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We consider some stochastic difference partial differential equations of the form du(x, t,¢)
= L(x,t,D)u(x,t,c)dt + M(x,t,D)u(x,t — a,c)dw(t), where L(x,t,D) is a linear uniformly
elliptic partial differential operator of the second order, M (x,t,D) is a linear partial differ-
ential operator of the first order, and w(t) is a Weiner process. The existence and unique-
ness of the solution of suitable mixed problems are studied for the considered equation.
Some properties are also studied. A more general stochastic problem is considered in a
Hilbert space and the results concerning stochastic partial differential equations are ob-
tained as applications.

1. Introduction

Consider the stochastic linear system

n k
du(t,c) = Au(t,c)dt + z Z bij (Biu(t — cj,c))dwi;(t), (1.1)

i=1j=1

where A is a linear closed operator generating the strongly continuous semigroup Q(¢)
on a separable Hilbert space H, and w;; are mutually independent Wiener processes on
a separable Hilbert space K with covariance operators Wj;, positive nuclear operators in
the space L(K,K) of continuous linear mapping of K into itself.

It is assumed that A is defined on S; C H into H and S; is dense in H (see [4]).

It is assumed also that By,..., B, are linear closed operators definedon S, © §;, S, C H,
and with values in H.

bij(-) are elements of L(H,L(K,H)), (see [1, 2, 4]). We will study the existence and
uniqueness of mild solutions, in other words, the existence and uniqueness of a solution
of the equation

n k.t
u(t,c) = Q(Hug+>. > L Q(t = 0)byj (Biu(0 — cj,c))dwij(0). (1.2)

i=1j=1
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We write |lul| for the Hilbert space norm of u, and [|b;;(u)|| for the norms of b;;(u) in
L(H,L(K,H)). We write tr W;; for the trace of Wj;. The processes w;;(t) are defined on a
probability space (Q,F,P). We denote by E[u] the expectation of u. We suppose that the
initial condition u is independent of

Wij(t)—W,‘j(S), t>s>0, (1.3)

foralli=1,...,n,j=1,...,k.
We suppose also that

E[Iluollz] < 00, (1.4)

and that there is a number y € (0,1) such that

Qb (Bl = 3511 1, (L5)

where « is a positive constant and f € S,.
For f € H, we suppose that

1BQ(t)B;; ()] < t;%nfn. (1.6)

In Section 2, we will study the uniqueness and existence of w; ; adapted solution u(t,c)
of (1.2) in the space C(0, T; L,(Q, H)), where C([0, T], A) denotes the space of continuous
functions mapping [0, T] into A C K.

In Section 3, we study a mixed problem (initial and boundary value problem) of some
stochastic difference partial differential equations.

2. Uniqueness and existence of mild solutions

Let u(t, c) satisfy the condition
u(t,c) =F(t), —-To<t<O, (2.1)

where F is a given function in the space C([—T,0],L,(Q,H) N Sy).
We assume that

F(0) = uy. (2.2)

We prove now the following theorem.

THEOREM 2.1. Let u € C([0,T],L2(Q,H)) NS, be the solution of (1.2). If F(t) =0 on
[—To,0], then u(t) = 0 forall t = 0.

Proof. The solution of the above equation can be written in the form

l’ c) = z z G)b,-j(B,-u(G—cj,c))dw,-j(Q), (23)

i=1j=1
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where

Cj» t> Cj.

t, t<ci,
wm={ !

Thus,

n k t 2
2 (24 2
E[|lutt,olF] < Zl j;tr w; L}m g Elllno—c.c)lF]do

So, there is a positive constant A such that

E[|lutt0l ] < )‘Mtyy,

where

M = supE||u(6,0)||".
0,c

It is easy to see that
E[[lut.o)l'] = § T M= p2 =),

where 3(m,n) is the § function. Now for every r = 1,2,..., we can prove that

A M U=M(T(1 - y))"
L(r(1-y)+1 °

E[[Jutt,0°] <

where I' is the gamma function.
Taking the limit as r — oo, we get the required result.
Now to prove the existence of solutions, we suppose that

Bi=By=---=B;=B8

and uygy € S,.
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(2.4)

(2.5)

(2.6)

(2.7)

(2.8)

(2.9)

(2.10)

O

THEOREM 2.2. There exists a unique mild solution u € C([0,T],L2(Q,H)) NS, of (1.2).

Proof. We apply the method of successive approximation. To do this, we set

ury(t,c) = t)u0+z ZJ Q(t - 6)171] (BF( —C]))dW,J(G)

i=1 j=1

+Z z )Q(t—H)bij(Bur(G—cj,c))dw,-j(G).

i=1j=1

(2.11)
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Thus,
y;(t)
V1 (£¢) = BQ(E)uo + Z Z L BQ(t = 0)bij (BF (0 — c;) ) dwi;(6)
(2.12)
+sz BQ(t_ z](vr(e_cjac))dwij(e),
where
v,(t,¢) = Bu,(t,¢). (2.13)
The zero approximation is taken to be zero.
It is easy to see that
n K yilt
Emm0¢mquUBQumﬂq+§:zume H%HEUBF —¢))|*]a6
i=1 j=1
! (2.14)

Using the method of Theorem 2.1, we can prove that there exists a positive number A
such that

AT - y)”
L(r(1—y)+1)

E[[[ves1(t,0) = v (,0) ||| = (2.15)

Since v can be written in the form
i [v,11(t¢) — v, (t0)], (2.16)
it follows that
E[Iveall] < X g Xra-prE[lawa —wwalF - @17)

So v represents the solution of the equation

v(t,¢) = BQ(Y) uo+zzj 6)b;; (BE (6 — ¢;))dw;; (6)
(2.18)
5 zj BQ(t - 0)by; (v(8 — c;,¢))dw;; (6).
Using (1.2) and (2.18), we deduce the existence of the solution of (1.2) in the space
C(O,T;Lz(Q,H)) ﬂSz. (2.19)

The uniqueness of this solution follows from Theorem 2.1. O
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We give now conditions for the second moment of u(#,c) to decay exponentially. To

state the third theorem, we need the following conditions.
Ci: there are positive numbers « and y such that

Q)| < ae™, t>o0. (2.20)

This exponential stability of the semigroup is equivalent to the requirement that for all

A>—u,
[AI+A) ] < ad+p) (2.21)

Cao: IBQU) S| < (a/t"2)e || I, £ >0,
Cs: QOB < (a/t")e || 1, £ >0,

THEOREM 2.3. Assume conditions C,, C,, and Cs then for sufficiently large u, constants a
and b can be found such that

E[|lu(t,0)|[*] < aE[lluolP’]e*, a>0,b>0. (2.22)

Proof. Using conditions C;, C,, and C3, and (1.2), we get
h(t,0) <A1+AZZJ (t_cf’ o), (2.23)

where Ay = o?E[llulI?], A2 > a® tr Wjj, A, is a positive constant, and h(t,c) = e*E[ | u(t,
oll].

Let {h,} be a sequence of functions such that

Cj, )

Bra(t, c><A1+Asz

where the zero approximation is taken to be zero. As r — co, we get

At (T(1 - )"

h(t,c) <A (2.25)
; L(r(1—yp)+1)
Using the properties of Mittag-Leffler function, we get
h(t,c) < Crex [t/\ Sl (r(l - )1/<1*V>)] P T (2.26)
1€Xp 2 Y 1+¢t1-9)° ’

where C, and C, are positive constants. Thus for a sufficiently large y, we get the required
result. O
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3. Stochastic parabolic differential equations

Let C™(S) be the set of all continuous functions in S together with all their m-partial
derivatives. Denote by C'(S) the subset of C™(S) consisting of all functions which have a
compact support. Let W™(S) be a Sobolev space. In other words, W™ (S) is the complete
space of C™(S) with respect to the norm

||f|m:[ > J | D f(x) | dx}, (3.1)
laf<m
where x = (x1,...,%,),
p J .
D*=Dy'---Dy', Dj==—, j=L..,nlal=a+ - +a, (3.2)
ax]

and « = (ay,...,a,) is an n-dimensional multi-index. We denote by W{"(S) the complete
space of Cy'(S) with respect to the norm defined by (3.1).

Let 7, be the cylinder; r, = (x,t) :x €S, 0<t< b, 0< b < 00, and let T, be the lateral
boundary

[, ={(x,t):x €3S, 0<t<b}. (3.3)

We consider the parabolic stochastic partial differential equations

u 2
du(x,t,0) = >, aij(x,t)Mdt

.7 ax,'an
i,j=1
n k (34)
#3 [br )+ |t = cnc) i (1),
i=1r=1
with the initial and boundary conditions
u(x,0,¢) = uo(x), (3.5)
U(X)t,C)|rb =0. (36)
It is assumed that
> aij(x )€ = 8> &2, (3.7)

ij=1 i=1

where 8 >0, (x,t) € Qp and Q) is the closure of O, and Q is an open bounded domain

in the n+ 1 dimensional Euclidean space. It is assumed also that all the coefficients aijy

bir, and b,, are continuous on ), and satisfy a uniform Holder condition in ¢ € [0,b].
The mixed problem (3.4), (3.5), (3.6) can be written in the abstract form

n k
du(t,c) = Au(t,c)dt + ZZbir(Biu(t—cr, Ydw;, (t +Zboru — ¢, 0)dwe (1), (3.8)
i=1r=1



Khairia El-Said El-Nadi 173
where A is the operator with domain G = W?2(S) n W{(S) given by

82
ax,»axj .

Au = i aij(x)

ij=1

(3.9)

Let L,(S) be the space of all square integrable functions on S. The space H = L,(S) is a
Hilbert space and G is dense in H.
The operators By,..., B, with domains W'(S) n W{(S) are given by

0

==, i=1,...,n, 1
o i n (3.10)

and by, b, are the continuous functions defined on Q).

Since A is uniformly elliptic on Qy, it follows that the semigroup Q(t) exists with the
properties (1.5) and (1.6) (see [3, 5, 6]).

Consequently, Theorems 2.1, 2.2, and 2.3 can be applied for the considered abstract
mixed problem.
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