lim
s→∞

1
ns

ns−1∑
k=0

Λλ
k

(
τ−1

2 (E)
)

= lim
s→∞

1
ns

[
p1

{
λ
(
τ−1

1 (E)
)

+ p1λ
(
τ−2

1 (E)
)

+ p2λ
(
τ−1

2 τ−1
1 (E)

)
+ ···

+
∑

(i1,i2,i3,...,ins−1)

pi1 pi2 ··· pins−1λ
(
τ−1
i1 τ−1

i2 ···τ−1
ins−1

(
τ−1

1 (E)
))}

+ p2

{
λ
(
τ−1

2 (E)
)

+ p1λ
(
τ−1

1 τ−1
2 (E)

)
+ p2λ

(
τ−2

2 (E)
)

+ ···

+
∑

(i1,i2,i3,...,ins−1)

pi1 pi2 ··· pins−1λ
(
τ−1
i1 τ−1

i2 ···τ−1
ins−1

(
τ−1

2 (E)
))}]

= lim
s→∞

1
ns

[
p1λ

(
τ−1

1 (E)
)

+ p2
1λ
(
τ−2

1 (E)
)

+ p1p2λ
(
τ−1

2 τ−1
1 (E)

)
+ ···

+ p1

∑
(i1,i2,i3,...,ins−1)

pi1 pi2 ··· pins−1λ
(
τ−1
i1 τ−1

i2 ···τ−1
ins−1

(
τ−1

1 (E)
))

+ p2λ
(
τ−1

2 (E)
)

+ p2p1λ
(
τ−1

1 τ−1
2 (E)

)
+ p2

2λ
(
τ−2

2 (E)
)

+ ···

+ p2

∑
(i1,i2,i3,...,ins−1)

pi1 pi2 ··· pins−1λ
(
τ−1
i1 τ−1

i2 ···τ−1
ins−1

(
τ−1

2 (E)
))]

.

(3.23)

Clearly,

µ(E)=
2∑
i=1

piµ
(
τ−1
i (E)

)
. (3.24)
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Thus, we have shown that µ is a finitely additive T-invariant measure. By Theorem 2.3, µ
has a unique representation

µ= µc +µp, (3.25)

where µc is countably additive and µc ≥ 0 and µp is purely additive and µp ≥ 0. We claim
that µc �= 0. Suppose µc = 0. Then by Theorem 2.5 there exists a decreasing sequence
{En}n≥1 of elements of � such that limn→∞ λ(En)= 0 and µ(En)= µ(X)= 1. Thus, there
exists an integer n0 such that for all n ≥ n0, λ(En) < δ and, as a consequence of our hy-
pothesis, we have, for all k,

Λλ
k

(
En
)
< α. (3.26)

Hence

λk
(
En
)
< α, k = 1,2,3, . . . . (3.27)

Thus, µ(En)= lims→∞ gns(En) < α < 1, a contradiction. Now,

µ(E)= p1µ
(
τ−1

1 (E)
)

+ p2µ
(
τ−1

2 (E)
)

= p1
{
µc
(
τ−1

1 (E)
)

+µp
(
τ−1

1 (E)
)}

+ p2
{
µc
(
τ−1

2 (E)
)

+µp
(
τ−1

2 (E)
)}

= {p1µc
(
τ−1

1 (E)
)

+ p2µc
(
τ−1

2 (E)
)}

+
{
p1µp

(
τ−1

1 (E)
)

+ p2µp
(
τ−1

2 (E)
)}
.

(3.28)

Clearly m : �→ R, defined by

m(E)= p1µc
(
τ−1

1 (E)
)

+ p2µc
(
τ−1

2 (E)
)
, (3.29)

is a countably additive measure, and m ≤ µ. Thus, by Lemma 2.4, we have m ≤ µc and
hence

E �→ µc(E)−m(E)= µc(E)− {p1µc
(
τ−1

1 (E)
)

+ p2µc
(
τ−1

2 (E)
)}

(3.30)

is a positive measure. But this measure has total mass zero. Hence, it is a zero measure.
Thus µc is T-invariant. Because µ vanishes on sets of λ-measure zero and 0 ≤ µc ≤ µ,
we have µc � λ. Finally, γ(E) = µc(E)/µc(X) is normalized, T-invariant, and absolutely
continuous with respect to λ. �

We now state the analogous result for position-dependent random maps.

Theorem 3.4. Let (X ,B,λ) be a measure space with normalized measure λ and let τi : X →
X , i = 1,2 be nonsingular transformations. Consider the random map T = {τ1,τ2; p1, p2}
with position-dependent probabilities p1, p2. Then there exists a normalized absolutely con-
tinuous (w.r.t. λ) T-invariant measure µ if and only if there exists δ > 0 and 0 < α < 1 such
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that for any measurable set E and any positive integer k, λ(E) < δ implies
∫
τ−1

1 (E)
p1(x)dλ+

∫
τ−1

2 (E)
p2(x)dλ < α;

∫
τ−2

1 (E)
p1(x)p1

(
τ1(x)

)
dλ+

∫
τ−1

2 τ−1
1 (E)

p1(x)p2
(
τ1(x)

)
dλ

+
∫
τ−1

1 τ−1
2 (E)

p2(x)p1
(
τ2(x)

)
dλ+

∫
τ−2

2 (E)
p2(x)p2

(
τ2(x)

)
dλ < α;

...∑
(i1,i2,i3,...,ik)

∫
τ−1
i1
τ−1
i2
···τ−1

ik
(E)

pi1 (x)pi2
(
τi1 (x)

)··· pik(τi1τi2 ···τik−1 (x)
)
dλ < α.

(3.31)

Proof. The proof is analogous to the proof of Theorem 3.1. �
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