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We consider some stochastic difference partial differential equations of the form du(x, t,c)
= L(x, t,D)u(x, t,c)dt +M(x, t,D)u(x, t− a,c)dw(t), where L(x, t,D) is a linear uniformly
elliptic partial differential operator of the second order, M(x, t,D) is a linear partial differ-
ential operator of the first order, and w(t) is a Weiner process. The existence and unique-
ness of the solution of suitable mixed problems are studied for the considered equation.
Some properties are also studied. A more general stochastic problem is considered in a
Hilbert space and the results concerning stochastic partial differential equations are ob-
tained as applications.

1. Introduction

Consider the stochastic linear system

du(t,c)= Au(t,c)dt+
n∑
i=1

k∑
j=1

bi j
(
Biu
(
t− cj ,c

))
dwij(t), (1.1)

where A is a linear closed operator generating the strongly continuous semigroup Q(t)
on a separable Hilbert space H , and wij are mutually independent Wiener processes on
a separable Hilbert space K with covariance operators Wij , positive nuclear operators in
the space L(K ,K) of continuous linear mapping of K into itself.

It is assumed that A is defined on S1 ⊂H into H and S1 is dense in H (see [4]).
It is assumed also that B1, . . . ,Bn are linear closed operators defined on S2 ⊃ S1, S2 ⊂H ,

and with values in H .
bi j(·) are elements of L(H ,L(K ,H)), (see [1, 2, 4]). We will study the existence and

uniqueness of mild solutions, in other words, the existence and uniqueness of a solution
of the equation

u(t,c)=Q(t)u0 +
n∑
i=1

k∑
j=1

∫ t

0
Q(t− θ)bi j

(
Biu
(
θ− cj ,c

))
dwij(θ). (1.2)
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We write ‖u‖ for the Hilbert space norm of u, and ‖bi j(u)‖ for the norms of bi j(u) in
L(H ,L(K ,H)). We write trWij for the trace of Wij . The processes wij(t) are defined on a
probability space (Ω,F,P). We denote by E[u] the expectation of u. We suppose that the
initial condition u0 is independent of

wij(t)−wij(s), t ≥ s > 0, (1.3)

for all i= 1, . . . ,n, j = 1, . . . ,k.
We suppose also that

E
[∥∥u0

∥∥2
]
<∞, (1.4)

and that there is a number γ ∈ (0,1) such that

∥∥Q(t)bi j
(
Bi f

)∥∥≤ α

tγ/2
‖ f ‖, (1.5)

where α is a positive constant and f ∈ S2.
For f ∈H , we suppose that

∥∥BQ(t)bi j( f )
∥∥≤ α

tγ/2
‖ f ‖. (1.6)

In Section 2, we will study the uniqueness and existence of wij adapted solution u(t,c)
of (1.2) in the space C(0,T ;L2(Ω,H)), where C([0,T],Λ) denotes the space of continuous
functions mapping [0,T] into Λ⊂ K .

In Section 3, we study a mixed problem (initial and boundary value problem) of some
stochastic difference partial differential equations.

2. Uniqueness and existence of mild solutions

Let u(t,c) satisfy the condition

u(t,c)= F(t), −T0 < t < 0, (2.1)

where F is a given function in the space C([−T0,0],L2(Ω,H)∩ S2).
We assume that

F(0)= u0. (2.2)

We prove now the following theorem.

Theorem 2.1. Let u ∈ C([0,T],L2(Ω,H))∩ S2 be the solution of (1.2). If F(t) = 0 on
[−T0,0], then u(t)= 0 for all t ≥ 0.

Proof. The solution of the above equation can be written in the form

u(t,c)=
n∑
i=1

k∑
j=1

∫ t

γj (t)
Q(t− θ)bi j

(
Biu
(
θ− cj ,c

))
dwij(θ), (2.3)
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where

γj(t)=

t, t ≤ cj ,

cj , t > cj .
(2.4)

Thus,

E
[∥∥u(t,c)

∥∥2
]
≤

n∑
i=1

k∑
j=1

trWij

∫ t

γj (t)

α2

(t− θ)γ
E
[∥∥u(θ− cj ,c

)∥∥2
]
dθ. (2.5)

So, there is a positive constant λ such that

E
[∥∥u(t,c)

∥∥2
]
≤ λMt1−γ

1− γ
, (2.6)

where

M = sup
θ,c

E
∥∥u(θ,c)

∥∥2
. (2.7)

It is easy to see that

E
[∥∥u(t,c)

∥∥2
]
≤ 1

1− γ
t2(1−γ)λ2Mβ(1− γ,2− γ), (2.8)

where β(m,n) is the β function. Now for every r = 1,2, . . ., we can prove that

E
[∥∥u(t,c)

∥∥2
]
≤ λrMtr(1−γ)

(
Γ(1− γ)

)r
Γ
(
r(1− γ)

)
+ 1

, (2.9)

where Γ is the gamma function.
Taking the limit as r →∞, we get the required result.
Now to prove the existence of solutions, we suppose that

B1 = B2 = ··· = Bk = B (2.10)

and u0 ∈ S2. �

Theorem 2.2. There exists a unique mild solution u∈ C([0,T],L2(Ω,H))∩ S2 of (1.2).

Proof. We apply the method of successive approximation. To do this, we set

ur+1(t,c)=Q(t)u0 +
n∑
i=1

k∑
j=1

∫ γj (t)

0
Q(t− θ)bi j

(
BF
(
θ− cj

))
dwij(θ)

+
n∑
i=1

k∑
j=1

∫ t

γj (t)
Q(t− θ)bi j

(
Bur

(
θ− cj ,c

))
dwij(θ).

(2.11)
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Thus,

vr+1(t,c)= BQ(t)u0 +
∑
i

∑
j

∫ γj (t)

0
BQ(t− θ)bi j

(
BF
(
θ− cj

))
dwij(θ)

+
∑
i

∑
j

∫ t

γj (t)
BQ(t− θ)bi j

(
vr
(
θ− cj ,c

))
dwij(θ),

(2.12)

where

vr(t,c)= Bur(t,c). (2.13)

The zero approximation is taken to be zero.
It is easy to see that

E
[∥∥v1(t,c)

∥∥2
]
≤ E

[∥∥BQ(t)u0
∥∥2
]

+
n∑
i=1

k∑
j=1

trWij

∫ γj (t)

0

α2

(t− θ)γ
∥∥bi j∥∥2

E
[∥∥BF(θ− cj

)∥∥2
]
dθ.

(2.14)

Using the method of Theorem 2.1, we can prove that there exists a positive number λ
such that

E
[∥∥vr+1(t,c)− vr(t,c)

∥∥2
]
≤ λrtr(1−γ)

(
Γ(1− γ)

)r
Γ
(
r(1− γ) + 1

) . (2.15)

Since v can be written in the form

v(t,c)=
∞∑
r=0

[
vr+1(t,c)− vr(t,c)

]
, (2.16)

it follows that

E
[∥∥v(t,c)

∥∥2
]
≤
∑
r

1
r2(1− γ)2

∑
r

r2(1− γ)2E
[∥∥vr+1(t,c)− vr(t,c)

∥∥2
]
. (2.17)

So v represents the solution of the equation

v(t,c)= BQ(t)u0 +
∑
i

∑
j

∫ γj (t)

0
BQ
(
t− θ)bi j

(
BF
(
θ− cj

))
dwij(θ)

+
∑
i

∑
j

∫ t

γj (t)
BQ(t− θ)bi j

(
v
(
θ− cj ,c

))
dwij(θ).

(2.18)

Using (1.2) and (2.18), we deduce the existence of the solution of (1.2) in the space

C
(
0,T ;L2(Ω,H)

)∩ S2. (2.19)

The uniqueness of this solution follows from Theorem 2.1. �
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We give now conditions for the second moment of u(t,c) to decay exponentially. To
state the third theorem, we need the following conditions.

C1: there are positive numbers α and µ such that

∥∥Q(t)
∥∥≤ αe−µt, t > 0. (2.20)

This exponential stability of the semigroup is equivalent to the requirement that for all
λ >−µ ,

∥∥(λI +A)−1
∥∥≤ α(λ+µ)−1. (2.21)

C2: ‖BQ(t) f ‖ ≤ (α/tγ/2)e−µt‖ f ‖, t > 0.
C3: ‖Q(t)B f ‖ ≤ (α/tγ/2)e−µt‖ f ‖, t > 0.

Theorem 2.3. Assume conditions C1, C2, and C3 then for sufficiently large µ, constants a
and b can be found such that

E
[∥∥u(t,c)

∥∥2
]
≤ aE

[∥∥u0
∥∥2
]
e−bt, a > 0, b > 0. (2.22)

Proof. Using conditions C1, C2, and C3, and (1.2), we get

h(t,c)≤ λ1 + λ2

k∑
j=1

∫ t

0

h
(
θ− cj ,c

)
(t− θ)γ

dθ, (2.23)

where λ1 = α2E[‖u0‖2], λ2 > α2 trWij , λ2 is a positive constant, and h(t,c) = e2µtE[‖u(t,
c)‖2].

Let {hr} be a sequence of functions such that

hr+1(t,c)≤ λ1 + λ2

k∑
j=1

∫ t

0

hr
(
θ− cj ,c

)
(t− θ)γ

dθ, (2.24)

where the zero approximation is taken to be zero. As r →∞, we get

h(t,c)≤ λ1

∑
r

λr2t
r(1−γ)

(
Γ(1− γ)

)r
Γ
(
r(1− γ) + 1

) . (2.25)

Using the properties of Mittag-Leffler function, we get

h(t,c)≤ C1 exp
[
tλ

1/(1−γ)
2

(
Γ(1− γ)1/(1−γ)

)]
+

C2

1 + t(1−γ) , (2.26)

where C1 and C2 are positive constants. Thus for a sufficiently large µ, we get the required
result. �
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3. Stochastic parabolic differential equations

Let Cm(S) be the set of all continuous functions in S together with all their m-partial
derivatives. Denote by Cm

0 (S) the subset of Cm(S) consisting of all functions which have a
compact support. Let Wm(S) be a Sobolev space. In other words, Wm(S) is the complete
space of Cm(S) with respect to the norm

‖ f ‖m =
[ ∑
|α|≤m

∫
S

∣∣Dα f (x)
∣∣2

dx

]
, (3.1)

where x = (x1, . . . ,xn),

Dα =Dα1
1 ···Dαn

n , Dj = ∂

∂xj
, j = 1, . . . ,n, |α| = α1 + ···+αn (3.2)

and α= (α1, . . . ,αn) is an n-dimensional multi-index. We denote by Wm
0 (S) the complete

space of Cm
0 (S) with respect to the norm defined by (3.1).

Let rb be the cylinder; rb = (x, t) : x ∈ S, 0 < t < b, 0 < b <∞, and let Γb be the lateral
boundary

Γb =
{

(x, t) : x ∈ ∂S, 0 < t < b
}
. (3.3)

We consider the parabolic stochastic partial differential equations

du(x, t,c)=
n∑

i, j=1

ai j(x, t)
∂2u(x, t,c)
∂xi∂xj

dt

+
n∑
i=1

k∑
r=1

[
bir(x, t)

∂

∂xi
+ b0r(x, t)

]
u
(
x, t− cr ,c

)
dwir(t),

(3.4)

with the initial and boundary conditions

u(x,0,c)= u0(x), (3.5)

u(x, t,c)|Γb = 0. (3.6)

It is assumed that

n∑
i, j=1

ai j(x, t)ξiξ j ≥ δ
n∑
i=1

ξ2
i , (3.7)

where δ > 0, (x, t)∈ Ω̄b and Ω̄b is the closure of Ωb, and Ωb is an open bounded domain
in the n+ 1 dimensional Euclidean space. It is assumed also that all the coefficients ai j ,
bir , and bor are continuous on Ω̄b and satisfy a uniform Hölder condition in t ∈ [0,b].

The mixed problem (3.4), (3.5), (3.6) can be written in the abstract form

du(t,c)= Au(t,c)dt+
n∑
i=1

k∑
r=1

bir
(
Biu
(
t− cr ,c

))
dwir(t) +

∑
r

boru
(
t− cr ,c

)
dwor(t), (3.8)
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where A is the operator with domain G=W2(S)∩W1
0 (S) given by

Au=
n∑

i, j=1

ai j(x)
∂2

∂xi∂xj
u. (3.9)

Let L2(S) be the space of all square integrable functions on S. The space H = L2(S) is a
Hilbert space and G is dense in H .

The operators B1, . . . ,Bn with domains W1(S)∩W1
0 (S) are given by

Bi = ∂

∂xi
, i= 1, . . . ,n, (3.10)

and bir , bor are the continuous functions defined on Ω̄b.
Since A is uniformly elliptic on Ω̄b, it follows that the semigroup Q(t) exists with the

properties (1.5) and (1.6) (see [3, 5, 6]).
Consequently, Theorems 2.1, 2.2, and 2.3 can be applied for the considered abstract

mixed problem.
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