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We investigate a class of abstract stochastic integrodifferential delay equations dependent
upon a family of probability measures in a separable Hilbert space. We establish the ex-
istence and uniqueness of a mild solution, along with various continuous dependence
estimates and Markov (weak and strong) properties of this solution. This is followed by
a convergence result concerning the strong solutions of the Yosida approximations of
our equation, from which we deduce the weak convergence of the measures induced by
these strong solutions to the measure induced by the mild solution of the primary prob-
lem under investigation. Next, we establish the pth moment and almost sure exponential
stability of the mild solution. Finally, an analysis of two examples, namely a generalized
stochastic heat equation and a Sobolev-type evolution equation, is provided to illustrate
the applicability of the general theory.

1. Introduction

In this paper, we will initiate an investigation of a class of abstract delay integrodifferential
stochastic evolution equations of the general form

x′(t) +Ax(t)= f1
(
t,xt,µ(t)

)
+
∫ t

0
K1(t,s) f2

(
s,xs,µ(s)

)
ds

+
∫ t

0
K2(t,s) f3

(
s,xs,µ(s)

)
dW(s), 0≤ t ≤ T ,

x(t)= φ(t), −r ≤ t ≤ 0,

(1.1)

in a real separable Hilbert space H . Here, W is a given K-valued Wiener process associ-
ated with a positive, nuclear covariance operator Q; A is a linear (possibly unbounded)
operator which generates a strongly continuous semigroup {S(t) : t ≥ 0} on H ; K1(t,s)
and K2(t,s) are bounded, linear operators on H ; fi : [0,T]×Cr ×℘λ2 (H)→H (i = 1,2)
and f3 : [0,T]× Cr × ℘λ2 (H) → BL(K ;H) (where K is a real separable Hilbert space,
BL(K ;H) denotes the space of all bounded, linear operators from K into H , and ℘λ2 (H)
denotes a particular subset of probability measures on H) are given mappings; µ(t) is
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the probability law of x(t) (i.e., µ(t)(A)= P({ω ∈Ω : x(t,ω)∈ A}), for each A∈�(H));
and φ ∈ L2(Ω;Cr) is an �0-measurable random variable independent of W with almost
surely continuous paths. (See Section 2 for notation and spaces.) The second integral in
(1.1) is taken in the sense of Itó. A complete discussion of the construction of the Itó
integral can be found in [10].

Stochastic partial functional differential equations with finite delay arise naturally in
the mathematical modeling of phenomena in the natural sciences (see [22, 30, 34]) and
have begun to receive a significant amount of attention. Often, a more accurate model
of such phenomena can be formulated by allowing the nonlinear perturbations to de-
pend on the probability law of the state process at time t. A prototypical example in the
finite-dimensional setting would be an interacting N-particle system in which (1.1) de-
scribes the dynamics of the particles x1, . . . ,xN moving in the space H in which the prob-
ability measure µ is taken to be the empirical measure µN (t) = (1/N)

∑N
k=1 δxk(t), where

δxk(t) denotes the Dirac measure. Researchers have investigated related models concern-
ing diffusion processes in the finite-dimensional case (e.g., see [11, 12, 24]). The infinite-
dimensional version of such models in a Hilbert space setting has only recently been
examined (see [1, 19]). The motivation of the present work lies primarily in formulating
an extension of the work in [1, 7, 13, 18] to a more general class of abstract integrodif-
ferential stochastic evolution equations with finite delay. Since dynamical systems with
memory can lead to such random integrodifferential equations (cf. [5, 9, 17, 23]), the
present investigation is warranted.

The following is the outline of the paper. First, we make precise the necessary nota-
tion and function spaces, and gather certain preliminary results in Section 2. We then
formulate the main results concerning the existence and uniqueness of mild solutions to
(1.1), along with their regularity and stochastic properties in Section 3. Next, considering
the Yosida approximations of (1.1), two convergence results are established in Section 4,
while Section 5 is devoted to a discussion of certain asymptotic behavior results for (1.1).
Finally, we conclude the paper with a discussion of two concrete examples (a generalized
stochastic heat equation and a Sobolev-type stochastic equation) in Section 6.

2. Preliminaries

For details of this section, we refer the reader to [4, 6, 10, 14, 25, 26, 29, 34] and the
references therein. Throughout this paper, H and K will denote real separable Hilbert
spaces with respective norms ‖ · ‖ and ‖ · ‖K . Let (Ω,�,P) be a complete probability
space equipped with a normal filtration {�t}t≥0 (i.e., a right-continuous, increasing fam-
ily of sub σ-algebras of �). For t < 0, �t is taken to be �0. For brevity, we suppress the
dependence of all mappings on ω throughout the manuscript.

Definition 2.1. A stochastic process {W(t) : t ≥ 0} in a real separable Hilbert space H is a
Wiener process if for each t ≥ 0,

(i) W(t) has continuous sample paths and independent increments,
(ii) W(t)∈ L2(Ω;H) and E(W(t))= 0,

(iii) Cov(W(t)−W(s))= (t− s)Q, where Q ∈ BL(K ;H) is a nonnegative nuclear op-
erator.
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The following spaces of measures coincide with those used in [1]; we recall them here
for convenience. First, �(H) stands for the Borel class on H and ℘(H) represents the
space of all probability measures defined on �(H) equipped with the weak convergence
topology. Let λ(x)= 1 +‖x‖, x ∈H . Define the space

�(H)=
{
ϕ :H →H | ϕ is continuous and

‖ϕ‖� = sup
x∈H

∥∥ϕ(x)
∥∥

λ2(x)
+ sup
x �=y in H

∥∥ϕ(x)−ϕ(y)
∥∥

‖x− y‖ <∞
}

,

(2.1)

and for p ≥ 1, let

℘sλp(H)=
{
m :H →R |m is a signed measure on H such that

‖m‖λp =
∫
H
λp(x)|m|(dx) <∞

}
,

(2.2)

where |m| =m+ +m−, m =m+ −m− is the Jordan decomposition of m. Then, we can
define the space ℘λ2 (H)= ℘sλ2 (H)∩℘(H) equipped with the metric ρ given by

ρ
(
ν1,ν2

)= sup
{∫

H
ϕ(x)

(
ν1− ν2

)
(dx) : ‖ϕ‖� ≤ 1

}
. (2.3)

It is known that (℘λ2 (H),ρ) is a complete metric space. The space of all continuous
℘λ2 (H)-valued functions defined on [−r,T], denoted by �λ2 =�λ2 ([−r,T];(℘λ2 (H),ρ)),
is complete when equipped with the metric

DT
(
ν1,ν2

)= sup
t∈[−r,T]

ρ
(
ν1(t),ν2(t)

) ∀ν1,ν2 ∈�λ2 . (2.4)

Next, let r > 0. We can associate to any continuous, �t-adapted, H-valued stochastic
process z(t) : Ω→H another Cr-valued stochastic process zt : Ω→ Cr by setting zt(s) =
z(t + s), for all t ≥ 0 and −r ≤ s≤ 0, where we denote by Cr ≡ C([−r,0];H) the space of
all continuous functions from [−r,0] into H , equipped with the sup norm given by

‖z‖Cr =
(

sup
−r≤θ≤0

∥∥zt(θ)
∥∥2
)1/2

. (2.5)

Subsequently, we can define the space

XT ,2 =
{
z ∈ C([−r,T];L2(Ω;H)

) | z is �t-adapted and ‖z‖XT ,2 <∞
}

, (2.6)

which is a Banach space when equipped with the norm

‖z‖XT ,2 = sup
0≤t≤T

(
E
∥∥zt∥∥2

Cr

)1/2
. (2.7)
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Proposition 1.9 in [16], and variations thereof (as needed for the delay case), are used
throughout the manuscript. We recall it here for convenience.

Lemma 2.2. Let G : [0,T]×Ω→ BL(K ,H) be strongly measurable with
∫ T

0 E‖G(t)‖pdt <
∞. Then,

E

∥∥∥∥∥
∫ t

0
G(s)dW(s)

∥∥∥∥∥
p

≤ LG
∫ t

0
E
∥∥G(s)

∥∥p
BL(K ,H)ds, (2.8)

where LG = [(1/2)p(p− 1)]p/2(TrQ)p/2T(p/2)−1.

In addition to the familiar Young, Hölder, and Minkowski inequalities, the inequality
of the form (

∑n
i=1 ai)

m ≤mn−1
∑n

i=1 a
m
i , where ai is a nonnegative constant (i = 1, . . . ,n)

and m,n ∈ N, will be used to establish various estimates. Finally, the following integral
inequality [25, page 38] plays an important role in the proofs of certain results.

Lemma 2.3. Let u, ψ1, ψ2, and ψ3 be nonnegative continuous functions defined on R+ and
u0 a nonnegative constant. If

u(t)≤ u0 +
∫ t

0
ψ1(s)u(s)ds+

∫ t
0
ψ1(s)

(∫ s
0
ψ2(τ)u(τ)dτ

)
ds

+
∫ t

0
ψ1(s)

(∫ s
0
ψ2(τ)

(∫ τ
0
ψ3(θ)u(θ)dθ

)
dτ
)
ds

(2.9)

for all t ∈R+, then

u(t)≤ u0

[
1 +

∫ t
0

{
ψ1(s)exp

(∫ s
0
ψ1(τ)dτ

)

×
(

1 +
∫ s

0
ψ2(τ)exp

(∫ τ
0

[
ψ2(θ) +ψ3(θ)

]
dθ
)
dτ
)}

ds

] (2.10)

for all t ∈R+.

We conclude this section with some comments regarding probability measures. The
probability measure P induced by an H-valued random variable X , denoted PX , is defined
by P ◦X−1 : �(H)→ [0,1]. A sequence {Pn} ⊂ ℘(H) is said to be weakly convergent to P
if
∫
Ω f dPn →

∫
Ω f dP, for every bounded, continuous function f : H → R; in such case,

we write Pn
w→ P. Next, a family {Pn} is tight if for each ε > 0, there exists a compact set

Kε such that Pn(Kε)≥ 1− ε, for all n. Prokhorov (see [4]) established the equivalence of
tightness and relative compactness of a family of probability measures. Consequently, the
Arzelá-Ascoli theorem can be used to establish tightness.

Definition 2.4. Let P ∈ ℘(H) and 0≤ t1 < t2 < ··· < tk ≤ T . Define πt1,...,tk : C([0,T];H)→
Hk by πt1,...,tk (X)= (X(t1), . . . ,X(tk)). The probability measures induced by πt1,...,tk are the
finite-dimensional joint distributions of P.

Proposition 2.5 (see [21, page 37]). If a sequence {Xn} of H-valued random variables
converges weakly to an H-valued random variable X in L2(Ω;H), then the sequence of
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finite-dimensional joint distributions corresponding to {PXn} converges weakly to the finite-
dimensional joint distribution of PX .

The next theorem, in conjunction with Proposition 2.5, is the main tool in establishing
a convergence result in Section 4.

Theorem 2.6. Let {Pn} ⊂ ℘(H). If the sequence of finite-dimensional joint distributions
corresponding to {Pn} converges weakly to the finite-dimensional joint distribution of P and
{Pn} is relatively compact, then Pn

w→ P.

3. Existence, uniqueness, regularity, and Markov properties

We begin by looking at the existence and uniqueness of mild solutions to (1.1). We impose
the following conditions on (1.1), which are assumed throughout the manuscript unless
otherwise specified:

(A1) A is the infinitesimal generator of a C0-semigroup {S(t) : t ≥ 0} on H such that
‖S(t)‖ ≤M exp(αt), for all 0≤ t ≤ T , for some M ≥ 1 and α > 0,

(A2) fi : [0,T]×Cr ×℘λ2 (H)→H (i= 1,2) satisfies
(i) ‖ fi(t,xt,µ(t))‖ ≤M fi[1 +‖xt‖Cr +‖µ(t)‖λ2 ],

(ii) ‖ fi(t,xt,µ(t))− fi(t, yt,ν(t))‖ ≤Mfi[‖xt − yt‖Cr + ρ(µ(t),ν(t))],
globally on [0,T]×Cr ×℘λ2 (H), for some positive constants Mfi and Mfi ,

(A3) f3 : [0,T]×Cr ×℘λ2 (H)→ BL(K ,H) satisfies
(i) ‖ f3(t,xt,µ(t))‖BL(K ,H) ≤Mf3 [1 +‖xt‖Cr +‖µ(t)‖λ2 ],

(ii) ‖ f3(t,xt,µ(t))− f3(t, yt,ν(t))‖BL(K ,H) ≤Mf3 [‖xt − yt‖Cr + ρ(µ(t),ν(t))],
globally on [0,T]×Cr ×℘λ2 (H), for some positive constants Mf3 and M f3 ,

(A4) {K1(t,s) : (t,s) ∈ ∆} ∪ {K2(t,s) : (t,s) ∈ ∆} ⊂ BL(H ,H) are such that
‖K1(t,s)‖BL(H ,H) ≤MK1 and ‖K2(t,s)‖BL(H ,H) ≤MK2 , for all (t,s) ∈ ∆, for some
positive constants MK1 and MK2 .

(Henceforth, we writeMS =max0≤t≤T ‖S(t)‖, which is finite by (A1).) A mild solution
to (1.1) is defined as follows.

Definition 3.1. A continuous stochastic process x : [−r,T]→H is a mild solution of (1.1)
if

(i) x(t) is �t-adapted, for each −r ≤ t ≤ T ,
(ii)

∫ T
0 ‖x(s)‖2ds <∞, almost surely [P],

(iii)

x(t)= S(t)φ(0)

+
∫ t

0
S(t− s) f1

(
s,xs,µ(s)

)
ds

+
∫ t

0
S(t− s)

∫ s
0
K1(s,τ) f2

(
τ,xτ ,µ(τ)

)
dτ ds

+
∫ t

0
S(t− s)

∫ s
0
K2(s,τ) f3

(
τ,xτ ,µ(τ)

)
dW(τ)ds ∀0≤ t ≤ T , almost surely [P],

(3.1)

(iv) x(t)= φ(t), −r ≤ t ≤ 0, almost surely [P].
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The first result is as follows.

Theorem 3.2. Let φ ∈ L2(Ω;Cr) be an �0-measurable random variable independent of
W with almost surely continuous paths. If (A1)–(A4) hold, then (1.1) has a unique mild
solution x ∈ XT ,2 with corresponding probability law µ ∈ �λ2 , provided that α1 + α2 < 1,
where α1 and α2 are positive constants independent of T (cf. (3.13)).

Proof. Let µ∈�λ2 be fixed and define the solution map Φ : XT ,2 → XT ,2 by

(Φx)(t)= S(t)φ(0) +
∫ t

0
S(t− s) f1

(
s,xs,µ(s)

)
ds

+
∫ t

0
S(t− s)

∫ s
0
K1(s,τ) f2

(
τ,xτ ,µ(τ)

)
dτ ds

+
∫ t

0
S(t− s)

∫ s
0
K2(s,τ) f3

(
τ,xτ ,µ(τ)

)
dW(τ)ds

= S(t)φ(0) +
3∑
i=1

Ixi (t), 0≤ t ≤ T ,

(Φx)(t)= φ(t), −r ≤ t ≤ 0.

(3.2)

To see that Φ is well defined, we first verify the L2-continuity of Φ on [0,T]. Let x ∈ XT ,2,
0 < t1 < T , and |h| be sufficiently small (so that all terms are well defined). Observe that

E
∥∥(Φx)

(
t1 +h

)− (Φx)
(
t1
)∥∥2

≤ 8

[
E
∥∥((S(t1 +h

)− S(t1))φ(0)
)∥∥2

+
3∑
i=1

E
∥∥Ixi (t1 +h

)− Ixi (t1)∥∥2
]
.

(3.3)

Since the semigroup property enables us to write

E
∥∥((S(t1 +h

)− S(t1))φ(0)
)∥∥2 = E∥∥(S(h)

(
S
(
t1
)
φ(0)

)− S(t1)φ(0)
)∥∥2

, (3.4)

the strong continuity of S(t) implies that the right-hand side of (3.4) goes to 0 as |h| → 0.
Next, using the Hölder inequality along with (A2) yields

E

∥∥∥∥∥
∫ t1+h

t1
S
(
t1 +h− s) f1(s,xs,µ(s)

)
ds

∥∥∥∥∥
2

≤ 4
(
Mf1

)2
M2

Sh
2

[
1 +‖x‖2

XT ,2
+ sup
t1≤s≤t1+h

∥∥µ(s)
∥∥2
λ2

]
,

(3.5)

which clearly goes to 0 as |h| → 0. Also,

E

∥∥∥∥∥
∫ t1

0

[
S(h)− I]S(t1− s) f1(s,xs,µ(s)

)
ds

∥∥∥∥∥
2

≤ T
∫ t1

0

∥∥[S(h)− I]S(t1− s)∥∥2
E
∥∥ f1(s,xs,µ(s)

)∥∥2
ds,

(3.6)
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and subsequently, using ‖ f1(s,xs,µ(s))‖2 ≤ [1 +‖x‖2
XT ,2

+ sup0≤s≤T ‖µ(s)‖2
λ2 ] <∞, togeth-

er with the strong continuity of S(t), we can invoke the dominated convergence theorem
to conclude that the right-hand side of (3.6) goes to 0 as |h| → 0. Consequently, since
E‖Ix1 (t1 + h)− Ix1 (t1)‖2 is dominated by a sum of constant multiples of the right-hand
sides of (3.5) and (3.6), we conclude that it goes to 0 as |h| → 0.

Next, an application of the Hölder inequality, together with Itó’s formula in conjunc-
tion with Lemma 2.2, yields

E
∥∥Ix3 (t1 +h

)− Ix3 (t1)∥∥2

≤ 16M2
K2

(
Mf3

)2
L2
f3
T

[
M2

S

∫ t1+h

t1

∫ s
0

[
1 +E

∥∥xτ∥∥2
Cr

+
∥∥µ(τ)

∥∥2
λ2

]
dτ ds

+
∫ t1

0

∥∥[S(h)− I]S(t1− s)∥∥2

×
(∫ s

0

[
1 +E

∥∥xτ∥∥2
Cr

+
∥∥µ(τ)

∥∥2
λ2

]
dτ
)
ds

]
,

(3.7)

where L f3 is the constant of Lemma 2.2. Thus, the above reasoning can be used to con-
clude that the right-hand side of (3.7) goes to 0 as |h| → 0. Similar computations can
be used to show that the same is true of E‖Ix2 (t1 + h)− Ix2 (t1)‖2. Consequently, we can
conclude (from (3.3)) that Φ is indeed L2-continuous on [0,T].

Next, to see that Φ(XT ,2) ⊂ XT ,2, let x ∈ XT ,2 and t ∈ [0,T]. Since φ ∈ L2(Ω;Cr), it
follows that

sup
−r≤θ≤0

{
E
∥∥(Φx)(t+ θ)

∥∥2
:−r ≤ t+ θ ≤ 0

}
<∞. (3.8)

For all −r ≤ θ ≤ 0 for which t + θ > 0, standard computations involving the Hölder in-
equality, (A2)–(A4), and Lemma 2.3 yield the following estimates:

E

(
sup

−r≤θ≤0

∥∥S(t+ θ)φ(0)
∥∥2
)
≤M2

S‖φ‖2
Cr ,

E

(
sup

−r≤θ≤0

∥∥Ix1 (t+ θ)
∥∥2
)
≤ 4

(
TMSMf1

)2
[

1 +‖x‖2
XT ,2

+ sup
0≤θ≤T

∥∥µ(θ)
∥∥2
λ2

]
,

E

(
sup

−r≤θ≤0

∥∥Ix2 (t+ θ)
∥∥2
)
≤ 4

(
TMSMf2

MK1

)2
[

1 +‖x‖2
XT ,2

+ sup
0≤θ≤T

∥∥µ(θ)
∥∥2
λ2

]
,

E

(
sup

−r≤θ≤0

∥∥Ix3 (t+ θ)
∥∥2
)
≤ 4T

(
MSMf3

MK2L f3
)2
[

1 +‖x‖2
XT ,2

+ sup
0≤θ≤T

∥∥µ(θ)
∥∥2
λ2

]
.

(3.9)

Hence, we conclude that (cf. (3.2))

sup
−r≤θ≤0

{
E
∥∥(Φx)(t+ θ)

∥∥2
: 0≤ t+ θ ≤ T

}
<∞. (3.10)
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Thus, (3.8) and (3.10) together imply that E‖(Φx)t‖2
Cr <∞, for all t ∈ [0,T], so that

Φ(x) ∈ XT ,2. Since the �t-measurability of (Φx)(t) is easily verified, we conclude that
Φ is well defined.

Next, we prove that Φ has a unique fixed point. Indeed, for any x, y ∈ XT ,2, (3.2) im-
plies

E
∥∥(Φx)t − (Φy)t

∥∥2
Cr
≤ 4E

[
sup

−r≤θ≤0

( 3∑
i=1

∥∥Ixi (t+ θ)− I yi (t+ θ)
∥∥2
)]

, 0≤ t ≤ T. (3.11)

Standard computations yield

E
∥∥(Φx)t − (Φy)t

∥∥2
Cr
≤ 4TM2

S

[
M2

f1

∫ t
0
E
∥∥xθ − yθ

∥∥2
Cr
dθ +T

(
TM2

f2
M2

K1
+M2

f3
M2

K2
L2
f3

)

×
∫ t

0

∫ θ
0
E
∥∥xτ − yτ

∥∥2
Cr
dτ dθ

]
, 0≤ t ≤ T.

(3.12)

We proceed in two cases to prove that ΦN is a strict contraction, for some N . First, if
T ≤ 1, then T2 ≤ 1, so that we can continue (3.12) to obtain

E‖(Φx)t − (Φy)t‖2
Cr

≤ α1

∫ t
0
E
∥∥xθ − yθ

∥∥2
Cr
dθ +α2

∫ t
0

∫ θ
0
E
∥∥xτ − yτ

∥∥2
Cr
dτ dθ, 0≤ t ≤ T ,

(3.13)

where α1 = 4M2
SM

2
f1

and α2 = 4M2
S(M2

f2
M2

K1
+M2

f3
M2

K2
L2
f3

) are independent of T . Induc-
tively, it can be shown that for each n≥ 1, that if αn, j−n+1 is the ( j −n+ 1)th term of the
quantity (α1 +α2)n, then

E
∥∥(Φnx

)
t −

(
Φny

)
t

∥∥2
Cr
≤
( 2n∑

j=n
αn, j−n+1

t j

j!

)
‖x− y‖2

XT ,2
, (3.14)

and subsequently, after taking the supremum over [0,T],

∥∥(Φnx
)
t −

(
Φny

)
t

∥∥2
XT ,2

≤
( 2n∑

j=n
αn, j−n+1

T j

j!

)
‖x− y‖2

XT ,2
= zn‖x− y‖2

XT ,2
. (3.15)

Clearly, αn, j−n+1 → 0 as n→∞, for all j ≥ 1, and
∑2n

j=n αn, j−n+1 ≤ 1, for all n≥ 1, since α1 +
α2 < 1 by assumption. Since lim j→∞(T j/ j!)= 0, for all T , it follows from [20, Theorem 4,
page 74] that zn → 0 as n→∞. As such, there is an N such that zN < 1, thereby showing
that ΦN is a strict contraction (cf. (3.15)). Regarding the case when T > 1, note that T2 >
T , so that continuing inequality (3.12) yields

E
∥∥(Φx)t − (Φy)t

∥∥2
Cr

≤ T2

[
α1

∫ t
0
E
∥∥xθ − yθ

∥∥2
Cr
dθ +α2

∫ t
0

∫ θ
0
E
∥∥xτ − yτ

∥∥2
Cr
dτ dθ

]
, 0≤ t ≤ T ,

(3.16)
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so that reasoning as above leads to

∥∥(Φnx
)
t −

(
Φny

)
t

∥∥2
XT ,2

≤ znT2‖x− y‖2
XT ,2

. (3.17)

Thus, we can deduce that there is an N∗ such that zN∗ < 1/T2, again showing that ΦN∗

is a strict contraction. Hence, for a given µ∈�λ2 and T > 0, Φ has a unique fixed point
xµ ∈ XT ,2. Since (Φxµ)(t)= φ(t), for −r ≤ t ≤ 0 (cf. (3.2)), we conclude that xµ is a mild
solution of (1.1).

To complete the proof, we must show that µ is, in fact, the probability law of xµ.
Toward this end, let �(xµ) = {�(xµ(t)) : t ∈ [−r,T]} represent the probability law of
xµ and define the map Ψ : �λ2 → �λ2 by Ψ(µ) = �(xµ). It is not difficult to see that
�(xµ(t)) ∈ ℘λ2 (H), for all t ∈ [−r,T] since xµ ∈ XT ,2 and φ ∈ L2(Ω;Cr). Now, to verify
the continuity of the map t �→�(xµ(t)), first let −r ≤ c ≤ 0 and take |h| > 0 small enough
to ensure that −r ≤ c+h≤ 0. For all such c,

E
∥∥xµ(c+h)− xµ(c)

∥∥2 = E∥∥φ(c+h)−φ(c)
∥∥2 −→ 0 as h−→ 0 (3.18)

by assumption. Next, for 0≤ c ≤ T , observe that for sufficiently small |h| > 0,

E
∥∥xµ(c+h)− xµ(c)

∥∥2

≤ 8

[
E
∥∥(S(c+h)− S(c)

)
φ(0)

∥∥2
+

3∑
i=1

E
∥∥Ixµi (c+h)− Ixµi (c)

∥∥2
]
.

(3.19)

An argument similar to the one used to verify the continuity of Φ (cf. (3.7)) can be used
to then deduce from (3.19) that

lim
h→0

E
∥∥xµ(c+h)− xµ(c)

∥∥2 = 0 ∀− r ≤ c ≤ T. (3.20)

Consequently, since for all c ∈ [−r,T] and ϕ∈�λ2 , it is the case that

∣∣∣∣
∫
H
ϕ(x)

(
�
(
xµ(c+h)

)−�
(
xµ(c)

))
(dx)

∣∣∣∣
=
∣∣∣∣
∫
Ω

[
ϕ
(
xµ(c+h;ω)

)−ϕ(xµ(c;ω)
)]
dω
∣∣∣∣

= ∣∣E[ϕ(xµ(c+h)
)−ϕ(xµ(c)

)]∣∣
≤ ‖ϕ‖�E

∥∥xµ(c+h)− xµ(c)
∥∥,

(3.21)

and so, we can conclude that

ρ
(
�
(
xµ(c+h)

)
,�
(
xµ(c)

))
= sup
‖ϕ‖�≤1

∫
H
ϕ(x)

(
�
(
xµ(c+h)

)−�
(
xµ(c)

))
(dx)−→ 0 as |h| −→ 0,

(3.22)

for any c ∈ [−r,T]. Hence, t �→�(xµ(t)) is a continuous map, so that �(xµ)∈�λ2 . This
shows the well-definedness of Ψ.
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Finally, we show that Ψ has a unique fixed point in �λ2 . Let µ,ν∈�λ2 and let xµ, xν be
the corresponding mild solutions of (1.1). Standard computations yield

E
∥∥(xµ)t − (xν

)
t

∥∥2
Cr
≤ C1

∫ t
0
E
∥∥xθ − yθ

∥∥2
Cr
dθ

+C2

∫ t
0

∫ θ
0
E
∥∥xτ − yτ

∥∥2
Cr
dτ dθ +C3D

2
T(µ,ν), 0≤ t ≤ T ,

(3.23)

where

C1 = 16TM2
SM

2
f1

,

C2 = 16M2
ST
(
M2

f2
M2

K1
T +M2

f3
M2

K2
L2
f3

)
,

C3 = C1T +C2T
2.

(3.24)

Hence, applying Lemma 2.3 and then taking the supremum over [0,T] yields

∥∥xµ− xν

∥∥2
XT ,2

≤ σTD
2
T(µ,ν), (3.25)

where σT = C3[1 + (C1 +C2)T exp((C1 +C2)T)](1 + T exp(T)). We can choose T small
enough so that σT < 1; denote such a T by T0. Then, since

ρ
(
�
(
xµ(t)

)
,�
(
xν(t)

))≤ E∥∥xµ(t)− xν(t)
∥∥ ∀− r ≤ t ≤ T , (3.26)

we have

∥∥Ψ(µ)−Ψ(ν)
∥∥2

�λ2
=D2

T0

(
Ψ(µ),Ψ(ν)

)≤ sup
t∈[−r,T0]

E
∥∥xµ(t)− xν(t)

∥∥2

= ∥∥xµ− xν

∥∥2
XT ,2

< σT0D
2
T0

(µ,ν)
(3.27)

by (3.25), so that Ψ is a strict contraction on �λ2 ([−r,T0];(℘λ2 (H),ρ)). Thus, (1.1) has a
unique mild solution on [0,T0] with probability distribution µ ∈ �λ2 ([−r,T0];
(℘λ2 (H),ρ)). This process can be repeated in order to extend the solution, by continu-
ity, to the entire interval [0,T] in finitely many steps, thereby completing the proof. �

Remark 3.3. If we take r = 0 and replace f3 : [0,T]×Cr ×℘λ2 (H)→ BL(K ,H) and fi :
[0,T]×Cr ×℘λ2 (H)→ H (i = 1,2) by f3 : [0,T]×H → BL(K ,H) and fi : [0,T]×H →
H (i = 1,2), respectively, we recover [13, Theorem 2.1] as a corollary of Theorem 3.2.
Further, when K1 and K2 are convolution-type kernels satisfying [18, Assumption 3.2],
Theorem 3.2 is a generalization of [18, Theorem 3.3].

Observe that the result obtained in Theorem 3.2 for 0 ≤ t ≤ T with delay from −r ≤
t ≤ 0 can be generalized in the natural way to intervals s≤ t ≤ T with s≥ 0 and delay from
−r + s≤ t ≤ s, using the σ-algebra �s in place of �0 and {W(t)−W(s) : t ≥ s} in the role
of the Wiener process. In this translated setting, for any s− r ≤ t ≤ T and φ ∈ L2(Ω;Cr)
which is �s-measurable independent of W with almost surely continuous paths, there
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exists exactly one mild solution, denoted by xs(t), of

x′(t) +Ax(t)= f1
(
t,xt,µ(t)

)
+
∫ t
s
K1(t,τ) f2

(
τ,xτ ,µ(τ)

)
dτ

+
∫ t
s
K2(t,τ) f3

(
τ,xτ ,µ(τ)

)
dW(τ), s≤ t ≤ T ,

x(t)= φ(t), s− r ≤ t ≤ s.

(3.28)

Next, we establish the continuous dependence of mild solutions of (1.1) on the initial
data and the boundedness of the pth moments. Specifically, we have the following.

Proposition 3.4. Assume (A1)–(A4). Then, for any φ,ψ ∈ L2(Ω;Cr) which are �0-meas-
urable random variables independent of W with almost surely continuous paths and 0≤ s≤
s′ ≤ t ≤ T , the following estimates hold.

(i) For each p ≥ 1, there is a constant Cp > 0 such that

sup
t∈[0,T]

E
∥∥(xφ)t∥∥2p

Cr
≤ Cp

(
1 +E

∥∥φ(0)
∥∥2p
Cr

)
. (3.29)

(ii) There exist positive constants β1, β2, and β3 such that

E
∥∥(xφ)t − (xψ)t∥∥2

Cr
≤ β1

[‖φ−ψ‖2
L2(Ω;Cr ) +D2

T

(
µxφ ,µxψ

)] ·M∗(t), (3.30)

where M∗(t) = [1 + exp(t) · (1 + β2t exp((β2 + β3)t))] and xφ and xψ , respectively,
denote the corresponding mild solutions of (1.1). In particular,

E
∥∥(xφ)t − (xψ)t∥∥2

Cr
≤M∗

(
β1

1−β1M∗

)
‖φ−ψ‖2

L2(Ω;Cr ), (3.31)

where M∗ = sup0≤t≤T M
∗(t), provided that 1−β1M∗ > 0.

(iii) There is a positive continuous function σ(s,s′) such that σ(s,s′)→ 0 as (s− s′)→ 0 for
which

E
∥∥(xs′φ )t − (xsφ)t∥∥2

Cr
≤ σ

(
s,s′

)
. (3.32)

Proof. Using the computations leading to (3.23) and then applying Lemma 2.3 yields (i).
To see why (ii) holds, let p ≥ 1 and note that standard computations yield

E
∥∥(xφ)t∥∥2p

Cr

≤ 8p
[

sup
−r≤θ≤0

E
∥∥S(t+ θ)φ(0)

∥∥2
+ sup
−r≤θ≤0

3∑
i=1

E
∥∥Ixi (t+ θ)

∥∥2
]p

≤ 16p
[
M

2p
S

(
E
∥∥φ(0)

∥∥2
Cr

)p
+C

p
1

(∫ t
0

[
1 +E

∥∥(xφ)θ∥∥2
Cr

+
∥∥µ(θ)

∥∥2
λ2

]
dθ

)p

+C
p
2

(∫ t
0

∫ θ
0

[
1 +E

∥∥(xφ)τ∥∥2
Cr

+
∥∥µ(τ)

∥∥2
λ2

]
dτ dθ

)p]
, 0≤ t ≤ T.

(3.33)
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Applying the Jensen and Hölder inequalities enables us to obtain, for all 0≤ t ≤ T , that

(
E
∥∥φ(0)

∥∥2
Cr

)p ≤ E∥∥φ(0)
∥∥2p
Cr

,(∫ t
0

[
1 +E

∥∥(xφ)θ∥∥2
Cr

+
∥∥µ(θ)

∥∥2
λ2

]
dθ

)p

≤ 3pT(p−1)/p
∫ t

0

[
1 +E

∥∥(xφ)θ∥∥2p
Cr

+
∥∥µ(θ)

∥∥2p
λ2

]
dθ,

(∫ t
0

∫ θ
0

[
1 +E

∥∥(xφ)τ∥∥2
Cr

+
∥∥µ(τ)

∥∥2
λ2

]
dτ dθ

)p

≤ 3pT(2(p−1))/p
∫ t

0

∫ θ
0

[
1 +E

∥∥(xφ)τ∥∥2p
Cr

+
∥∥µ(τ)

∥∥2p
λ2

]
dτ dθ.

(3.34)

Using (3.34) in (3.33) and subsequently invoking Lemma 2.3 yields (ii), after a rearrange-
ment of terms. Finally, (iii) easily follows by making use of the (A2)–(A4), together with
(3.26). This completes the proof. �

We now comment on the Markov and strongly Markov properties of the solutions of
(3.28). Precisely, in view of Theorem 3.2 and Proposition 3.4, arguments as in [10, pages
248–255] can be used to show the following.

Proposition 3.5. Under the assumptions of Theorem 3.2 and Proposition 3.4 the mild so-
lutions of (3.28) are Markov and strongly Markov.

4. Convergence results

For each n≥ 1, consider the Yosida approximation of (1.1) given by

x′n(t) +Axn(t)= nR(n;A) f1
(
t,
(
xn
)
t,µn(t)

)
+
∫ t

0
K1(t,s)nR(n;A) f2

(
s,
(
xn
)
s,µn(s)

)
ds

+
∫ t

0
K2(t,s)nR(n;A) f3

(
s,
(
xn
)
s,µn(s)

)
dW(s), 0≤ t ≤ T ,

xn(t)= nR(n;A)φ(t), −r ≤ t ≤ 0,

(4.1)

where µn(t) is the probability law of xn(t) and R(n;A) = (I − nA)−1 is the resolvent op-
erator of A. Assuming that (A1)–(A4) hold, one can invoke Theorem 3.2 to deduce that
(4.1) has a unique mild solution xn ∈ XT ,2 with probability law µn ∈ �λ2 . Further, since
xn(t)∈D(A), for all t ∈ [−r,T] (see [10, 26]), it is not difficult to argue that xn is, in fact,
a strong solution of (4.1) in the sense of the following definition.

Definition 4.1. A continuous stochastic process xn : [−r,T] → H is a strong solution of
(4.1) if

(i) xn(t) is �t-adapted, for each −r ≤ t ≤ T ,
(ii) xn(t)∈D(A), for almost all 0≤ t ≤ T , almost surely [P],

(iii)
∫ T

0 ‖Ax(s)‖ds <∞, almost surely [P],
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(iv)

xn(t)= nR(n;A)φ(0)

+
∫ t

0
Axn(s)ds+

∫ t
0
nR(n;A) f1

(
s,
(
xn
)
s,µn(s)

)
ds

+
∫ t

0
nR(n;A)

∫ s
0
K1(s,τ) f2

(
τ,
(
xn
)
τ ,µn(τ)

)
dτ ds

+
∫ t

0
nR(n;A)

∫ s
0
K2(s,τ) f3

(
τ,
(
xn
)
τ ,µn(τ)

)
dW(τ)ds

∀0≤ t ≤ T , almost surely [P],
(4.2)

(v) xn(t)= nR(n;A)φ(t), −r ≤ t ≤ 0, almost surely [P].

Moreover, since a strong solution is also a mild solution, xn can be represented using
the variation of parameters formula (cf. Definition 3.1(iii)). The following convergence
result holds.

Theorem 4.2. Let x denote the unique mild solution of (1.1) as guaranteed by Theorem 3.2.
Then, the sequence of strong solutions of (4.1) converges to x in XT ,2 as n→∞.

Proof. Observe that

∥∥xn(t+ θ)− x(t+ θ)
∥∥2

≤ 8

[∥∥(nR(n;A)− I)S(t+ θ)φ(0)
∥∥2

+M2
ST
∫ t+θ

0

∥∥nR(n;A) f1
(
s,
(
xn
)
s,µn(s)

)− f1
(
s,xs,µ(s)

)∥∥2
ds

+M2
SM

2
K1
T2
∫ t+θ

0

∫ s
0

∥∥nR(n;A) f2
(
τ,
(
xn
)
τ ,µn(τ)

)− f2
(
τ,xτ ,µ(τ)

)∥∥2
dτ ds

+M2
K2

∥∥∥∥
∫ t+θ

0
S(t+ θ− s)

∫ s
0

[
nR(n;A) f3

(
τ,
(
xn
)
τ ,µn(τ)

)

− f3
(
τ,xτ ,µ(τ)

)]
dW(τ)ds

∥∥∥∥
2
]

= 8

[∥∥(nR(n;A)− I)S(t+ θ)φ(0)
∥∥2

+
6∑
i=4

Ii(t+ θ)

]
.

(4.3)

Standard computations lead to

I4(t+ θ)≤ 2M2
ST
∫ t+θ

0

[∥∥(nR(n;A)− I) f1(s,(xn)s,µn(s)
)∥∥2

+ 2M2
f1

(∥∥(xn)s− xs∥∥2
Cr

+ ρ2(µn(s),µ(s)
))]

ds, 0≤ t ≤ T.
(4.4)
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Further, the triangle inequality and (A2), together, imply

∫ t+θ
0

∥∥(nR(n;A)− I) f1(s,(xn)s,µn(s)
)∥∥2

ds

≤ 2
∫ t+θ

0

∥∥nR(n;A)− I∥∥2
[

2M2
f1

(∥∥(xn)s− xs∥∥2
Cr

+ ρ2(µn(s),µ(s)
)

+
∥∥ f1(s,xs,µ(s)

)∥∥2)]
ds, 0≤ t ≤ T.

(4.5)

The boundedness of ‖ f1(s,xs,µ(s))‖2 independent of n (which follows from (A2) and
Proposition 3.4), together with the strong convergence of nR(n;A)− I to 0, enable us to
infer that the right-hand side of (4.5) goes to 0 as n→∞.

Similar computations lead to

I5(t+ θ)≤ 2M2
SM

2
K1
T2
∫ t+θ

0

∫ s
0

[∥∥(nR(n;A)− I) f2(τ,
(
xn
)
τ ,µn(τ)

)∥∥2

+ 2M2
f2

(∥∥(xn)τ − xτ∥∥2
Cr

+ ρ2(µn(τ),µ(τ)
))]

dτ ds,

0≤ t ≤ T ,
(4.6)

I6(t+ θ)≤ 2M2
SM

2
K2
T2
∫ t+θ

0

∫ s
0

[∥∥(nR(n;A)− I) f3(τ,
(
xn
)
τ ,µn(τ)

)∥∥2

+ 2M2
f3
L2
f3

(∥∥(xn)τ − xτ∥∥2
Cr

+ ρ2(µn(τ),µ(τ)
))]

dτ ds,

0≤ t ≤ T.
(4.7)

The dominated convergence theorem, together with (A3) and (A4) and the strong conver-
gence of nR(n;A)− I to 0, enables us to conclude that the first integrals on the right-hand
sides of both (4.6) and (4.7) go to 0 as n→∞. Hence, using (4.4), (4.6), and (4.7), together
with subsequent estimates in the spirit of (4.5) in (4.3), followed by taking the supremum
over −r ≤ θ ≤ 0 and subsequently taking expectations, gives rise to an inequality of the
form

E
∥∥(xn)t − xt∥∥2

Cr
≤ β̄1E

∥∥φ(0)
∥∥2

+ β̄2

∫ t
0
E
∥∥(xn)s− xs∥∥2

Cr
ds

+ β̄3

∫ t
0

∫ s
0
E
∥∥(xn)τ − xτ∥∥2

Cr
dτ ds, 0≤ t ≤ T ,

(4.8)

where β̄i (i = 1,2,3) are constant multiples of the quantity ‖nR(n;A)− I‖2. Applying
Lemma 2.3 and then taking the supremum over 0≤ t ≤ T yields

∥∥xn− x∥∥2
XT ,2

≤ β̄1
[
1 +Tβ̄2 exp

(
β̄2T

) · (1 +Tβ̄3 exp
(
β̄3T

))] ∀n≥ 1. (4.9)

Since the right-hand side of (4.9) goes to 0 as n→∞, the conclusion of the theorem now
follows. �

The following corollary is needed to establish the weak convergence of probability
measures (cf. Theorem 4.6).
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Corollary 4.3. The sequence of probability laws µn corresponding to the mild solution xn
of (4.1) converges in �λ2 to the probability law µ corresponding to the mild solution of (1.1)
as n→∞.

Proof. This follows from the fact that

D2
T

(
µn,µ

)= sup
[−r,T]

ρ2(µn(t),µ(t)
)

≤ sup
[−r,T]

E
∥∥(xn)t − xt∥∥2

Cr
≤ ∥∥xn− x∥∥2

XT ,2
−→ 0 as n−→∞,

(4.10)

for all 0≤ t ≤ T . �

Remark 4.4. We observe for later purposes that Corollary 4.3 implies that

sup
n∈N

sup
−r≤s≤T

∥∥µn(s)
∥∥2
λ2 <∞. (4.11)

In view of Theorem 4.2 and Corollary 4.3, the following continuity-type result can be
established as in [1]. The details are omitted.

Corollary 4.5. Assume that E‖φ(0)‖4 <∞. Then, for any function F : [0,T]×H → R
satisfying

(i) for each N ∈N, there exists a positive continuous function kN (t) such that

∣∣F(t,x)−F(t, y)
∣∣≤ kN (t)|x− y| ∀0≤ t ≤ T , ‖x‖ ≤N , ‖y‖ ≤N , (4.12)

(ii) there exists a positive continuous function l(t) such that

∣∣F(t,x)
∣∣≤ l(t)λ2(x) ∀0≤ t ≤ T , x ∈H , (4.13)

it holds that

∫ T
0

∫
H
F(t,x)d

(
µn(t)−µ(t)

)
dt −→ 0 as n−→∞. (4.14)

We now consider the weak convergence of the probability measures induced by the
mild solutions of (4.1). Let Px denote the probability measure generated by the mild
solution x of (1.1) and Pxn the probability measure generated by xn as in (4.1). Also,
let φ ∈ L4(Ω,Cr) be an �0-measurable random variable independent of W with almost
surely continuous sample paths. Assuming (A1)–(A4), we have the following.

Theorem 4.6.

Pxn
w−→ Px as n−→∞. (4.15)

Proof. We will show that {Pxn}∞n=1 is relatively compact by using Arzelá-Ascoli. Through-
out the proof, Ci will denote a suitable positive constant.
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First, we show that {xn} is uniformly bounded in XT ,2, that is, supn∈N sup0≤t≤T
E‖(xn)t‖2

Cr <∞. The mild solution xn is given by the variation of parameters formula

xn(t)= S(t)nR(n;A)φ(0) +
∫ t

0
S(t− s)nR(n;A) f1

(
s,
(
xn
)
sµn(s)

)
ds

+
∫ t

0

∫ s
0
S(s− t)nR(n;A) f2

(
τ,
(
xn
)
s,µn(s)

)
dτ ds

+
∫ t

0

∫ s
0
S(s− t)nR(n;A) f3

(
τ,
(
xn
)
s,µn(s)

)
dW(τ)ds, 0≤ t ≤ T

= S(t)nR(n;A)φ(0) +
9∑
i=7

Ii(t),

xn(t)= nR(n;A)φ(t), −r ≤ t ≤ 0.

(4.16)

Let t ∈ [0,T]. For all −r ≤ θ ≤ 0 for which t+ θ ≤ 0, we have

sup
n∈N

sup
−r≤θ≤0

{
E
∥∥xn(t+ θ)

∥∥2
:−r ≤ t+ θ ≤ 0

}

= sup
n∈N

sup
−r≤θ≤0

{
E
∥∥nR(n;A)φ(t+ θ)

∥∥2
:−r ≤ t+ θ ≤ 0

}
<∞

(4.17)

since nR(n;A) is contractive for all n. Now, let −r ≤ θ ≤ 0 be such that 0≤ t + θ ≤ T . We
consider each of the four terms on the right-hand side of (4.16) separately. First

E
∥∥S(t+ θ)nR(n;A)φ(0)

∥∥2
Cr
≤M2

SE
∥∥φ(0)

∥∥2
Cr
. (4.18)

Using routine arguments, taking into account (A2) and Remark 4.4, leads to

E
∥∥I7(t+ θ)

∥∥2
Cr
≤ 2TM2

SM
2
f1

[
TC1 +

∫ t+θ
0

E
∥∥(xn)s∥∥2

Cr
ds
]
. (4.19)

In a similar manner, we obtain

E
∥∥I8(t+ θ)

∥∥2
Cr
≤ 2M2

ST
2M2

K1
M

2
f2

[
T2C2 +

∫ t+θ
0

∫ s
0
E
∥∥(xn)τ∥∥2

Cr
dτ ds

]
, (4.20)

and using Lemma 2.2,

E
∥∥I9(t+ θ)

∥∥2
Cr
≤ 2M2

ST
2M2

K2
M

2
f3L f3

[
T2C3 +

∫ t+θ
0

∫ s
0
E
∥∥(xn)τ∥∥2

Cr
dτ ds

]
. (4.21)
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Combining (4.18), (4.19), (4.20), and (4.21), there exist constants C4, C5, C6 independent
of n such that

E
∥∥(xn)t∥∥2

Cr
≤ C4 +C5

∫ t
0
E
∥∥(xn)s∥∥2

Cr
ds+C6

∫ t
0

∫ s
0
E
∥∥(xn)∥∥2

Cr
dτ ds (4.22)

which, by using Lemma 2.3, shows the uniform boundedness of {xn} in XT ,2.
Next, we show equicontinuity. We will show that for every n∈N and −r ≤ s≤ t ≤ T ,

as t− s→ 0, we have E‖xn(t)− xn(s)‖4 → 0 independent of n. If −r ≤ s≤ t ≤ 0, note that

E
∥∥xn(t)− xn(s)

∥∥4 = E∥∥nR(n;A)
[
φ(t)−φ(s)

]∥∥4 −→ 0 (4.23)

independent of n since φ ∈ L4(Ω,Cr) and nR(n;A) is contractive, for all n. Now consider
0≤ s≤ t ≤ T . Since {S(t)} is a semigroup,

E
∥∥(S(t)− S(s)

)
nR(n;A)φ(0)

∥∥4 ≤ E
(∫ t

s

∥∥S(τ)AnR(n;A)φ(0)
∥∥dτ

)4

≤M4
SM

4
AE
∥∥φ(0)

∥∥4
(t− s)4.

(4.24)

Also,

E
∥∥I1(t)− I1(s)

∥∥4

≤ E
(∫ s

0

∥∥[S(t− τ)− S(s− τ)
]
nR(n;A) f1

(
τ,
(
xn
)
t,µn(τ)

)∥∥dτ

+
∫ t
s

∥∥S(t− τ)nR(n;A) f1
(
τ,
(
xn
)
t,µn(τ)

)∥∥dτ
)4

≤ E
(∫ s

0

∫ t−τ
s−τ

∥∥S(u)AnR(n;A)nR(n;A) f1
(
τ,
(
xn
)
t,µn(τ)

)∥∥dudτ

+MSM f1

[
1 +‖x‖T ,2 + sup

0≤t≤T

∥∥µn(t)
∥∥
λ2

]
(t− s)

)4

≤ E
(
MSMATM f1

[
1 +‖x‖T ,2 + sup

0≤t≤T

∥∥µn(t)
∥∥
λ2

]
(t− s)

+MSM f1

[
1 +‖x‖T ,2 + sup

0≤t≤T

∥∥µn(t)
∥∥
λ2

]
(t− s)

)4

= C7(t− s)4.

(4.25)

Similarly,

E
∥∥I8(t)− I8(s)

∥∥4 ≤ C8(t− s)4. (4.26)
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Finally,

E
∥∥I9(t)− I9(s)

∥∥4

= E
∥∥∥∥∥
∫ s

0

∫ σ
0

[
S(t− s)− S(s− σ)

]
nR(n;A)K2(σ ,τ) f3

(
τ,
(
xn
)
τ ,µn(τ)

)
dW(τ) dσ

+
∫ t
s

∫ σ
0
S(t− σ)nR(n;A)K2(σ ,τ) f3

(
τ,
(
xn
)
τ ,µn(τ)

)
dW(τ) dσ

∥∥∥∥∥
4

= E
∥∥∥∥∥
∫ s

0

∫ s
τ

[
S(t− s)− S(s− σ)

]
nR(n;A)K2(σ ,τ) f3

(
τ,
(
xn
)
τµn(τ)

)
dσ dW(τ)

+
[∫ s

0

∫ t
s

+
∫ t
s

∫ s
τ

+
∫ t
s

∫ t
s

]
S(t− σ)nR(n;A)K2(σ ,τ)

× f3
(
τ,
(
xn
)
τµn(τ)

)
dσ dW(τ)

∥∥∥∥∥
4

,

(4.27)

and hence, as in previous computations, the expression in (4.27) is bounded above by
C9(t− s)4 independent of n. Thus, combining the above estimates coming from (4.24)–
(4.27), the equicontinuity follows.

Therefore, the family {Pxn}∞n=1 is relatively compact by Arzelá-Ascoli, and therefore
tight (cf. Section 2). Hence, by Proposition 2.5, the finite-dimensional joint distributions
of Pxn converge weakly to that of Px and so, by Theorem 2.6, Pxn

w→ Px, as n→∞. �

5. Asymptotic stability

We now consider (1.1) on [0,∞) rather than on a finite interval, and denote a global mild
solution of (1.1) corresponding to φ ∈ Lp(Ω;Cr) by x(t;φ), if one should exist. We formu-
late results regarding the pth-moment exponential stability and almost sure exponential
stability of such solutions in the following sense (see [30, 31]).

Definition 5.1. x(t;φ) is said to be
(i) pth-moment exponentially stable if there exist positive constants λ and C such that

for every φ ∈ Lp(Ω;Cr), E‖x(t;φ)‖pCr ≤ CE‖φ‖pCr exp(−λt), for all t ≥ 0, almost
surely [P],

(ii) almost surely exponentially stable if there exists a positive constant λ such that
for every φ ∈ Lp(Ω;Cr), there is a finite random variable β such that ‖x(t;φ)‖ ≤
βexp(−λt), for all t ≥ 0, almost surely [P], (or equivalently, limt→∞(1/t) log‖x(t;
φ)‖ ≤ −λ, almost surely [P]).

Throughout this section, we will assume that fi (i = 1,2,3), now defined on [0,∞)×
Cr ×℘λ2 (H), satisfy the growth conditions in (A2)–(A4) globally on their respective do-
mains, and that the kernels K1(t,s) and K2(t,s) are defined for 0 ≤ s ≤ t <∞ and are
globally bounded. In addition, assume that

(A5) ‖S(t)‖ ≤M exp(−αt), for all t ≥ 0, for some constants M ≥ 1 and α > 0.
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Also, replace �λ2 by �λ2,∞, the space of all bounded continuous ℘λ2 (H)-valued functions
defined on [0,∞), equipped with the metric

D∞
(
ν1,ν2

)= sup
t∈[0,∞)

ρ
(
ν1(t),ν2(t)

)
, ν1,ν2 ∈�λ2,∞. (5.1)

A mild solution of (1.1) on [0,∞) is a continuous process x that satisfies Definition 3.1,
for each T > 0. One can use the same approach used in the proof of Theorem 3.2 to verify
that under the above modified hypotheses, the mild solution of (1.1) can be extended to
[0,∞) with probability distribution µ∈�λ2,∞. In order to establish stability results in the
spirit of Definition 5.1 of such a mild solution, however, the growth conditions imposed
in (A2)–(A4) must be strengthened. Precisely, we assume instead that

(A6) fi : [0,∞)×Cr ×℘λ2 (H)→H (i= 1,2) is a continuous map satisfying

∥∥ fi(t,ϕ,µ(t)
)∥∥≤N fi exp

(−β fi t)[1 +‖ϕ‖Cr +
∥∥µ(t)

∥∥
λ2

]
(5.2)

globally on [0,∞)×Cr ×℘λ2 (H), for some positive constants N fi and β fi ,
(A7) f3 : [0,∞)×Cr ×℘λ2 (H)→ BL(K ,H) is a continuous map satisfying

∥∥ f3(t,ϕ,µ(t)
)∥∥

BL(K ,H) ≤N f3 exp
(−β f3 t)[1 +‖ϕ‖Cr +

∥∥µ(t)
∥∥
λ2

]
(5.3)

globally on [0,∞)×Cr ×℘λ2 (H), for some positive constants N f3 and β f3 ,
(A8) {K1(t,s) : 0 ≤ s ≤ t < ∞} ∪ {K2(t,s) : 0 ≤ s ≤ t < ∞} ⊂ BL(H ,H) such that

‖K1(t,s)‖BL(H ,H) ≤MK1 and ‖K2(t,s)‖BL(H ,H) ≤MK2 , for all 0 ≤ s ≤ t <∞, for
some positive constants MK1 and MK2 .

Conditions of this type have been imposed by others in analogous situations (e.g., see,
[30, 31]). Throughout the proofs of the results in this section (which utilize the strategy
employed in [30, 31]), σi will denote a positive constant depending only on α, r, sup0≤θ<∞
‖µ(θ)‖pλ , and the growth constants. The first result is as follows.

Theorem 5.2. Assume that (A5)–(A8) hold. Then, the corresponding mild solution of (1.1)
on [0,∞) is pth-moment exponentially stable, provided that α > 21/p3MSN f1 and β fi > ε0

(i= 1,2,3) for a positive constant ε0 prescribed later.

Proof. Let p ≥ 1 and φ ∈ Lp(Ω;Cr) be an �0-measurable random variable independent
of W with almost surely continuous paths. For a fixed t ≥ 0, we have

E
∥∥xt∥∥pCr ≤ 4p sup

−r≤θ≤0

[
E
∥∥S(t+ θ)φ(0)

∥∥p +
3∑
i=1

E
∥∥Ixi (t+ θ)

∥∥p]. (5.4)

Using (A5) yields

E
∥∥S(t+ θ)φ(0)

∥∥p ≤Mp
exp(pαr)exp(−pαt)E∥∥φ(0)

∥∥p
Cr
= σ1 exp(−pαt). (5.5)
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Next, an application of the Hölder inequality, followed by (A6), gives us

E
∥∥Ix1 (t+ θ)

∥∥p

≤Mp
E

[(∫ t+θ
0

exp
(−α(t+ θ− s))ds

)(p−1)

·
∫ t+θ

0
exp

(−α(t+ θ− s))∥∥ f1(s,xs,µ(s)
)∥∥pds

]

≤ σ2 exp
(−α(t+ θ)

)∫ t+θ
0

exp(αs)E
∥∥xs∥∥pCr ds

+ σ3

∫ t+θ
0

exp
(−α(t+ θ− s))exp

(−β f1s)ds.

(5.6)

Similarly, we obtain

E
∥∥Ix2 (t+ θ)

∥∥p ≤
(
MMK1

)p
αp−1 E

[∫ t+θ
0

exp
(−α(t+ θ− s))(

∫ s
0

∥∥ f2(τ,xτ ,µ(τ)
)∥∥dτ)pds],

(5.7)

and using (A6), together with the Young and Hölder inequalities, further yields

(∫ s
0

∥∥ f2(τ,xτ ,µ(τ)
)∥∥dτ)p

≤ (2N f2

)p[( p− 1
p

β f2

)p−1∫ s
0

∥∥xτ∥∥pCr dτ +
2p(

β f2
)p−1

(
1 + sup

s≥0

∥∥µ(s)
∥∥p
λ2

)

×
∫ s

0
exp

(−β f2τ)dτ
]
.

(5.8)

Then, using (5.8) in (5.7) leads to the subsequent estimate

E
∥∥Ix2 (t+ θ)

∥∥p ≤ σ4 exp
(−α(t+ θ)

)∫ t+θ
0

∫ s
0

exp(αs)E
∥∥xτ∥∥pCr dτ ds

+ σ5

∫ t+θ
0

exp
(−α(t+ θ− s))

∫ s
0

exp
(−β f2τ)dτ ds.

(5.9)

In a completely analogous manner (with the additional help of Itó’s formula), we arrive at

E
∥∥Ix3 (t+ θ)

∥∥p ≤ σ6 exp
(−α(t+ θ)

)∫ t+θ
0

∫ s
0

exp(αs)E
∥∥xτ∥∥pCr dτ ds

+ σ7

∫ t+θ
0

exp
(−α(t+ θ− s))

∫ s
0

exp
(−β f3τ)dτ ds.

(5.10)
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Combining (5.5), (5.6), (5.9), and (5.10), we conclude that

E
∥∥x(t+ θ)

∥∥p ≤ σ1 exp(−pαt) + σ2 exp
(−α(t+ θ)

)∫ t+θ
0

exp(αs)E
∥∥xs∥∥pCr ds

+
(
σ4 + σ6

)
exp

(−α(t+ θ)
)∫ t+θ

0

∫ s
0

exp(αs)E
∥∥xτ∥∥pCr dτ ds

+ σ3

∫ t+θ
0

exp
(−α(t+ θ− s))exp

(−β f1s)ds
+
∫ t+θ

0
exp

(−α(t+ θ− s))
∫ s

0

[
σ5 exp

(−β f2τ)+ σ7 exp
(−β f3τ)]dτ ds.

(5.11)

Choose 0 < α/2 < ε0 < α such that

2
(
2MS

)p( p− 1
αp

)p−1

exp
(
ε0r
)[β f3(N f2β f2

)p
+β f2

(
N f3β f3L f3

)p
β f2β f3

]
< ε0

(
α− ε0

)
. (5.12)

For ε0 as above and T large enough, multiplying (5.11) by exp(ε0t) and integrating over
(0,T) yields

∫ T
0

exp
(
ε0t
)
E
∥∥x(t+ θ)

∥∥pdt ≤ σ1

∫ T
0

exp
(
ε0t− pαt

)
dt+

4∑
i=1

Ji(T). (5.13)

Applying Fubini’s theorem yields

J1(T)= σ2

[∫ T+θ

0

∫ T
s−θ

h1(t,s)dt ds+
∫ 0

θ

∫ s−θ
0

h1(t,s)dt ds

]
= σ2

[
J∗1 (T) + J∗2 (T)

]
,

(5.14)

where

h1(t,s)= exp
(
ε0t−α(t+ θ)

)
exp(αs)E

∥∥xs∥∥pCr . (5.15)

Elementary computations give rise to

J∗1 (T)≤ exp(−αθ)
α− ε0

×
∫ T

0

[
exp

((
ε0−α

)
(s− θ)

)− exp
((
ε0−α

)
T
)]

exp(αs)E
∥∥xs∥∥pCr ds

≤ exp
(
ε0r
)

α− ε0

∫ T
0

exp
(
ε0s
)
E
∥∥xs∥∥pCr ds,

(5.16)

J∗2 (T)≤ exp(−αθ)
α− ε0

∫ 0

s

[
1− exp

((
ε0−α

)
(s− θ)

)]
exp(αs)E

∥∥xs∥∥pCr ds
≤ exp(αr)

α− ε0

∫ 0

s
exp(αs)E

∥∥xs∥∥pCr ds,
(5.17)
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so that using (5.16) and (5.17) in (5.14) yields

J1(T)≤ σ2

[
exp

(
ε0r
)

α− ε0

∫ T
0

exp
(
ε0s
)
E
∥∥xs∥∥pCr ds+

exp(αr)
α− ε0

∫ 0

s
exp(αs)E

∥∥xs∥∥pCr ds
]
. (5.18)

Similarly,

J2(T)= (σ4 + σ6
)[∫ 0

s

∫ τ
s

∫ s−θ
0

h2(t,s,τ)dtdsdτ +
∫ T+θ

0

∫ T+θ

τ

∫ s−θ
0

h2(t,s,τ)dtdsdτ

]

= (σ4 + σ6
)[
J∗3 (T) + J∗4 (T)

]
,

(5.19)

where

h2(t,s,τ)= exp
(
ε0t−α(t+ θ)

)
exp(αs)E

∥∥xτ∥∥pCr . (5.20)

One can easily verify that

J∗3 (T)≤ exp(αr)
α
(
α− ε0

) ∫ 0

s
exp(αs)E

∥∥xs∥∥pCr ds, (5.21)

J∗4 (T)≤ exp
(
ε0r
)

ε0
(
α− ε0

) ∫ T
0

exp
(
ε0s
)
E
∥∥xs∥∥pCr ds. (5.22)

Hence, using (5.21) and (5.22) in (5.19), we obtain

J2(T)≤ (σ4 + σ6
)[ exp(αr)
α
(
α− ε0

) ∫ 0

s
exp(αs)E

∥∥xs∥∥pCr ds
+

exp
(
ε0r
)

ε0
(
α− ε0

) ∫ T
0

exp
(
ε0s
)
E
∥∥xs∥∥pCr ds

]
.

(5.23)

Taking the supremum over −r ≤ θ ≤ 0 in (5.13) (taking into account the continuity) and
then substituting (5.18) and (5.23) gives us

∫ T
0

exp
(
ε0t
)
E
∥∥xt∥∥pCr dt ≤ σ1

∫ T
0

exp
(
ε0t− pαt

)
dt+

[
σ2 +

1
ε0
(
σ4 + σ6

)
]

· exp
(
ε0r
)

ε0
(
α− ε0

) ·
∫ T

0
exp

(
ε0s
)
E
∥∥xs∥∥pCr ds

+

[
σ2 +

1
α
(
σ4 + σ6

)
]
· exp(αr)
α
(
α− ε0

)
×
∫ 0

s
exp(αs)E

∥∥xs∥∥pCr ds+ J3(T) + J4(T).

(5.24)
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Now, let T →∞ in (5.24). The choice of ε0 and α now enables us to conclude that

∫∞
0

exp
(
ε0t
)
E
∥∥xt∥∥pCr dt

≤ 1
1− (exp

(
ε0r
)/(

α− ε0
))[

σ2 +
(
1
/(
ε0
(
σ4 + σ6

)))]
·
[

σ1

∫∞
0

exp
(
ε0t− pαt

)
dt+

[
σ2 +

1
α
(
σ4 + σ6

)
]

· exp(αr)
α− ε0

∫ 0

s
exp(αs)E

∥∥xs∥∥pCr ds+ J3(∞) + J4(∞)
]

= C(p,ε0,φ
)
<∞,

(5.25)

where Ji(∞)= limT→∞ Ji(T) (i= 3,4). Hence, we can deduce from (5.11) that

E
∥∥xt∥∥pCr ≤ exp

(− ε0t
)[

σ1 + σ2 exp
(
ε0r
)
C
(
p,ε0,φ

)

+
(
σ4 + σ6

)
exp

(
ε0r
)∫ t+θ

0

∫ s
0

exp(αs)E
∥∥xτ∥∥pCr dτ ds

+ I6(∞) + I7(∞)
]

,

(5.26)

where Ii(∞)= limt→∞ Ii(t) (i= 6,7). (Note that I6(∞) + I7(∞) <∞ by choice of β fi .) Using
a similar Fubini-type argument and noting the choice of ε0 enables us to obtain

∫ t+θ
0

∫ s
0

exp(αs)E
∥∥xτ∥∥pCr dτ ds≤ 1

α

∫∞
0

exp
(
2ε0
)
E
∥∥xs∥∥pCr ds. (5.27)

An argument similar to the one leading to (5.25) can then be used to finally conclude
from (5.26) and (5.27) that, in fact,

E
∥∥xt∥∥pCr ≤ C∗ exp

(− ε0t
) ∀t ≥ 0, (5.28)

as desired. �

The second stability result is as follows.

Theorem 5.3. If the mild solution of (1.1) on [0,∞) is pth-moment exponentially stable,
then it is almost surely exponentially stable, provided that the assumptions of Theorem 5.2
are satisfied.

Proof. Let p ≥ 1 and k ∈N be fixed. First, we claim that

E

(
sup

k−1≤t≤k

∥∥x(t)
∥∥p)≤ C exp

(− ε0(k− 1)
)

(5.29)
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for some positive constant C. To see this, note that the semigroup property enables us to
write

x(t)= S(t− (k− 1)
)
x(k− 1) +

∫ t
k−1

S(t− s) f1
(
s,xs,µ(s)

)
ds

+
∫ t
k−1

S(t− s)
∫ s

0
K1(s,τ) f2

(
τ,xτ ,µ(τ)

)
dτ ds

+
∫ t
k−1

S(t− s)
∫ s

0
K2(s,τ) f3

(
τ,xτ ,µ(τ)

)
dW(τ)ds, t ≥ 0,

=
13∑
i=10

Ii(t), t ≥ 0,

(5.30)

and subsequently,

E

(
sup

k−1≤t≤k

∥∥x(t)
∥∥p)≤ 8p

13∑
i=10

E

(
sup

k−1≤t≤k

∥∥Ii(t)∥∥p
)
. (5.31)

Observe that (A5), together with Theorem 5.2, yields

E

(
sup

k−1≤t≤k

∥∥I10(t)
∥∥p)≤Mp

E
∥∥xk−1

∥∥p
Cr
≤ C1 exp

(− ε0(k− 1)
)

(5.32)

for some positive constant C1. Next, using (A6) and the Hölder inequality, and arguing
as in (5.7) and (5.8), we arrive at (by choice of β f1 )

E

(
sup

k−1≤t≤k

∥∥I11(t)
∥∥p)

≤Mp
E

(
sup

k−1≤t≤k

∫ t
k−1

∥∥ f1(s,xs,µ(s)
)∥∥pds

)

≤ (3M N f1

)p( p− 1
αp

)p−1

×
[∫ k

k−1
exp

(−β f1s)
[

1 + sup
s≥0

∥∥µ(s)
∥∥p
λ2

]
ds+

∫ k
k−1

exp
(−β f1s)E∥∥xs∥∥pCr ds

]

≤ C2 exp
(− ε0(k− 1)

)
.

(5.33)
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A similar computation (using (A7) and the choice of β f2 ) gives us

E

(
sup

k−1≤t≤k

∥∥I12(t)
∥∥p)

≤ (2MMK1N f2

)p( p− 1
αp

)p−1

×E
(

sup
k−1≤t≤k

∫ t
k−1

exp
(−α(t− s))

·
[(

1 + sups≥0

∥∥µ(s)
∥∥
λ2

β f2

)p

+
(
p− 1
pβ f2

)p−1∫ s
0

∥∥xτ∥∥pCr dτ
]
ds

)

≤ C3 · 1
α

sup
k−1≤t≤k

(
exp

(−α(t− k+ 1)
)− 1

)

+C4C
∗ · 1

ε0
sup

k−1≤t≤k

∫ t
k−1

(
1− exp

(− ε0s
))

exp
(−α(t− s))ds.

(5.34)

Since ε0 < α, the following hold:

sup
k−1≤t≤k

(
exp(−α(t− k+ 1)

)− 1
)≤ exp

(− ε0(k− 1)
)
, (5.35)

∫ t
k−1

(
1− exp

(− ε0s
))

exp
(−α(t− s))ds≤ exp

(− ε0(k− 1)
)
. (5.36)

Using (5.35) and (5.36) in (5.34) then yields

E

(
sup

k−1≤t≤k

∥∥I12(t)
∥∥p)≤ C5 exp

(− ε0(k− 1)
)
. (5.37)

Similarly, one can argue that

E

(
sup

k−1≤t≤k

∥∥I13(t)
∥∥p)≤ C6 exp

(− ε0(k− 1)
)
, (5.38)

and hence, using (5.32), (5.33), (5.37), and (5.38) in (5.31) enables us to infer that for
each k ≥ 1, (5.29) holds, for some positive constant C independent of k.

Now, let 0 < λ < ε0 be arbitrary and let Ek denote the event

Ek ≡
{
ω : sup

k−1≤t≤k

∥∥x(t;ω)
∥∥p > exp

(− (ε0− λ
)
(k− 1)

)}
. (5.39)

Observe that for each k ≥ 1,

P
(
Ek
)≤ exp

((
ε0− λ

)
(k− 1)

)
E

(
sup

k−1≤t≤k

∥∥x(t;ω)
∥∥p)

≤ C exp
(− λ(k− 1)

) (
by (5.29)

)
,

(5.40)
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so that
∑∞

k=1P(Ek) <∞. Thus, Borel-Cantelli [10] implies that for almost all ω∈Ω,

sup
k−1≤t≤k

∥∥x(t;ω)
∥∥p ≤ exp

(− (ε0− λ
)
(k− 1)

)
(5.41)

holds for all but possibly finitely many k. As such, there is a k0 ≥ 1 for which (5.41) holds
almost surely [P], for all k ≥ k0. It then immediately follows that

1
t

log
∥∥x(t)

∥∥p ≤− ε0− λ
p

a.s. [P], k ≥ k0, (5.42)

and subsequently,

lim
t→∞

1
t

log
∥∥x(t)

∥∥p ≤− ε0− λ
p

a.s. [P]. (5.43)

Since λ > 0 was arbitrary, the desired conclusion follows from (5.43). (Note that −ε0/p is
an upper bound for the almost sure Lyapunov exponent of the mild solution.) �

6. Examples

Example 6.1. Let � be a bounded domain in RN with smooth boundary ∂�. Consider
the following initial-boundary value problem:

∂x

∂t
(t,z)= ∆zx(t,z) +F1

(
t,z,x(t− r,z)

)
+
∫
L2(�)

F2(t,z, y)µ(t,z)(dy)

+
∫ t

0
a(t,s)g

(
s,z,x(s− r,z)

)
dβ(s) a.e. on (0,T)×�,

x(t,z)= 0 a.e. on (0,T)× ∂�,

x(t,z)= ξ(t,z), −r ≤ t ≤ 0, a.e. on �,

(6.1)

where x : [0,T]×�→R, F1 : [0,T]×�×R→R, F2 : [0,T]×�×L2(�)→ L2(�), µ(t,·)
∈ ℘λ2 (L2(�)) is the probability law of x(t,·), a : ∆→ R, g : [0,T]×�×R→ BL(RN ,
L2(�)), β is a standard N-dimensional Brownian motion, and ξ : [0,T]×� → R. We
impose the following conditions.

(A9) F1 satisfies the Caratheodory conditions (i.e., measurable in (t,z) and continuous
in the third variable) such that

(i) |F1(t, y,z)| ≤MF1 [1 + |z|], for all 0≤ t ≤ T , y ∈�, z ∈R, and someMF1 > 0,
(ii) |F1(t, y,z1)− F1(t, y,z2)| ≤MF1|z1− z2|, for all 0 ≤ t ≤ T , y ∈�, z1,z2 ∈ R,

and some MF1 > 0.
(A10) F2 satisfies the Caratheodory conditions and

(i) ‖F2(t, y,z)‖L2(�) ≤MF2 [1 + ‖z‖L2(�)], for all 0 ≤ t ≤ T , y ∈ �, z ∈ L2(�),
and some MF2 > 0,

(ii) F2(t, y,·) : L2(�)→ L2(�) is in �, for each 0≤ t ≤ T , y ∈�.
(A11) a∈ L∞(0,T)2.
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(A12) g satisfies the Caratheodory conditions and
(i) ‖g(t, y,z)‖BL(RN ,L2(�)) ≤Mg[1 + |z|], for all 0 ≤ t ≤ T , y ∈ �, z ∈ R, and

some Mg > 0,
(ii) ‖g(t, y,z1)− g(t, y,z2)‖BL(RN ,L2(�)) ≤Mg|z1 − z2|, for all 0 ≤ t ≤ T , y ∈ �,

z1,z2 ∈R, and some Mg > 0.
(A13) ξ is an �0-measurable random variable independent of β with almost surely con-

tinuous paths.

We have the following theorem.

Theorem 6.2. If (A9)–(A13) are satisfied and 4M2
S(M2

f1
+M2

f3
M2

aL
2
f3

) < 1, then (6.1) has a
unique mild solution x ∈ C([−r,T];L2(Ω,L2(�))) with probability law {µ(t,·) : 0≤t≤T}.
Proof. Let H = L2(�) and K =RN , denote ∂x/∂t by x′(t), and define the operator A by

Ax(t,·)= ∆zx(t,·), x ∈H2(�)∩H1
0 (�). (6.2)

It is known that A generates a strongly continuous semigroup {S(t)} on L2(�) (see [26]).
Define the maps f1 : [0,T]×Cr ×℘λ2 (H)→H , f3 : [0,T]×Cr ×℘λ2 (H)→ BL(K ,H), and
φ : [0,T]×�→R, respectively, by

f1
(
t,xt,µ(t)

)
(z)= F1

(
t,z,x(t− r,z)

)
+
∫
L2(�)

F2(t,z, y)µ(t,z)(dy), (6.3)

f3
(
t,xt,µ(t)

)
(z)= g(t,z,x(t− r,z)

) ∀0≤ t ≤ T , z ∈�, xt ∈ Cr , (6.4)

φ(t)(z)= ξ(t,z), (6.5)

where Cr = Cr([−r,0];L2(�)). Further, identifying K1(t,s) with a(t,s) and taking f2 =
K1 = 0, we observe that (6.1) can be written in the abstract form (1.1). From above, (A1)
and (A4) are satisfied. We show that f1 and f3 as in (6.3) and (6.4) satisfy (A2) and (A3).
To this end, observe that from (A9)(i), we obtain

∥∥F1
(
t,·,xt(θ,·))∥∥L2(�) ≤MF2

[∫
�

[
1 +

∣∣xt(θ,z)
∣∣]2

dz
]1/2

≤ 2MF1

[
m(�) +

∥∥xt(θ,·)∥∥2
L2(�)

]1/2

≤ 2MF1

[√
m(�) +

∥∥xt∥∥Cr
]

≤M∗
F1

[
1 +

∥∥xt∥∥Cr ] ∀0≤ t ≤ T , xt ∈ Cr ,

(6.6)

where

M∗
F1
=

2MF1

√
m(�) if m(�) > 1,

2MF1 if m(�)≤ 1.
(6.7)
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(Here, m denotes Lebesgue measure in RN .) Also, from (A9)(ii), we get

∥∥F1
(
t,·,xt(θ,·))−F1

(
t,·, yt(θ,·))∥∥L2(�)

≤MF1

[∫
�

∣∣xt(θ,z)− yt(θ,z)
∣∣2
dz
]1/2

≤MF1

[
sup

−r≤θ≤0

∥∥xt(θ,·)− yt(θ,·)∥∥2
L2(�)

]1/2

=MF1

∥∥xt − yt
∥∥
Cr
.

(6.8)

Next, using (A10)(i) together with the Hölder inequality yields

∥∥∥∥
∫
L2(�)

F2(t,·, y)µ(t,·)(dy)
∥∥∥∥
L2(�)

=
[∫

�

[∫
L2(�)

F2(t,z, y)µ(t,z)(dy)
]2

dz

]1/2

≤
[∫

�

∫
L2(�)

∥∥F2(t,z, y)
∥∥2
L2(�)µ(t,z)(dy)dz

]1/2

≤MF2

[∫
�

(∫
L2(�)

(
1 +‖y‖L2(�)

)2
µ(t,z)(dy)

)
dz

]1/2

≤MF2

√
m(�)

√∥∥µ(t)
∥∥
λ2

(
cf. (2.2)

)

≤MF2

√
m(�)

(
1 +

∥∥µ(t)
∥∥
λ2

) ∀0≤ t ≤ T , µ∈ ℘λ2 (H).

(6.9)

Also, invoking (A10)(ii) enables us to see that for all µ,ν∈ ℘λ2 (H),

∥∥∥∥∥
∫
L2(�)

F2(t,·, y)µ(t,·)(dy)−
∫
L2(�)

F2(t,·, y)ν(t,·)(dy)

∥∥∥∥∥
L2(�)

=
∥∥∥∥∥
∫
L2(�)

F2(t,·, y)
(
µ(t,·)− ν(t,·))(dy)

∥∥∥∥∥
L2(�)

≤ ∥∥ρ(µ(t),ν(t)
)∥∥

L2(�)

(
cf. (2.2)

)

=
√
m(�)ρ

(
µ(t),ν(t)

) ∀0≤ t ≤ T.

(6.10)

Combining (6.6) and (6.9), we see that f1 satisfies (A2)(i) withMf1=2 ·max{MF2

√
m(�),

M∗
F1
}, and combining (6.8) and (6.10) shows that f1 satisfies (A2)(ii) withMf1=max{MF1 ,√

m(�)}. It is easy to see that f3 satisfies (A3) with Mf3 =Mg and M f3 =Mg . Thus, we
can invoke Theorem 3.2 to conclude that (6.1) has a unique mild solution x ∈ C([−r,T];
L2(Ω,L2(�))) with probability law {µ(t,·) : 0≤ t ≤ T}. �
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Example 6.3. Consider the following initial-boundary value problem of Sobolev type:

∂

∂t

(
x(t,z)− xzz(t,z)

)− xzz(t,z)

= F1
(
t,z,x(t− r,z)

)
+
∫
L2(0,π)

F2(t,z, y)µ(t,z)(dy)

+
∫ t

0
a(t,s)g

(
s,z,x(s− r,z)

)
dW(s), 0≤ z ≤ π, 0≤ t ≤ T ,

x(t,0)= x(t,π)= 0, 0≤ t ≤ T ,

x(t,z)= φ(t,z), 0≤ z ≤ π, −r ≤ t ≤ 0,

(6.11)

where x : [0,T]× [0,π]→R is the state process, F1 : [0,T]× [0,π]×R→R, F2 : [0,T]×
[0,π]× L2(0,π) → L2(0,π), a : ∆→ R, g : [0,T]× [0,π]×R→ BL(R,L2(0,π)), and φ :
[0,T]× [0,π]→R are mappings satisfying (A9)–(A13) (in the appropriate spaces), µ(t,·)
∈ ℘λ2 (L2(0,π)) is the probability law of x(t,·), and W is a standard L2(0,π)-valued Wie-
ner process. We have the following theorem.

Theorem 6.4. Under the above assumptions, (6.11) has a unique mild solution x ∈
C([−r,T];L2(Ω,L2(0,π))), provided that 4(M2

f1
+M2

f3
M2

aL
2
f3

) < 1.

Proof. Let H = L2(0,π), K = R, and define the operators A : D(A) ⊂ H → H and B :
D(B)⊂H →H , respectively, by

Ax(t,·)=−xzz(t,·), Bx(t,·)= x(t,·)− xzz(t,·), (6.12)

with domains

D(A)=D(B)

= {x ∈ L2(0,π) : x, xz are absolutely continuous,

xzz ∈ L2(0,π), x(0)= x(π)= 0
}
.

(6.13)

Define φ, K1, K2, and fi (i = 1,2,3) as in Example 6.1 (with L2(0,π) in place of L2(�)).
Then, (6.11) can be written in the abstract form

(
Bx(t)

)′
+Ax(t)= f1

(
t,xt,µ(t)

)
+
∫ t

0
a(t,s) f3

(
s,xs,µ(s)

)
dW(s), 0≤ t ≤ T ,

x(t)= φ(t), −r ≤ t ≤ 0.
(6.14)

Upon making the substitution v(t)= Bx(t) in (6.14), we arrive at the equivalent problem

v′(t) +AB−1v(t)= f1
(
t,B−1vt,µ(t)

)
+
∫ t

0
a(t,s) f3

(
s,B−1vs,µ(s)

)
dW(s), 0≤ t ≤ T ,

v(t)= Bφ(t), −r ≤ t ≤ 0.

(6.15)
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It is known that B is a bijective operator possessing a continuous inverse and that −AB−1

is a bounded linear operator on L2(0,π) which generates a strongly continuous semi-
group {T(t)} on L2(0,π) satisfying (A1) with MT = α = 1 (see [26]). Further, f1 and
f3 are shown to satisfy (A2) and (A3) as in Example 6.1. Consequently, we can invoke
Theorem 3.2 (assuming that 4(M2

f1
+M2

f3
M2

aL
2
f3

) < 1) to conclude that (6.15) has a unique
mild solution v ∈ C([−r,T];L2(Ω,L2(0,π))). Consequently, x = B−1v is the correspond-
ing mild solution of (6.14) and hence, of (6.11). �

Remark 6.5. This example provides a generalization of the work in [2, 7, 22, 27, 28] to
the stochastic setting. Such initial-boundary value problems arise naturally in the math-
ematical modeling of various physical phenomena (e.g., thermodynamics [8], shear in
second-order fluids [15, 33], fluid flow through fissured rocks [3], and consolidation of
clay [32]).
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