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We find a Stroock formula in the setting of generalized chaos expansion introduced by
Nualart and Schoutens for a certain class of Lévy processes, using a Malliavin-type deriva-
tive based on the chaotic approach. As applications, we get the chaotic decomposition of
the local time of a simple Lévy process as well as the chaotic expansion of the price of a
financial asset and of the price of a European call option. We also study the behavior of the
tracking error in the discrete delta neutral hedging under both the equivalent martingale
measure and the historical probability.

1. Introduction

In general, a Lévy process has not the chaotic representation property (say CRP for brevi-
ty) but Nualart and Schoutens have developed in [8] a kind of generalized CRP for a large
class of Lévy processes. This work enabled to define a Malliavin-type derivative using
the chaotic approach in a recent paper of Léon et al. [6]. The main goal of the present
article is to get a Stroock formula in this setting. This formula gives the kernels of the
chaotic decomposition of smooth random variables as functionals of the underlying Lévy
process. For a complete survey on Lévy processes, we refer to [2, 14].

We apply this formula to obtain the chaos decomposition of some functionals of sim-
ple Lévy processes. These processes are the sum of a Wiener process and m independent
Poisson processes. As it is pointed by the name, they are easy to handle and very useful
for doing simulations since they approximate the square integrable compound Poisson
process in the L2(Ω× [0,T]) sense (see [6]). In particular, they approximate the process
given by the sum of jumps with size greater than ε > 0.

In this paper, firstly, we obtain the decomposition of the local time L(t,x) defined as
the density of the occupation measure. Secondly, taking account that these simple Lévy
processes have been studied in [6] for pricing and hedging options in financial markets
driven by such processes, we apply the Stroock formula to obtain the chaos expansion of
an asset price as well as the price of a European call option based on this asset. The chaotic
approach enable us to study the asymptotic behavior of the variance, since the terms of
the chaotic expansion are orthogonal and in particular uncorrelated, and this is useful in
practical hedging.
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The paper is organized as follows. The second section is devoted to recall some defini-
tions and results related to Lévy chaotic calculus as well as to give some new remarks. In
the third section, we get the Stroock formula. The fourth section is devoted to apply it in
order to obtain the chaotic expansion of the local time of a simple Lévy process. Finally,
the last three sections discuss chaotic expansions for the price of a financial asset and the
price of a European call option, in a simple jump-diffusion model as well as the asymp-
totic behavior of the variance of the tracking error for discrete delta neutral hedging with
respect to the mesh of the subdivision and under both the equivalent martingale measure
and the historical probability.

2. Basic elements of Lévy chaotic calculus

2.1. The Teugels martingales family associated to a Lévy process. Let X = {Xt : t ≥ 0}
be a real-valued Lévy process defined on a complete probability space (Ω,�,P). Hence-
forth, we always assume that we are using the càdlàg version. Let {�t : t ≥ 0} be the nat-
ural filtration of X completed with the P-null sets of �. We also assume that the Lévy
measure ν of X satisfies the following condition: there exist ε > 0 and δ > 0 such that∫

(−ε,ε)c
eδ|x|ν(dx) < +∞, (2.1)

where (−ε,ε)c stands for the complement of the interval (−ε,ε). This implies that Xt has
moments of all orders and that the polynomials are dense in L2(R,P◦X−1

1 ) (see [8]).
Define

X (1)
t = Xt, X (i)

t =
∑

0<s≤t

(
∆Xs

)i
, i≥ 2. (2.2)

We have the following.

(i) The processes X (i) = {X (i)
t : t ≥ 0}, i= 1,2, . . ., are Lévy processes that jump at the

same points as X .
(ii) E[X (i)

t ]=mit, where m1 = E[X1] and mi =
∫∞
−∞ xi ν(dx), i≥ 2.

Now define

Y (i)
t = X (i)

t −mi t, i= 1,2, . . . . (2.3)

(iii) The processes Y (i) = {Y (i)
t : t ≥ 0} are martingales. The predictable quadratic co-

variation process of Y (i) and Y ( j) is given by〈
Y (i),Y ( j)〉

t =mi+ j t, i, j ≥ 2. (2.4)

Now, we introduce the so-called Teugels’s martingales,

H(i)
t =

i∑
j=1

ai, jY
( j)
t , i= 1,2, . . . , (2.5)

where the constants ai, j are chosen in such a way that ai,1 = 1 and the martingalesH(i), i=
1,2, . . . are strongly orthogonal, that means, for i �= j, the process H(i)H( j) is a martingale.
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In particular, since 〈H(i),H( j)〉t is a predictable process such that H(i)
t H

( j)
t −〈H(i),H( j)〉t

is a martingale, we have that 〈
H(i),H( j)〉

t = 0, i �= j. (2.6)

Moreover, we have the following.

(iv) The processes {H(i)
t : t ≥ 0} are martingales with predictable quadratic variation

process given by 〈
H(i),H(i)〉

t = qi t, (2.7)

where

qi =
∑

j, j′=1,...,i

ai, jai, j′mj+ j′ + a2
i,1 σ

2. (2.8)

2.2. Iterated integrals and a generalized CRP. Let Σn = {(t1, . . . , tn) ∈ Rn
+ : 0 < t1 < t2 <

··· < tn} be the positive simplex of Rn. Given f ∈ L2(Σn), we will denote by J (i1,...,in)
n ( f )

the iterated integral of f with respect to H(i1), . . . ,H(in):

J (i1,...,in)
n ( f )=

∫∞
0

(∫ tn−
0
···

(∫ t2−
0

f
(
t1, . . . , tn

)
dH(i1)(t1))···dH(in−1)(tn−1

))
dH(in)(tn).

(2.9)

We remark that all these integrals are well defined since all the processes H(i) for i≥ 1
are martingales with respect to the filtration {�t : t ≥ 0}. Remark also that these iterated
integrals are not the usual multiple stochastic integrals.

As a consequence of the strong orthogonality of the family of Teugels martingales, we
have the following proposition.

Proposition 2.1. Let f and g belong to L2(Σn). Then

E
[
J (i1,...,in)
n ( f ) J

( j1,..., jm)
m (g)

]
=


qi1 ···qin

∫
Σn

f
(
t1, . . . , tn

)
g
(
t1, . . . , tn

)
dt1 ···dtn,

if n=m and
(
i1, . . . , in

)= ( j1, . . . , jn
)
,

0, otherwise.
(2.10)

Finally, we recall the chaotic representation property of the square integrable random
variables, one of the main results in [8] (see also [6]).

Proposition 2.2. Let F ∈ L2(Ω,�,P). Then F has a unique representation of the form

F = E[F] +
∞∑
n=1

∑
i1,...,in

J (i1,...,in)
n

(
fi1,...,in

)
, (2.11)

where fi1,...,in ∈ L2(Σn).
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2.3. Derivative operators

Definition 2.3. Let f ∈ L2(Σn). Set

D(�)
t J (i1,...,in)

n ( f )=
n∑
k=1

1{ik=�}J
(i1,...,îk ,...,in)
n−1

(
f (···︸︷︷︸

k−1

, t,···)1Σ(k)
n (t)(·)

)
, (2.12)

where

Σ(k)
n (t)= {(t1, . . . , t̂k, . . . , tn

)∈ Σn−1 : 0 < t1 < ··· < tk−1 < t ≤ tk+1 < ··· < tn
}

(2.13)

and î means that the ith index is omitted.

Observe that if k �= k′, then Σ(k)
n (t)∩Σ(k′)

n (t)=∅.
Now, we define the spaces of the random variables that are differentiable in the �th

direction. For this, we define the following subset of L2(Ω):

D(�)1,2 =
{
F ∈ L2(Ω) :

∞∑
n=1

∑
i1,...,in

n∑
k=1

1{ik=�}qi1 ··· q̂ik ···qin

×
∫∞

0

∥∥ fi1,...,in(·, t,·)1Σ(k)
n (t)

∥∥2
L2([0,∞)n−1)dt <∞

}
.

(2.14)

Definition 2.4. Given F ∈D(�)1,2, we define the derivative of F in the �th direction as the
element of L2(Ω×R) given by

D(�)
t F =

∞∑
n=1

∑
i1,...,in

n∑
k=1

1{ik=�}J
(i1,...,îk ,...,in)
n−1

(
fi1,...,in(··· , t,···)1Σ(k)

n (t)(·)
)
. (2.15)

Observe that, as in the classical situation for Gaussian processes, D(�)1,2 is dense in
L2(Ω), since the elements of L2(Ω) with a finite chaotic expansion are in D(�)1,2.

Set D(∞)1,2 =∩�∈ND(�)1,2. Define also for r > 1,

D(�)r ,2 = {F ∈ L2(Ω) :D(�1,...,�r )· F ∈ L2([0,∞)r ×Ω
)}

(2.16)

and D∞ =∩r∈N∩�∈Nr D(�)r ,2.

2.4. Simple Lévy processes. A simple Lévy process is given by

Xt = σWt +α1N
1
t + ···+αmNm

t , t ≥ 0, (2.17)

where {Wt : t ≥ 0} is a standard Brownian motion, {N j
t : t ≥ 0}, j = 1, . . . ,m, are inde-

pendent Poisson processes of parameters λ1, . . . ,λm, respectively, σ > 0 and α1, . . . ,αm are
different nonnull numbers. The Lévy measure of X is ν =∑m

j=1 λjδαj and satisfies the
condition (2.1) of [8] for the validity of the chaotic representation property.
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Observe that

X (1)
t = Xt = σWt +

m∑
j=1

αjN
j
t ,

X (i)
t =

∑
0<s≤t

(
∆Xs

)i = m∑
j=1

αij N
j
t , i≥ 2,

(2.18)

because the independence of two Poisson processes adapted to the same filtration implies
that they do not jump at the same time (see [2]).

Since

Y (i)
t = X (i)

t −mi t, i≥ 1, (2.19)

we have

Y (1)
t = σWt +

m∑
j=1

αj
(
N

j
t − λjt

)
,

Y (i)
t =

m∑
j=1

αij
(
N

j
t − λjt

)
, i≥ 2.

(2.20)

Then, the martingales Y (i), i ≥ 1, are linear combinations of Wt,N1
t − λ1t, . . . ,Nm

t − λmt.
Since the martingales H(i) are linear combinations of Y (1), . . . ,Y (i), it follows that H(i)

are also linear combinations of Wt, Ñ1
t , . . . ,Ñm

t , where Ñ
j
t =N j

t − λjt. Therefore, we have

a CRP in terms of the iterated integrals with respect to Wt, Ñ1
t , . . . ,Ñm

t . Recall also that
by [6, Proposition 1.10], H(i) = 0, for i ≥ m + 2. Furthermore, since we are assuming
that α1, . . . ,αm are different, there is one and only one way to express Y (1), . . . ,Y (m+1) as
linear combinations of Wt,Ñ1

t , . . . ,Ñm
t since the uniqueness of the CRP in terms of the

Wt, Ñ1
t , . . . ,Ñm

t .
To unify the notations, we will write G0(t)=Wt and Gj(t)= Ñ j

t for j = 1, . . . ,m. Also,

we will denote by L(i1,...,in)
n ( f ) the iterated integral of f with respect to Gi1 , . . . ,Gin :

L(i1,...,in)
n ( f )=

∫∞
0

∫ t−n
0
···

∫ t−2
0
f
(
t1, . . . , tn

)
dGi1

(
t1
)···dGin−1

(
tn−1

)
dGin

(
tn
)
. (2.21)

Thus, we have also the chaotic representation property in terms of the Gi’s.

Proposition 2.5. Let F ∈ L2(Ω,�,P). Then F has a representation of the form

F = E[F] +
∞∑
n=1

∑
0≤i1,...,in≤m

L(i1,...,in)
n

(
fi1,...,in

)
, (2.22)

where fi1,...,in ∈ L2(Σn).

In this setting, we recall a result of Léon et al. [6] which says that is possible to compute
the derivatives in the directions W ,N1, . . . ,Nm, . . ., following the classical rules on each
space. Recall that in Poisson setting the derivative is a difference operator (see [10]).
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We use the space Ω = Ω0 ×Ω1 × ··· ×Ωm, where Ω0 is the canonical space of the
Wiener process and Ωi, i= 1, . . . ,m, are, respectively, the canonical spaces of Poisson pro-
cesses Ni, i= 1, . . . ,m, that are the spaces of all possible paths of Poisson’s.

Remark 2.6. If we iterate the derivative with respect to the Poisson’s i and j (i < j), we
obtain

Di
t2D

j
t1F = F

(
ω0, . . . ,ωi + δt2 , . . . ,ωj + δt1 , . . . ,ωm

)
−F(ω0, . . . ,ωi, . . . ,ωj + δt1 , . . . ,ωm

)
−F(ω0, . . . ,ωi + δt2 , . . . ,ωj , . . . ,ωm

)
+F

(
ω0, . . . ,ωm

)
.

(2.23)

Observe that Di
t2D

j
t1F = D

j
t1D

i
t2F, but this equality is not true in general if we only inter-

change the superindexes or the subindexes. If the iteration is done with respect to the
same direction i ≥ 1, we obtain that Di,...,i

t1,...,tsF, denoted by Di,s
Js F where Js = {t1, . . . , ts}, is

equal to
∑

B⊂Js(−1)s−(#B)F(ω0, . . . ,ωi +
∑

t j∈B δtj , . . . ,ωm) where we have used the conven-
tion

∑
t j∈∅ δtj = 0.

Remark 2.7. It is clear that D0
t1D

i
t2F =Di

t2D
0
t1F for all i≥ 1. We want to compute Di1,...,in

t1,...,tnF
for i1, . . . , in ∈ {0,1, . . . ,m}. To do this, we define Is = { j, i j = s} and Js = {t j , j ∈ Is} for
s ∈ {0,1, . . . ,m}. Then ks = #Is will be the order of derivation with respect to Gs, and
hence

∑m
i=0 ki = n and ∪m

i=0Ji = {t1, . . . , tn}. Therefore,

Di1,...,in
t1,...,tnF =D0,k0

J0 D1,k1
J1 ···Dm,km

Jm F, (2.24)

with the convention that Di,0
Ji is the identity, and we get

Di1,...,in
t1,...,tnF =D0,k0

J0

[ ∑
Bi⊂Ji,1≤i≤m

(−1)
∑m
i=1(ki−(#Bi))F

(
ω0,ω1 +

∑
t j∈B1

δtj , . . . ,ωm +
∑
t j∈Bm

δtj

)]
.

(2.25)

Remark 2.8. If F = f (Wt,Ñ1
t , . . . ,Ñm

t ), where f is a smooth function, its derivative Di
sF

for i ≥ 1 and s ≤ t is the difference f (Wt,Ñ1
t , . . . ,Ñ i

t + 1, . . . ,Ñm
t )− f (Wt,Ñ1

t , . . . ,Ñm
t ). So

in general

Di1,...,in
t1,...,tnF =D0,k0

J0 D1,k1
J1 ···Dm,km

Jm F

=D0,k0
J0

[ ∑
0≤ ji≤ki,1≤i≤m

(−1)n−k0−
∑m
i=1 ji

×
m∏
i=1

(
ki
ji

)
f
(
Wt,Ñ1

t + j1, . . . ,Ñm
t + jm

)] m∏
i=1

1{Ji⊂[0,t]ki}

=
∑

0≤ ji≤ki,1≤i≤m
(−1)n−k0−

∑m
i=1 ji

×
m∏
i=1

(
ki
ji

)
∂k0 f

∂xk0
1

(
Wt,Ñ1

t + j1, . . . ,Ñm
t + jm

) m∏
i=0

1{Ji⊂[0,t]ki}.

(2.26)
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Remark 2.9. If there’s only one Poisson process and no Brownian part, different authors
as Léon et al. [7] and Privault [12] have used the iterated derivatives to find the chaotic
decomposition of functionals of the d first jump times of the process. In the present
article, we consider different Poisson processes and a Brownian part. Moreover, we are
not restricted to a specified finite number of jump times.

3. Stroock formula for Lévy processes

The aim of this section is to derive a Stroock formula for functionals of a Lévy process
belonging to D∞. First we deal with the case that F is an element of a specific chaos and
finally we will extend the result to F in D∞.

We start with the following lemma.

Lemma 3.1. If F = J i1,...,in
n ( f ), then

D
j1,..., jn
t1,...,tn F =

∑
σ∈�{1,...,n}

δjσ(1),i1
···δjσ(n),in

f
(
tσ(1), . . . , tσ(n)

)
1{tσ(1)<···<tσ(n)}, (3.1)

where �{1, . . . ,n} is the set of permutations of {1, . . . ,n}.
Proof. First remark that, in the sum, only one term is different from zero. To prove the
lemma, we use induction on n.

For n= 2, we have

D
j1
t1

(∫ 1

0

∫ r2−

0
f
(
r1,r2

)
dH(i1)(r1

)
dH(i2)(r2

))
= δj1,i1

∫ 1

t1
f
(
t1,r2

)
dH(i2)(r2

)
+ δj1,i2

∫ t1
0
f
(
r1, t1

)
dH(i1)(r1

)
= δj1,i1

∫ 1

0
f
(
t1,r2

)
1[t1,1]

(
r2
)
dH(i2)(r2

)
+ δj1,i2

∫ 1

0
f
(
r1, t1

)
1[0,t1]

(
r1
)
dH(i1)(r1

)
,

(3.2)

and applying now the operator D
j2
t2 , we get

D
j2
t2 D

j1
t1

(
J i1,i2
2 ( f )

)= δj2,i2δj1,i1 f
(
t1, t2

)
1[t1,1]

(
t2
)

+ δj2,i1δj1,i2 f
(
t2, t1

)
1[0,t1]

(
t2
)
. (3.3)

Hence, if t1 < t2, we have

D
j2
t2 D

j1
t1

(∫ 1

0

∫ r2−

0
f
(
r1,r2

)
dH(i1)(r1

)
dH(i2)(r2

))= δj1,i1δj2,i2 f
(
t1, t2

)
. (3.4)

Therefore, the formula (3.1) is satisfied for n= 2.
Besides,

D
j1,..., jn
t1,...,tn

(
J i1,...,in
n ( f )

)=Djn
tjn

(
···

(
D
j1
t j1

(
J i1,...,in
n ( f )

)))
=Djn

tjn ···D
j2
t j2

[ n∑
k=1

δik j1 J
i1,...,îk ,...,in
n−1

(
f (. . . , t1, . . . , )1∑(k)

n (t1)(·)
)]
.

(3.5)
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and the induction hypothesis yields

D
j1,..., jn
t1,...,tn

(
J i1,...,in
n ( f )

)
=

n∑
k=1

δik j1

∞∑
τ∈�{1,...,k̂,...,n}

δjτ(2),i1
···δjτ(k−1),ik−1

δjτ(k+1),ik+1
···δjτ(n),in

× f
(
tτ(2), . . . ,tτ(k−1), t1, tτ(k+1), . . . , tτ(n)

)
1{tτ(2)<···<tτ(k−1)<t1<tτ(k+1)···<tτ(n)}

=
∑

σ∈�{1,...,n}
δjσ(1),i1

···δjσ(n),in
f
(
tσ(1), . . . , tσ(n)

)
1{tσ(1)<···<tσ(n)}.

(3.6)

�

Remark 3.2. If t1 < ··· < tn, we get the following equality:

D
j1,..., jn
t1,...,tn

(
J i1,...,in
n ( f )

)= δj1,i1 ···δjn,in f
(
t1, . . . , tn

)
. (3.7)

Now, we apply Lemma 3.1 to obtain the Stroock formula.

Theorem 3.3. Let F be in D∞ with chaotic expansion

F = E[F] +
∞∑
n=1

∑
0≤i1,...,in≤m

Ji1,...,in
n

(
fi1,...,in

)
. (3.8)

Then

fi1,...,in

(
t1, . . . , tn

)= E[Di1,...,in
t1,...,tnF

]
, (3.9)

where t1 < ··· < tn.

Proof. As the iterated derivatives of order n of elements belonging to chaos of order less
than n are zero and applying the above lemma, we get

Di1,...,in
t1,...,tnF = fi1,...,in(t1, . . . , tn) +Mn, with t1 < ··· < tn. (3.10)

where Mn is a sum of variables in chaos of order greater than or equal to n. Taking the
expectation, we obtain the desired formula. �

4. Chaos expansion of the local time of a simple Lévy process

The aim of this section is to apply the Stroock formula to find the chaotic decomposition
of the local time of a simple Lévy process.

We denote by Hn the nth Hermite polynomial defined by

Hn(x)= (−1)n√
n!

exp
(
x2

2

)
dn

dxn

(
exp

(
− x2

2

))
(4.1)

for n≥ 1 and H0(x)= 1.
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We define the local time L(t,x) of a Lévy process X as the density of the occupation
measure

mt(A)=
∫ t

0
1A
(
Xs
)
ds, A∈�(R). (4.2)

It is well known that this density L(t,x) exists and is a nondecreasing function of t and
the measure L(dt,x) is concentrated on the level set {s : Xs = x}. Moreover, Barlow [1]
shows that L(t,x) has an almost surely jointly continuous version.

It is well known also that we can write

L(t,x)=
∫ t

0
δx
(
Xs
)
ds. (4.3)

To apply the Stroock formula, we consider

Lε(t,x)=
∫ t

0
pε(Xs− x)ds, (4.4)

where pε is the centered Gaussian kernel with variance ε > 0. The classical idea of approx-
imating the Dirac distribution δx by pε has been used to calculate the chaotic decompo-
sition of the local time in the case of the Brownian motion by Nualart and Vives [11] and
for the fractional Brownian motion by Coutin et al. [3] and Eddahbi et al. [4].

Before stating precise results of this section, we prove some technical lemmas.

Lemma 4.1. Let F = pε(σWs +
∑m

i=1αiÑ
i
s − x). Then

Di1,...,in
t1,...,tnF

=
m∑
i=1

ki∑
�i=0

m∏
j=1

(
kj
� j

)
(−1)n−k0−

∑m
j=1 �j σk0 p(k0)

ε

(
σWs +

m∑
i=1

αiÑ
i
s +αi�i− x

) n∏
r=1

1[0,s]
(
tr
)
,

(4.5)

where ki = #{ j : i j = i}, i= 0,1, . . . ,m.

Proof. We only apply Remark 2.8 of Section 2. �
Lemma 4.2. Set gn(y)=Hn(y)exp(−y2/2). Then

E
[
p(n)
ε

(
σWs− a

)]= (−1)n(
sσ2 + ε

)(n+1)/2

√
n!√
2π

gn

(
a√

sσ2 + ε

)
. (4.6)

Proof. As p(n)
ε (x)= (1/σn+1)p(n)

ε/σ2 (x/σ), we have

E
[
p(n)
ε

(
σWs− a

)]= 1
σn+1

E
[
p(n)
ε/σ2

(
Ws− a

σ

)]
. (4.7)

Interchanging the derivative operator and the expectation, and using

p(n)
ε (x)= (−1)n

√
n!
pε(x)
εn/2

Hn

(
x√
ε

)
, E

[
pε
(
Ws− a

)]= ps+ε(a), (4.8)

we get the formula of the lemma. �
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Lemma 4.3. For all s > 0 and for all n≥ 0,

∣∣E[p(n)
ε

(
σWs− a

)]∣∣≤ 1
2π

Γ
(
n+ 1

2

)(
sσ2

2

)−(n+1)/2

. (4.9)

Proof. We apply Lemma 4.2 and the inequality |gn(y)| ≤ ((2n/2)/
√
πn!)Γ((n+ 1)/2)

(see [4]). �

Then, we can prove the following proposition.

Proposition 4.4. The chaos expansion of Lε(t,x)= ∫ t0 pε(σWs +
∑m

i=1αiÑ
i
s − x)ds is

Lε(t,x)=
∞∑
n=0

∑
0≤i1,...,in≤m

Li1,...,in
n

[ m∑
i=1

ki∑
�i=0

m∏
j=1

(
kj
� j

)
σk0 (−1)n−k0−

∑m
j=1 �j

√
k0!√
2π

×
∞∑
r1=0

···
∞∑

rm=0

∫ t
t1∨···∨tn

e−λs(
sσ2 + ε

)(k0+1)/2

×
m∏
j=1

(
λjs
)r j

r j !
gn

(
x−∑m

j=1αj
(
r j − λjs+ �j

)
√
sσ2 + ε

)
ds

]
,

(4.10)

where λ=∑m
i=1 λi.

Proof. We apply the Stroock formula to pε(σWs +
∑m

i=1αiÑ
i
s − x) and use Lemma 4.1 for

the expression of the iterated derivative and Lemma 4.2 for the expectation with respect
to the Wiener part. Besides, we calculate the expectation with respect to the Poisson parts.

�

Remark 4.5. Note that the kernels depend only on k0,k1, . . . ,km. Hence, it is the same for
all sets of indexes i1, . . . , in that derive to equal k0,k1, . . . ,km. Observe also that although
the kernel is the same, the iterated integral Li1,...,in

n can depend on the order of the indexes
as we will see in the next example:

∫ 1

0

∫ u2−

0
dWu1dNu2 =

∫ 1

0
Wu2−dNu2 =

N1∑
i=1

WTi , (4.11)

where Ti, i∈N, are the jump times of Poisson. But∫ 1

0

∫ u2−

0
dNu1dWu2

=
∫ 1

0
Nu2−dWu2

=
[
N1−

(
W1−WTN1

)
+
(
N1− − 1

)(
WTN1

−WTN1−1

)
+ ···+

(
WT2 −WT1

)]
=W1N1− −

N1∑
i=1

WTi .

(4.12)
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In order to establish the chaotic expansion of the local time of a simple Lévy process
we state the following lemma (see [11]).

Lemma 4.6. Let {Fε}ε>0 be a family of square integrable random variables with the expan-
sions

Fε = E
[
Fε
]

+
∞∑
n=1

∑
i1,...,in

J (i1,...,in)
n

(
f εi1,...,in

)
, (4.13)

where f εi1,...,in belongs to L2([0,∞)n).
Assume that
(i) f εi1,...,in converges in L2([0,∞)n), when ε goes to zero, to some symmetric function

fi1,...,in ∈ L2([0,∞)n);
(ii)

∑∞
n=1

∑
i1,...,in qi1 ···qin supε ‖ f εi1,...,in(·)‖2

L2([0,∞)n) is convergent.

Then the family Fε converges in L2(Ω) to F = E[F] +
∑∞

n=1

∑
i1,...,in J

(i1,...,in)
n ( fi1,...,in).

Then we can prove the following proposition.

Proposition 4.7. For each x ∈R and t ∈ [0,T], the random variables∫ t
0
pε

(
σWs +

m∑
i=1

αiÑ
i
s − x

)
ds (4.14)

converge to L(t,x) in L2(Ω) as ε tends to zero. Furthermore, with λ=∑m
i=1 λi, the local time

L(t,x) has the following chaotic decomposition:

L(t,x)=
∞∑
n=0

∑
0≤i1,...,in≤m

Li1,...,in
n

[ m∑
i=1

ki∑
�i=0

( m∏
j=1

(
kj
� j

))
σk0

× (−1)n−k0−
∑m

j=1 �j

√
k0!√
2π

∞∑
r1=0

···
∞∑

rm=0

∫ t
t1∨···∨tn

e−λs

(sσ2)(k0+1)/2

×
m∏
j=1

(
λjs
)r j

r j !
gn

(
x−∑m

j=1αj
(
r j − λjs+ �j

)
σ
√
s

)
ds

]
.

(4.15)

Remark 4.8. Note that Lemma 4.6, simultaneously, proves that the local time is in L2(Ω)
and gives its chaotic expansion.

Proof. We must check the two hypotheses of Lemma 4.6. We start with (ii). By Lemma
4.1, we have∣∣E[Di1,...,in

t1,...,tnLε(t,x)
]∣∣

≤
m∑
i=1

ki∑
�i=0

m∏
j=1

(
kj
� j

) ∞∑
r1=0

···
∞∑

rm=0

∫ t
t1∨···∨tn

e−λs
m∏
j=1

(
λjs
)r j

r j !
σk0

×EW
[
p(k0)
ε

(
σWs +

m∑
j=1

αj
(
r j − λjs+ �j

)− x)] n∏
r=1

1[0,s]
(
tr
)
ds,

(4.16)
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and by Lemma 4.3, and since

e−λs
m∏
j=1

∞∑
r j=0

(λjs)r j

r j !
= 1, (4.17)

the right-hand side of (4.16) is bounded by

m∑
i=1

ki∑
�i=0

σk0

2π

m∏
j=1

(
kj
� j

)∫ t
t1∨···∨tn

Γ
((
k0 + 1

)
/2
)((

sσ2
)
/2
)(k0+1)/2 ds

= 2n−(k0/2)+(1/2)

2πσ
Γ
(
k0 + 1

2

)∫ t
t1∨···∨tn

ds

s(k0+1)/2
,

(4.18)

where we have used the identity

m∑
i=1

ki∑
�i=0

m∏
j=1

(
kj
� j

)
= 2n−k0 . (4.19)

Therefore,

∣∣E[Di1,...,in
t1,...,tnLε(t,x)

]∣∣2 ≤ 22n−k0+1

(2πσ)2
Γ
(
k0 + 1

2

)2
(∫ t

t1∨···∨tn

ds

s(k0+1)/2

)2

. (4.20)

Then

∥∥E[Di1,...,in
t1,...,tnLε(t,x)

]∥∥2
L2([0,T]n)

≤ 22n−k0+1

(2πσ)2
Γ
(
k0 + 1

2

)2∫ t
0

yn−1dy

(n− 1)!

(∫ t
y
s(k0+1)/2ds

)2

= 22n−k0+1

(2πσ)2
Γ
(
k0 + 1

2

)2∫ t
0

∫ t
0

∫ t
0

yn−11[0,u∧v](y)dy
(n− 1)!(uv)(k0+1)/2

dudv

= 22n−k0

n!(πσ)2
Γ
(
k0 + 1

2

)2∫ t
0
v−(k0+1)/2dv

∫ v
0
un−((k0+1)/2)du

= 22n−k0

n!(πσ)2
Γ
(
k0 + 1

2

)2 2
2n− k0 + 1

tn−k0+1

n− k0 + 1
.

(4.21)
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Therefore,

∞∑
n=0

∑
0≤i1,...,in≤m

∥∥E[Di1,...,in
t1,...,tnLε(t,x)

]∥∥2
L2([0,T]n)

≤
∞∑
n=0

n∑
k0=0

t2k0+1

(πσ)2k0!
Γ
(
k0 + 1

2

)2 ∑
k1+···+km=n−k0

(4t)n−k0

k1!···km!
1

2n− k0 + 1
1

n− k0 + 1

≤
∞∑
n=0

n∑
k0=0

2k0+1

m(πσ)2k0!
Γ
(
k0 + 1

2

)2 (4mt)n−k0+1(
n− k0 + 1

)
!

1
2n− k0 + 1

≤
∞∑

k0=0

2k0+1

m(πσ)2k0!
Γ
(
k0 + 1

2

)2 em4t − 1
k0 + 1

,

(4.22)

where we have used the facts that the bound of each term of the series depends only on
k0,k1, . . . ,km,

∑
k1+···+km=r

1
k1!···km!

= mr

r!
(4.23)

and 2n− k0 + 1≥ k0 + 1.
By Stirling formula,

2k0+1

π2
(
k0 + 1

)
!
Γ
(
k0 + 1

2

)2

∼ ck−3/2
0 , for k0 large. (4.24)

Hence, the general term of the right-hand side of (4.22) behaves as ck−3/2
0 and the corre-

sponding series is convergent.
Note that in our setting q0 = ··· = qm = 1, because we do not work with the H(i)’s but

use directly the Wiener and Poisson processes.
Now, it remains to check Lemma 4.6 (i). We have∥∥ f εi1,...,in − fi1,...,in

∥∥2
L2([0,T]n)

= ∥∥ f εi1,...,in

∥∥2
L2([0,T]n) +

∥∥ fi1,...,in

∥∥2
L2([0,T]n)− 2

〈
f εi1,...,in , fi1,...,in

〉
L2([0,T]n).

(4.25)

It is clear that f εi1,...,in converges to fi1,...,in pointwise and using the dominated convergence
theorem, we see easily that condition (i) holds.

Finally, we will show, following standard arguments, that the limit of
∫ t

0 pε(σWs +∑m
i=1αiÑ

i
s − x)ds, denoted by Λx

t , is the local time L(t,x). The above estimates are uniform
in x ∈ R. Therefore, we can conclude that the convergence of

∫ t
0 pε(σWs +

∑m
i=1αiÑ

i
s −

x)ds to Λx
t holds in L2(Ω×R,P⊗ µ), for any finite measure µ. As a consequence, for any

continuous function g in R with compact support, we have that

∫
R

(∫ t
0
pε

(
σWs +

m∑
i=1

αiÑ
i
s − x

)
ds

)
g(x)dx (4.26)
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converges in L2(Ω) to
∫
RΛ

x
t g(x)dx. But, this expression also converges to∫ t

0
g

(
σWs +

m∑
i=1

αiÑ
i
s

)
ds. (4.27)

Hence, ∫
R
Λx
t g(x)dx =

∫ t
0
g

(
σWs +

m∑
i=1

αiÑ
i
s

)
ds, (4.28)

which implies that Λx
t = L(t,x). �

5. Chaos expansion of the price of a financial asset

In this section, we will use the Stroock formula to get the chaotic decomposition of the as-

set price St driven by the Lévy process X̃t = µt+ σWt +
∑m

j=1αjÑ
j
t , where Ñ

j
t , j = 1, . . . ,m,

are independent compensated Poisson processes with parameters λj , j = 1, . . . ,m. This
means that St satisfies the stochastic differential equation

dSt = St−dX̃t, S0 = s0, (5.1)

with solution

St = s0 exp

{(
µ− σ2

2

)
t−

m∑
i=1

αiλit+ σWt

} m∏
i=1

(
1 +αi

)Ni
t

= s0 exp

(
ct+ σWt +

m∑
i=1

βiN
i
t

)
,

(5.2)

where c = µ− σ2/2−∑m
i=1αiλi and βi = log(1 + αi) for i = 1, . . . ,m with the condition

αi >−1 to guarantee the positivity of the price (see [13]).

Remark 5.1. If τ is a jump time of the Poisson process N j , the relative jump (Sτ − Sτ−)/Sτ
is equal to αj and the absolute jump log(Sτ)− log(Sτ−) of the log price process log(St)
is βj .

Now we compute the iterated derivatives of St and we obtain

D0,k0
s1,...,sk0

St = σk0St, (5.3)

for s1 < ··· < sk0 < t,

D�
s St = s0 exp

(− σ2t/2 + σWt
) m∏
i=1, j �=�

(
1 +αi

)Ni
t
{(

1 +α�
)N�

t +1− (1 +α�
)N�

t
}
= α�St,

(5.4)

for s < t, and

D�,k�
s1,...,s� St = αk�� St, (5.5)
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for � = 1, . . . ,m. Consequently,

Di1,...,in
s1,...,snSt = σk0αk1

1 ···αkmm St
n∏
i=1

1{si<t}, (5.6)

with
∑m

i=0 ki = n.
Hence,

E
[
Dk0,...,km
s1,...,sn St

]= σk0αk1
1 ···αkmm s0ectEW

[
exp

(
σWt

)] m∏
i=1

ENi
t

[(
1 +αi

)Ni
t
] n∏
k=1

1{0<sk<t}

= σk0αk1
1 ···αkmm s0ect exp

(
σ2t/2

) m∏
i=1

exp
(
αiλit

) n∏
k=1

1{0<sk<t},

fk0,...,km

(
s1, . . . ,sn; t

)= s0 m∏
i=0

αkii e
γit1{0<s1<···<sn<t} = s0eµt

m∏
i=0

αkii 1{0<s1<···<sn<t},

(5.7)

with α0 = σ , γi = αiλi, for i= 1, . . . ,m, γ0 = µ−
∑m

i=1αiλi, and λ0 = 1.
The chaotic decomposition of St is given by

St = E
[
St
]

+
∞∑
n=1

∑
i1,...,in

s0e
µt

m∏
j=0

α
kj
j L

i1,...,in
n

(
1{0<s1<···<sn<t}

)
. (5.8)

As the terms of the chaotic decomposition are uncorrelated, the variance has the follow-
ing expression:

Var
(
St
)= ∞∑

n=1

∑
i1,...,in

s20e
2µt

m∏
j=0

α
2kj
j E

[
Li1,...,in
n

(
1{0<s1<···<sn<t}

)2
]

=
∞∑
n=1

∑
i1,...,in

s20e
2µt

m∏
j=0

(
λjα

2
j

)kj tn
n!

= s20e2µt
∞∑
n=1

tn

n!

∑
i1,...,in

m∏
j=0

(
λjα

2
j

)kj

= s20e2µt
∞∑
n=1

tn
∑

k0+···+km=n

m∏
j=0

(
λjα

2
j

)kj
k j !

.

(5.9)

By the multinomial formula,

Var
(
St
)= s20e2µt

∞∑
n=1

(∑m
j=0 tλjα

2
j

)n
n!

= s20e2tµ[et∑m
j=0 λjα

2
j − 1

]
. (5.10)
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If we only consider the first p chaos, the error of the variance is

s20
tp+1

(p+ 1)!
e2µt

( m∑
j=0

λjα
2
j

)p+1

eξ
∑m

j=0 λjα
2
j , 0 < ξ < t, (5.11)

which tends to 0 if p tends to infinity or t tends to zero.
In the case of the Brownian motion, γj = αj = 0 for j = 1, . . . ,m and

Var
(
St
)= s20e2µt

∞∑
n=1

tn
σ2n

n!
= s20e2tµ(etσ2 − 1

)
. (5.12)

6. Chaos expansion of the price of a European call option

LetUt be the price on t of a European call option written on the asset described in the last
section. By the no-arbitrage theory, Ut = EQ[e−r(T−t)g(ST −K)/�t]= EQ[g(ST −K)/St],
whereQ is the unique martingale measure described in [6] and g(x)= x∨ 0. Note that in
order to get the uniqueness ofQ, we have to addm additional assets defined by equations

dP
j
t = P j

t−dX
j
t , j = 1, . . . ,m, (6.1)

where

X
j
t = µjt+ σjWt +

m∑
i=1

αj,i
(
Ni
t − λit

)
, (6.2)

with the condition that there exist constants M,L1, . . . ,Lm, with Lj ≤ λj , such that

B


M
L1
...
Lm

=

µ− r
µ1− r

...
µm− r

 , (6.3)

where r > 0 is the fixed interest rate and B is a matrix given by

B =


σ α1 ··· αm
σ1 α11 ··· α1m
...

...
...

σm αm1 ··· αmm

 . (6.4)
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Using Girsanov’s theorem, we find a Q-Brownian motion WQ and m independent Q-

Poisson processes with parameters λ̃ j = λj −Lj , NQ,1, . . . ,NQ,m, such that we can write

dSt
St−

= σdWQ
t +

m∑
i=1

αi
(
dNQ,i

t − λ̃idt
)

+ rdt,

dP1
t

P1
t−
= σ1dW

Q
t +

m∑
i=1

α1,i
(
dNQ,i

t − λ̃idt
)

+ rdt,

...

dPmt
Pmt−

= σmdWQ
t +

m∑
i=1

αm,i
(
dNQ,i

t − λ̃idt
)

+ rdt.

(6.5)

The explicit solution of (6.5) is

St = s0 exp
(
ct+ σWQ

t

) m∏
i=1

(
1 +αi

)NQ,i
t = s0 exp

(
ct+ σWQ

t +
m∑
i=1

βiN
Q,i
t

)
, (6.6)

where c = r− (σ2/2)−∑m
i=1αiλ̃i.

The chaotic expansion of Ut is given by

Ut =
∞∑
n=0

∑
i1,...,in

Li1,...,in
n

(
fi1,...,in(·, t)), (6.7)

and using the Stroock formula, we get

fi1,...,in

(
s1, . . . ,sn, t

)= EQ[Di1,...,in
s1,...,snUt

]= EQ[Di1,...,in
s1,...,snEQ

[
e−r(T−t)g

(
ST −K

)
/�t

]]
= e−r(T−t)EQ

[
EQDi1,...,in

s1,...,sn

[
g
(
ST −K

)
1{s1<···<sn<t}/�t

]]
= EQ

[
Di1,...,in
s1,...,sng

(
ST −K

)]
e−r(T−t)1{0<s1<···<sn<t},

(6.8)

where we have used the known commutative property between the derivative operator
and the conditional expectation (see [10]).

Now, we have to compute EQ[Di1,...,in
s1,...,sng(ST −K)]. In order to do this, we approximate

the function g, uniformly, by the sequence of �∞ functions:

gε(x)=
∫ x
−∞

Φε(y)dy, (6.9)

where Φε is the cumulative probability function of the centered normal law with vari-
ance ε.

Observe that the first derivative of gε is Φε and the high-order derivatives are the func-

tions p
( j−2)
ε (x) for j ≥ 2, that are for every j, the ( j− 2)-order derivatives of the centered

Gaussian kernel of variance ε, denoted by pε.
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Let Fε = gε(ST −K). Clearly, Fε converges in L2 to F = (ST −K)+ =UT . Then, applying
Remark 2.8 to gε and assuming s1 < s2 < ··· < sn < T ,

Di1,...,in
s1,...,snFε =D0,k0

J0 D1,k1
J1 ···Dm,km

Jm Fε

=
m∑
i=1

ki∑
�i=0

m∏
j=1

(
kj
� j

)
(−1)n−k0−

∑m
j=1 �j ∂(k0)

W gε
(
S̃T −K

)
,

(6.10)

where S̃T = STe
∑m

j=1 βj� jT .
Using the formula f (aebx − c)(n) =∑n

j=1 f
( j)(aebx − c)bnaje jbxcn, j with cn,n = cn,1 = 1,

we get the following.
(i) If k0 = 0,

Di1,...,in
s1,...,snFε =

m∑
i=1

∑
0≤�i≤ki

(−1)n−
∑m
i=1 �i

m∏
i=1

(
ki
�i

)
gε
(
S̃T −K

)
. (6.11)

(ii) If k0 > 0,

Di1,...,in
s1,...,snFε =

m∑
i=1

∑
0≤�i≤ki

(−1)n−k0−
∑m
i=1 �i

m∏
i=1

(
ki
�i

)
σk0

k0∑
j=1

g
( j)
ε
(
S̃T −K

)
S̃
j
Tck0, j . (6.12)

Therefore, we have to compute and pass to limit, when ε tends to zero, three types of
expectations:

E
[
gε
(
S̃T −K

)]
,

E
[
Φε
(
S̃T −K

)
S̃T
]
,

E
[
p(�)
ε

(
S̃T −K

)
S̃�+2
T

] (6.13)

for � ≥ 0.
In the first case, using the uniform convergence of gε to g, we obtain as a limit

E
[
g
(
S̃T −K

)]= E[(S̃T −K)+]= E[S̃T1{S̃T>K}
]−KP{S̃T > K}. (6.14)

For the second case, using the dominated convergence theorem, we have that the limit is

E
[
S̃T1{S̃T>K}

]
. (6.15)

So for the two first expectations, the problem reduces to compute explicitly E[S̃T1{S̃T>K}]
and P{S̃T > K}.

Fixing Poisson processes, we define

C = s0 exp

{ m∑
j=1

βjN
( j)
T +

(
r− σ2

2
+

m∑
j=1

(
βj�j −αj λ̃ j

))
T

}
. (6.16)
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In order to get the expectations with respect to the Gaussian part, we need only the
fact that

PWT

{
eσWT ≥ γ}= 1−Φ

(
log(γ)

σ
√
T

)
(6.17)

and the following lemma.

Lemma 6.1. Let γ ≥ 0. Then

EWT

[
eσWT 1{eσWT >γ}

]= eσ2T/2Φ
(
σ
√
T − log(γ)

σ
√
T

)
. (6.18)

Proof. We have

EWT

[
eσWT 1{eσWT >γ}

]= ∫
R
exσ1{exσ>γ} exp

(
− x2

2T

)
dx√
2πT

=
∫∞

(logγ)/σ
exp

(
− x2

2T
+ σx

)
dx√
2πT

= eσ2T/2
∫∞

(logγ)/σ
√
T

exp
(
− (y− σ√T)2

2

)
dy√
2π

= eσ2T/2
∫∞

((logγ)/σ
√
T)−σ√T

exp
(
− x2

2

)
dx√
2π

.

(6.19)

�

Finally, for the expectations of third type, we need the following result.

Lemma 6.2.

lim
ε→0
EWT

[
p(�)
ε

(
CeσWT −K)(CeσWT

)�+2
]
= (−1)�h(�)

� (K), (6.20)

where

h�(x)= x�+2 f (x)= x�+1pσ
√
T

(
log

(
x

C

))
, (6.21)

with f being the density of the log-normal law with parameters log(C) and σ
√
T .

Proof. We have

EWT

[
p(�)
ε

(
CeσWT −K)(CeσWT

)�+2]= ∫
R
p(�)
ε (x−K)x�+2 f (x)dx. (6.22)

Taking h�(x)= x�+2 f (x) and integrating by parts, using that h� and all its derivatives are
fast decreasing functions, the last integral is equal to

(−1)�
∫
R
pε(x−K)h(�)

� (x)dx = (−1)�
(
pε∗h(�)

�

)
(K), (6.23)
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where ∗ denotes the convolution. Using that pε is an approximation of the identity, we
obtain the limit

(−1)�h(�)
� (K). (6.24)

�

As a conclusion, we have

fi1,...,in

(
s1, . . . ,sn; t

)
=

k1∑
�1=0

···
km∑
�m=0

(−1)n−k0−�1−···−�m
(
k1

�1

)
···

(
km
�m

)
σk0

×
∞∑

j1,..., jm=0

e−λ̃1T ···e−λ̃mT λ̃
j1
1 ··· λ̃ jmm T j1+···+ jm

j1!··· jm!

×
[(
C
(
j1, . . . , jm

)
e(σ2T)/2−K1{k0=0}

)
Φ
(

logC
(
j1, . . . , jm

)− logK

σ
√
T

)

+
k0−2∑
l=0

ck0,l+2(−1)lh(l)
l (K)1{k0≥2}

]
e−r(T−t)1{0<s1<···<sn<t},

(6.25)

where

hl(x)= xl+1pσ
√
T

(
logx− logC

(
j1, . . . , jm

))
,

C
(
j1, . . . , jm

)= s0 exp

{ m∑
i=1

βi ji +

(
r− σ2

2
+

m∑
i=1

(
βi�i−αiλ̃i

))
T

}
.

(6.26)

In the case of no jumps in the model, we obtain

fn
(
s1, . . . ,sn; t

)= σn[(S0e
rT −K1{n=0}

)
Φ

(
logC− logK

σ
√
T

)

+
n−2∑
l=0

cn,l+2(−1)lh(l)
l (K)1{n≥2}

]
e−r(T−t)1{0<s1<···<sn<t},

(6.27)

where now C reduces to s0 exp{(r− (σ2/2))T}.

7. Chaos expansion of the tracking error in discrete delta-neutral hedging

Assume that we are in a neutral risk environment. That is, from now on, we are concerned
with the unique probabilityQ that makes e−rtSt a martingale. Here we follow some ideas
from [5].

Let Ut be the prize of a derivative security. Its actualized price Ũt is given by

e−rtUt = E
[
e−rTh

(
ST
)
/�t

]
. (7.1)

By the Markov property of St, the process Ũt can be written as a function of t and St.
Moreover thanks to (6.6), we can write Ũt = u(t,Yt), where Yt = ct + σWQ

t +
∑m

i=1βiN
Q,i
t

and βi = ln(1 +αi). By its definition, Ũt is a martingale.
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We set

u1(s,Ys−, y
)

:= u(s,Ys− + y
)−u(s,Ys−)− ∂u

∂x

(
s,Ys−

)
y. (7.2)

If the function u is regular, the Itô formula (see Protter [13, pages 81–82]) applied to
u(t,Yt) yields

u
(
t,Yt

)−u(0,Y0
)= ∫ t

0

(
∂u

∂s

(
s,Ys

)
+ c

∂u

∂x

(
s,Ys

))
ds+

1
2

∫ t
0
σ2 ∂

2u

∂x2

(
s,Ys

)
ds

+
∫ t

0
σ
∂u

∂x

(
s,Ys−

)
dWQ

s +
m∑
j=1

βj

∫ t
0

∂u

∂x

(
s,Ys−

)
dN

Q, j
s

+
∑

0<s≤t
u1(s,Ys−,∆Ys

)
.

(7.3)

Now, [9, Lemma 5, page 773] due to Nualart and Schoutens (2001) applied to u1(s,Ys−, y)
gives

∑
0<s≤t

u1(s,Ys−,∆Ys
)= m+1∑

i=1

∫ t
0

(∫
R
u1(s,Ys−, y

)
pi(y)ν(dy)

)
dH(i)

s

+
∫ t

0

∫
R
u1(s,Ys−, y

)
ν(dy)ds,

(7.4)

where pi(y) = ai,ixi + ai,i−1xi−1 + ···+ ai,1x. Note that there are only m+ 1 processes Hi

associated to Y which are different from zero (see [6]).
In our case the explicit expression of the right-hand side of the last equation is a mar-

tingale plus the following term:

∫ t
0

m∑
j=1

(
τβj u

(
s,Ys−

)− ∂u

∂x

(
s,Ys−

)
βj

)
λ̃ jds, (7.5)

where τβu(t,x)= u(t,x+β)−u(t,x).
Hence, the martingale property of u(t,Yt) is equivalent to the condition that u satisfies

the following partial differential integral equation:

∂u

∂t
(t,x) + c

∂u

∂x
(t,x) +

σ2

2
∂2u

∂x2
(t,x) +

m∑
j=1

λ̃ jτβj u(t,x)= 0,

u(0,x)= u0(x),

(7.6)

where u0 is a given function.
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Moreover ∂
n− j
x ◦ τβi1 ◦ ··· ◦ τβi j u(t,Yt), i1, . . . , i j ∈ {1,2, . . . ,m} and j ∈ {0,1, . . . ,n}, is

also a martingale since ∂
n− j
x ◦ τβi1 ◦ ··· ◦ τβi j u(t,x) satisfy (7.6).

Being u(t,Yt) a functional assumed to be square integrable, by the Stroock formula,
its chaos expansion is

u
(
t,Yt

)
=

∞∑
n=0

∑
i1,...,in

J i1,...,in
n

(
E
[
Di1,...,in
s1,...,snu

(
t,Yt

)])

=
∞∑
n=0

∑
i1,...,in,k0+···+km=n

E
[
σk0∂k0

x ◦ τk1
β1
◦ ··· ◦ τkmβmu

(
t,Yt

)]
J i1,...,in
n

(
1{0<s1<···<sn≤t}

)

=
∞∑
n=0

∑
i1,...,in

σk0∂k0
x ◦ τk1

β1
◦ ··· ◦ τkmβmu(0,0)J i1,...,in

n

(
1{0<s1<···<sn≤t}

)
.

(7.7)

From the Clark-Ocone formula, we have

erTU0−UT +
∫ T

0
ψ0(s)dS̃(s) +

m∑
j=1

∫ T
0
ψj(s)dP̃j(s)= 0, (7.8)

with

(
ψ0(s), . . . ,ψm(s)

)= (φ0(s), . . . ,φm(s)
)
B−1



1
S∗(s−)

0 ··· 0

0
1

P∗1 (s−)
··· 0

...
...

...

0 0 ··· 1
P∗m(s−)


,

φj(s)= E
[
D

( j)
s e−rTUT/�s−

]
, j = 0, . . . ,m.

(7.9)

It represents the value of a dynamic portfolio with a short position in one derivative and
a suitable large position on the risky assets.

Let {t0 = 0 < t1 < ··· < tp = T} be a partition of [0,T] such that t j+1 − t j = δ for all
j = 0, . . . , p− 1, and hence pδ = T .

Discrete hedging corresponds to the value process

erTU0−UT +
p−1∑
i=0

∫ ti+1

ti
ψ0
(
ti
)
dS̃(s) +

m∑
j=1

p−1∑
i=0

∫ ti+1

ti
ψj
(
ti
)
dP̃j(s), (7.10)
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and the difference between values of the two portfolios is the so-called tracking error that
can be written in this case as

ET =
p−1∑
j=0

∫ t j+1

t j
e−rT

(
E
[
D0
s UT/�s

]−E[D0
t jUT

]
/�t j

)
dWQ

s

+
m∑
k=1

p−1∑
j=0

∫ t j+1

t j
e−rT

(
E
[
Dk
s UT/�s

]−E[Dk
tjUT

]
/�t j

)
dÑQ,k

s .

(7.11)

Of course, this is a centered random variable that converges to zero when the partition
becomes finer and finer but, moreover, it has no first chaos. In fact

ET =
∞∑
n=2

∑
i1,...,in

σk0∂k0
x ◦ τk1

β1
◦ ··· ◦ τkmβmu(0,0)J i1,...,in

n

(
1−

p−1∑
j=0

1{sn−1<t j <sn≤t j+1 }

)
. (7.12)

Then

Var(ET)=
∞∑
n=2

∑
i1,...,in

[
σk0∂k0

x ◦ τk1
β1
◦ ··· ◦ τkmβmu(0,0)

]2
∫ T

0

∫ sn
0
···

∫ s2
0

1Bn(π)ds1 ···dsn,

(7.13)

where Bn(π) is the set of n-tuples (s1, . . . ,sn) such that sn−1 and sn become in the same
interval of the partition. On one hand,

Var(ET)≤
∞∑
n=2

∑
i1,...,in

[
σk0∂k0

x ◦ τk1
β1
◦ ··· ◦ τkmβm (u)(0,0)

]2Tn

n!
. (7.14)

On the other hand, it is easy to see that

∫ T
0

∫ sn
0
···

∫ s2
0

1Bn(π)ds1 ···dsn =
p−1∑
j=0

(
( j + 1)n− jn−n jn−1)δn

n!

= Pn−1(p)
δn

n!
,

(7.15)

where Pn−1 denotes a polynomial with degree n− 1. Hence, Var(ET)=O(δ).
Under the historical probability, Wt =WQ

t − ν0t is a Brownian motion and Ñ i
t =

ÑQ,i
t − νit, for i = 1, . . . ,m, are Poisson processes, where ν0 = (µ− r)/σ and νi = ((λi −

λ̃i)(βi−αi)/βi).
If we define Zt = Yt − γt = ct+ σWt +

∑m
i=1βiN

i
t , with γ = σνo +

∑m
i=1βiνi, then we can

write u(t,Yt)= u(t,Zt + γt). Note that u(t,Zt) is a P-martingale since u(t,x) satisfies (7.6)
but u(t,Zt + γt) is not.

Using the classical Taylor formula on u(t,Zt + γt), we obtain

u
(
t,Zt + γt

)= ∞∑
�=0

1
�!
∂�u

(
t,Zt

)
γ�t�. (7.16)
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Therefore, the chaos expansion of the tracking error becomes

ET =
∞∑
n=2

∑
i1,...,in

∞∑
�=0

γ�T�

�!
σk0 ∂k0+�

x ◦ τk1
β1
◦ ··· ◦ τkmβm u(0,0)J i1,...,in

n

(
1Bn(π)

)
(7.17)

and has the same behavior as before.
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