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This paper is devoted to prove, in a nonclassical function space, the weak solvability of
a mixed problem which combines a Neumann condition and an integral boundary con-
dition for the semilinear one-dimensional heat equation. The investigation is made by
means of approximation by the Rothe method which is based on a semidiscretization of
the given problem with respect to the time variable.
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1. Introduction

In our earlier work [5], an investigation was made for an initial-boundary value problem
with an integral condition for the two-dimensional diffusion equation. There, a suitable
transformation has allowed us to bring the considered problem back to an equivalent
problem of the following form:

∂u

∂t
− ∂2u

∂x2
= f (x, t), (x, t)∈ (0,1)× [0,T],

u(x,0)=U0(x), x ∈ (0,1),

∂u

∂x
(0, t)= α(t), t ∈ [0,T],

∫ 1

0
u(x, t)dx = E(t), t ∈ [0,T],

(1.1)

whose weak solvability was then proved with the help of the Rothe time-discretization
method.

In the present paper, we consider a generalization of problem (1.1), namely the prob-
lem of finding a function v = v(x, t) which obeys, in a weak sense, the semilinear diffusion
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2 A semilinear heat equation with a nonlocal condition

equation

∂v

∂t
− ∂2v

∂x2
= f(x, t,v), (x, t)∈ (0,1)× [0,T], (1.2)

subject to the initial condition

v(x,0)=V0(x), x ∈ [0,1], (1.3)

the Neumann condition

∂v

∂x
(0, t)= g(t), t ∈ [0,T], (1.4)

and the integral boundary condition

∫ 1

0
v(x, t)dx = E(t), t ∈ [0,T], (1.5)

where f , V0, g, and E are given functions, and T is a positive constant.
The method used here to investigate problem (1.2)–(1.5) is the same as in [5], the so-

called “Rothe method.” However, the presence of the semilinearity in (1.2) complicates
the process of derivating the necessary a priori estimates and proving the convergence of
the method. Moreover, we follow in Section 5 a slightly different way which is simpler
and shorter than the one in [5].

It is interesting to note that problem (1.2)–(1.5) has, like (1.1), many practical in-
terpretations in the context of chemical engineering, thermoelasticity, heat conduction
theory, population dynamics, and so forth (see the references in [5]).

Introducing a new unknown function u by setting

u(x, t)= v(x, t)− r(x, t), (1.6)

where

r(x, t)= g(t)
(
x− 1

2

)
+E(t), (1.7)

it clearly follows that u satisfies the following problem:

∂u

∂t
− ∂2u

∂x2
= f (x, t,u), (x, t)∈ (0,1)× I , (1.8)

u(x,0)=U0(x), x ∈ [0,1], (1.9)

∂u

∂x
(0, t)= 0, t ∈ I , (1.10)

∫ 1

0
u(x, t)dx = 0, t ∈ I , (1.11)
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where I stands for the time interval [0,T] and

f (x, t,u) := f(x, t,u+ r)− ∂r(x, t)
∂t

,

U0(x) :=V0(x)− r(x,0).
(1.12)

Hence, instead of studying directly the problem (1.2)–(1.5), we concentrate our atten-
tion on problem (1.8)–(1.11). Once u is known, the function v is immediately obtained
through the relation v = u+ r.

The plan of the paper is as follows. In Section 2, notations, assumptions on data, and
some useful results are given before stating the precise sense of the required solution as
well as the main result of the paper. In Section 3, a semidiscretization in time of problem
(1.8)–(1.11) is performed to construct approximate solutions, the so-called “Rothe ap-
proximations.” Some necessary a priori estimates for these approximations are derived in
Section 4, and then used, in Section 5, to establish a convergence and existence result for
the problem under study.

2. Preliminaries

In the course of the paper, (·,·) denotes the usual scalar product in L2(0,1) and ‖ · ‖ the
corresponding norm, while H2(0,1) denotes the usual (real) second-order Sobolev space
on (0,1) with norm ‖ · ‖H2(0,1). Let V be the set which we define as follows:

V :=
{
φ ∈ L2(0,1);

∫ 1

0
φ(x)dx = 0

}
. (2.1)

Clearly, V is a Hilbert space for (·,·).
In addition to the standard functional spaces of the types C(I ,X), C0,1(I ,X), L2(I ,X),

and L∞(I ,X) of continuous, Lipschitz-continuous, L2-Bochner integrable, and essentially
bounded functions from I into a Banach space X , respectively (see, e.g., [4]), our analysis
requires also the use of the nonclassical function space B1

2(0,1) introduced by the sec-
ond author (see, e.g., [1, 2]) as the completion of the space C0(0,1) of real continuous
functions with compact support in (0,1) with respect to the inner product

(u,v)B1
2
=
∫ 1

0
�xu ·�xvdx, (2.2)

where �xv =
∫ x

0 v(ξ)dξ for every fixed x ∈ (0,1). If ‖ · ‖B1
2

denotes the corresponding
norm, that is,

‖v‖B1
2
=
√

(v,v)B1
2
, (2.3)

then, the inequality

‖v‖2
B1

2
� 1

2
‖v‖2 (2.4)

holds for every v ∈ L2(0,1), and hence the embedding L2(0,1)→ B1
2(0,1) is continuous.
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We should note that any given real function θ(x, t) on (0,1)× I is automatically identi-
fied with the corresponding abstract function t→ θ(t)= θ(·, t) defined from I into some
functional space on (0,1) by setting (θ(t))(x)= θ(x, t) for x ∈ (0,1).

Strong and weak convergence are denoted by → or ⇀, respectively, and the symbol c
will stand for generic positive constants which may be different in the same discussion.

At several places, we will use the following continuous and discrete forms of Gronwall
lemma.

Lemma 2.1. (i) Let x(t) � 0, h(t), y(t) be real integrable functions on the interval [a,b]. If

y(t) � h(t) +
∫ t

a
x(τ)y(τ)dτ, ∀t ∈ [a,b], (2.5)

then

y(t) � h(t) +
∫ t

a
h(τ)x(τ)exp

(∫ t

τ
x(s)ds

)
dτ, ∀t ∈ [a,b]. (2.6)

In particular, if x(τ)≡ C is a constant and h(τ) is nondecreasing, then

y(t) � h(t)eC(t−a), ∀t ∈ [a,b]. (2.7)

(ii) Let {ai} be a sequence of real nonnegative numbers satisfying

a1 �A,

ai � A+Bh
i−1∑
k=1

ak, ∀i= 2, . . . ,
(2.8)

where A, B, and h are positives constants. Then

ai �AeB(i−1)h, ∀i= 1,2, . . . . (2.9)

Proof. The proof of assertion (i) is the same as in [3, Lemma 1.3.19]. As for assertion (ii),
it suffices to see that from our hypothesis, the following estimate follows:

ai � A(1 +Bh)i−1, ∀i= 1,2, . . . . (2.10)

Indeed, we have first a1 � A and a2 � A+ a1Bh � A(1 + Bh). Next, let us suppose that
ak �A(1 +Bh)k−1 holds for all k = 1, . . . , i− 1, then

ai � A+Bh
i−1∑
k=1

A(1 +Bh)k−1 =A

[
1 +Bh

i−1∑
k=1

(1 +Bh)k−1

]

= A

[
1 +Bh

1− (1 +Bh)i−1

1− (1 +Bh)

]
= A(1 +Bh)i−1.

(2.11)

Hence, using the elementary inequality 1 + t � et, for all t ∈ R+, we have ai � AeB(i−1)h,
which was to be proved. �
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Also, the elementary Cauchy inequality

αβ � ε

2
α2 +

1
2ε
β2, ∀α,β ∈R, ∀ε ∈R∗+ , (2.12)

will be useful to us thereafter.
Throughout the paper, we assume that
(H1) f (t,w)∈ L2(0,1) for each pair (t,w)∈ I ×L2(0,1) and the Lipschitz condition

∥∥ f (t,w)− f (t′,w′)
∥∥
B1

2
� l
[
|t− t′|

(
1 +‖w‖B1

2
+‖w′‖B1

2

)
+‖w−w′‖B1

2

]
, (2.13)

for all t, t′ ∈ I , for all w,w′ ∈V , holds for some positive constant l;
(H2) U0 ∈H2(0,1);
(H3) (dU0/dx)(0)= 0 and

∫ 1
0 U0(x)dx = 0, for consistency.

We will be concerned with a weak solution in the following sense.

Definition 2.2. Under a weak solution of problem (1.8)–(1.11), a function u : I → L2(0,1)
is understood such that

(i) u∈ L∞(I ,V)∩C0,1(I ,B1
2(0,1));

(ii) u has (a.e. in I) a strong derivative du/dt ∈ L∞(I ,B1
2(0,1));

(iii) u(0)=U0 in B1
2(0,1);

(iv) the identity

(
du

dt
(t),φ

)
B1

2

+
(
u(t),φ

)= ( f (t,u(t)
)
,φ
)
B1

2
(2.14)

takes place for all φ∈V and a.e. t ∈ I .

We remark that the fulfillment of the integral condition (1.11) is included in the fact
that u(t)∈V for a.e. t ∈ I .

To close this section, we announce the main result of the paper.

Theorem 2.3. Under assumptions (H1)–(H3), problem (1.8)–(1.11) admits a unique
weak solution u in the sense of Definition 2.2 that depends continuously on the right-hand
side f and the initial function U0. Moreover, the following convergence properties hold:

u(n) −→ u in C
(
I ,B1

2(0,1)
)
,

u(n)(t) u(t) in V , ∀t ∈ I ,

du(n)

dt

du

dt
in L2(I ,B1

2(0,1)
)
,

(2.15)

as n tends to infinity, where {u(n)}n is the sequence of Rothe approximations defined in (3.7).

The proof of this result will be carried out along the following sections.
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3. Rothe approximations

Let n be a positive integer. Following the idea of Rothe, we solve the recurrent system of
time-discretized problems:

δuj −
d2uj

dx2
= f j , x ∈ (0,1), (3.1) j

duj

dx
(0)= 0, (3.2) j∫ 1

0
uj(x)dx = 0, (3.3) j

successively for j = 1, . . . ,n, commencing with the initial value u0 = U0, where t j = jh,
h= T/n, and

δuj := uj −uj−1

h
,

f j(x) := f
(
x, t j ,uj−1

)
.

(3.1)

For the functions uj which can be viewed as backward finite difference approximations
of u(t j ,·), we have the following result.

Theorem 3.1. For all n� 1 and for all j = 1, . . . ,n, problem (3.1)j–(3.3)j possesses a unique
solution uj in H2(0,1).

Proof. Similarly as in [5], the proof consists of the following two steps.
Step 1. We first look for the functions wj(x)=wj(x;λ) which solve the associated classical
Neumann boundary value problems

−d2wj

dx2
+

1
h
wj = Fj , x ∈ (0,1),

dwj

dx
(0)= 0,

dwj

dx
(1)= λ, (3.4) j

successively for j = 1, . . . ,n, where Fj(x) := f (x, t j ,wj−1) + (1/h)wj−1(x), w0 =U0 and λ is
a real parameter.

Since, according to assumptions (H1) and (H2), F1 := f (t1,U0) + (1/h)U0 ∈ L2(0,1),
the Lax-Milgram lemma guarantees the existence and uniqueness of a strong solution
w1 = w1(·;λ) ∈H2(0,1) to the elliptic problem (3.4)1. Then F2 := f (t2,w1) + (1/h)w1 ∈
L2(0,1), so that problem (3.4)2 admits a unique strong solution w2 = w2(·;λ)∈H2(0,1)
thanks to Lax-Milgram lemma. Step by step, each wj is then uniquely determined in
terms of U0, w1, . . . ,wj−1. Thus, for all n� 1 and all λ∈R, the auxiliary problems (3.4)j ,
j = 1, . . . ,n, have unique solutions wj ∈H2(0,1).
Step 2. Now, let us show that for all j = 1, . . . ,n, the parameter λ can be selected in a
suitable way such that the corresponding functionwj(·;λ) is exactly a solution of problem
(3.1)j–(3.3)j . Obviously, this happens if and only if λ is a root of the real function Φ j(λ)
defined by

Φ j(λ) :=
∫ 1

0
wj(x;λ)dx, (3.5) j
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so that solving the equation Φ j(λ) = 0 will provide all the solutions to problem (3.1)j–
(3.3)j . If, in particular, this equation admits a unique solution, so is problem (3.1)j–(3.3)j .

From the superposition principle, we have that

wj(·;λ)=wj(·;0) + χ(·;λ), (3.2)

where wj(·;0) is the solution (uniquely determined) to problem (3.4)j for λ= 0 and χ is
the (unique) solution to the following problem:

−d2χ

dx2
+

1
h
χ = 0, x ∈ (0,1),

dχ

dx
(0)= 0,

dχ

dx
(1)= λ.

(3.3)

One can readily find that χ is given by

χ(x;λ)= λ
√
h

cosh(x/
√
h)

sinh(1/
√
h)

, (3.4)

so that, replacing into (3.5)j , this yields

Φ j(λ)= λ
√
h

sinh(1/
√
h)

∫ 1

0
cosh

(
x√
h

)
dx+

∫ 1

0
wj(x;0)dx, (3.5)

that is,

Φ j(λ)= hλ+
∫ 1

0
wj(x;0)dx, (3.6)

which shows that for all h > 0, Φ j admits a unique root λ = λj ∈ R, namely λj =
−(1/h)

∫ 1
0 wj(x;0)dx. Hence, problem (3.1)j–(3.3)j is uniquely solvable for all n � 1 and

all j = 1, . . . ,n. Therefore, Theorem 3.1 has been proved. �

Now, for all n � 1, we introduce the Rothe approximation u(n) : I → H2(0,1)∩V is
defined by

u(n)(t)= uj−1 + δuj
(
t− t j−1

)
, t ∈ [t j−1, t j

]
, j = 1, . . . ,n, (3.7)

and the corresponding step function u(n) : I →H2(0,1)∩V is defined as follows:

u(n)(t)=
⎧⎨
⎩
uj for t ∈ (t j−1, t j

]
, j = 1, . . . ,n,

U0 for t = 0.
(3.8)

We expect that the limit limn→∞u(n) = u exists in a suitable sense, and that is precisely
the desired weak solution to our problem (1.8)–(1.11). The establishment of this fact
requires some a priori estimates whose derivation is the subject of the following section.
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4. A priori estimates for the approximations

Lemma 4.1. There exist c > 0 such that for all n� 1, the solutions uj of the time-discretized
problems (3.1)j–(3.3)j , j = 1, . . . ,n, obey the estimates

∥∥uj

∥∥� c, (4.1)∥∥δuj

∥∥
B1

2
� c. (4.2)

Proof. The key point to establish these estimates is the derivation of a nonstandard vari-
ational formulation of problems (3.1)j–(3.3)j . To this aim, we take, for all j = 1, . . . ,n, the
inner product in B1

2(0,1) of (3.1)j with any function φ from the space V defined in (2.1)
to get

(
δuj ,φ

)
B1

2 (0,1)−
(
d2uj

dx2
,φ
)
B1

2 (0,1)
= ( f j ,φ)B1

2 (0,1). (4.3)

But from (3.2)j we have

(
d2uj

dx2
,φ
)
B1

2 (0,1)
=
∫ 1

0

duj

dx
(x)�xφdx

= uj(x)�xφ
∣∣∣x=1

x=0
−
∫ 1

0
ujφdx,

(4.4)

then
(
d2uj

dx2
,φ
)
B1

2 (0,1)
=−(uj ,φ

)
, (4.5)

since φ ∈V . Substituting in (4.3), this yields the required variational form:

(
δuj ,φ

)
B1

2 (0,1) +
(
uj ,φ

)= ( f j ,φ)B1
2 (0,1), (4.4) j

which gives for j = 1 that

(
δu1,φ

)
B1

2 (0,1) +h
(
δu1,φ

)= ( f1,φ
)
B1

2 (0,1)−
(
U0,φ

)
, ∀φ∈V. (4.6)

Integrating by parts the second term in the right-hand side of (4.6), we have

(
U0,φ

)=
∫ 1

0
U0(x)

d

dx

(�xφ
)
dx

=U0(x)�xφ
∣∣∣x=1

x=0
−
∫ 1

0

dU0

dx
(x)�xφdx

=−
∫ 1

0

dU0

dx
(x)�xφdx,

(4.7)

but, due to assumption (H3)1, we note that

�x

(
d2U0

dx2
(x)
)
= dU0

dx
(x) ∀x ∈ (0,1), (4.8)
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whence

(
U0,φ

)=−
∫ 1

0
�x

(
d2U0

dx2
(x)
)
�xφdx, (4.9)

so that (4.6) becomes

(
δu1,φ

)
B1

2 (0,1) +h
(
δu1,φ

)=
(
f1 +

d2U0

dx2
,φ
)
B1

2 (0,1)
, ∀φ∈V. (4.10)

Testing this last equality with φ = δu1 = (u1 −U0)/h which is clearly an element of V
because of (3.3)1 and assumption (H3)2, we derive with the help of Cauchy-Schwarz in-
equality

∥∥δu1
∥∥2
B1

2
+h
∥∥δu1

∥∥2 �
[∥∥ f1∥∥B1

2
+
∥∥∥∥d

2U0

dx2

∥∥∥∥
B1

2

]∥∥δu1
∥∥
B1

2
, (4.11)

consequently

∥∥δu1
∥∥
B1

2
�
∥∥ f (t1,U0

)∥∥
B1

2
+
∥∥∥∥d

2U0

dx2

∥∥∥∥
B1

2

, (4.12)

and then

∥∥δu1
∥∥
B1

2
� max

t∈I
∥∥ f (t,U0

)∥∥
B1

2
+
∥∥∥∥d

2U0

dx2

∥∥∥∥
B1

2

:= c1. (4.13)

Next, subtracting (4.4)j−1 from (4.4)j ( j = 2, . . . ,n) and putting φ = δuj which belongs to
V in view of (3.3)j−1 and (3.3)j , we estimate

∥∥δuj

∥∥2
B1

2
+

1
h

∥∥uj −uj−1
∥∥2 �

(∥∥ f j − f j−1
∥∥
B1

2
+
∥∥δuj−1

∥∥
B1

2

)∥∥δuj

∥∥
B1

2
, (4.14)

which implies that

∥∥δuj

∥∥
B1

2
�
∥∥ f j − f j−1

∥∥
B1

2
+
∥∥δuj−1

∥∥
B1

2
, (4.15)

then, iterating we may arrive at

∥∥δuj

∥∥
B1

2
�

j∑
i=2

∥∥ fi− fi−1
∥∥
B1

2
+
∥∥δu1

∥∥
B1

2
. (4.16)

But owing to assumption (H1), we have for all i� 2 that

∥∥ fi− fi−1
∥∥
B1

2
= ∥∥ f (ti,ui−1

)− f
(
ti−1,ui−2

)∥∥
B1

2

� l
[
h
(

1 +
∥∥ui−1

∥∥
B1

2
+
∥∥ui−2

∥∥
B1

2

)
+
∥∥ui−1−ui−2

∥∥
B1

2

]

= lh
[

1 +
∥∥ui−1

∥∥
B1

2
+
∥∥ui−2

∥∥
B1

2
+
∥∥δui−1

∥∥
B1

2

]
,

(4.17)
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so that

j∑
i=2

∥∥ fi− fi−1
∥∥
B1

2
� lh

[
( j− 1) +

j−1∑
i=1

∥∥ui∥∥B1
2

+
j−2∑
i=0

∥∥ui∥∥B1
2

+
j−1∑
i=1

∥∥δui∥∥B1
2

]

� l( j− 1)h+ 2lh
j−1∑
i=1

∥∥ui∥∥B1
2

+ lh
∥∥U0

∥∥
B1

2
+ lh

j−1∑
i=1

∥∥δui∥∥B1
2
.

(4.18)

To dominate the right-hand side in (4.18), we need to estimate the term ‖ui‖B1
2
. For this,

we take φ = ui in (4.4)i, i= 1, . . . ,n, and get

1
h

∥∥ui∥∥2
B1

2
+
∥∥ui∥∥2 �

(∥∥ fi∥∥B1
2

+
1
h

∥∥ui−1
∥∥
B1

2

)∥∥ui∥∥B1
2
, (4.19)

from where we derive
∥∥ui∥∥B1

2
� h

∥∥ fi∥∥B1
2

+
∥∥ui−1

∥∥
B1

2

� h
(∥∥ fi∥∥B1

2
+
∥∥ fi−1

∥∥
B1

2

)
+
∥∥ui−2

∥∥
B1

2
,

(4.20)

and from this recurrent inequality, we successively estimate

∥∥ui∥∥B1
2
� h

i∑
k=1

∥∥ fk∥∥B1
2

+
∥∥U0

∥∥
B1

2
. (4.21)

Invoking assumption (H1), we have for all k � 1 that
∥∥ fk∥∥B1

2
�
∥∥ f (tk,uk−1

)− f
(
tk,0

)∥∥
B1

2
+
∥∥ f (tk,0

)∥∥
B1

2

� l
∥∥uk−1

∥∥
B1

2
+M,

(4.22)

where M :=maxt∈I ‖ f (t,0)‖B1
2
< +∞. Substituting (4.22) in the previous inequality, we

get

∥∥ui∥∥B1
2
� h

i∑
k=1

(
l
∥∥uk−1

∥∥
B1

2
+M

)
+
∥∥U0

∥∥
B1

2

= ihM + (1 + lh)
∥∥U0

∥∥
B1

2
+ lh

i∑
k=2

∥∥uk−1
∥∥
B1

2

� TM + (1 + lh)
∥∥U0

∥∥
B1

2
+ lh

i−1∑
k=1

∥∥uk∥∥B1
2
,

(4.23)

from where it comes due to the discrete Gronwall’s lemma that
∥∥ui∥∥B1

2
�
(
TM + (1 + lh)

∥∥U0
∥∥
B1

2

)
el(i−1)h, (4.24)

hence
∥∥ui∥∥B1

2
�
(
TM + (1 + lT)

∥∥U0
∥∥
B1

2

)
elT := c2. (4.25)
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Now, returning to (4.18), we can write thanks to (4.25) that

j∑
i=2

∥∥ fi− fi−1
∥∥
B1

2
� l( j− 1)h+ lh

(
2( j− 1)c2 +

∥∥U0
∥∥
B1

2

)
+ lh

j−1∑
i=1

∥∥δui∥∥B1
2

� lT
(

1 + 2c2 +
∥∥U0

∥∥
B1

2

)
+ lh

j−1∑
i=1

∥∥δui∥∥B1
2
.

(4.26)

Combining (4.13), (4.16), and the last inequality, we have

∥∥δuj

∥∥
B1

2
� c1 + lT

(
1 + 2c2 +

∥∥U0
∥∥
B1

2

)
+ lh

j−1∑
i=1

∥∥δui∥∥B1
2
, (4.27)

hence, applying Gronwall’s lemma in discrete form again, we get

∥∥δuj

∥∥
B1

2
�
[
c1 + lT

(
1 + 2c2 +

∥∥U0
∥∥
B1

2

)]
el( j−1)h. (4.28)

Thus, estimate (4.2) is proved for c = c3 with

c3 :=
[
c1 + lT

(
1 + 2c2 +

∥∥U0
∥∥
B1

2

)]
elT . (4.29)

Next, to derive estimate (4.1), we insert φ = uj −uj−1 in (4.4)j and apply the identity

(
uj ,uj −uj−1

)= 1
2

(∥∥uj −uj−1
∥∥2

+
∥∥uj

∥∥2−∥∥uj−1
∥∥2
)

, (4.30)

to get

h
∥∥δuj

∥∥2
B1

2
+

1
2

∥∥uj −uj−1
∥∥2

+
1
2

∥∥uj

∥∥2 = ( f j ,uj −uj−1
)
B1

2
+

1
2

∥∥uj−1
∥∥2
. (4.31)

Ignoring the first two terms in the left-hand side, we obtain

∥∥uj

∥∥2 � 2
∥∥ f j∥∥B1

2

∥∥uj −uj−1
∥∥
B1

2
+
∥∥uj−1

∥∥2
, (4.32)

whence, using (4.22), (4.25), and (4.2),

∥∥uj

∥∥2 � 2h
(
lc2 +M

)
c3 +

∥∥uj−1
∥∥2
. (4.33)

So, by an iterative procedure, we get

∥∥uj

∥∥2 � 2 jh
(
lc2 +M

)
c3 +

∥∥U0
∥∥2

, (4.34)

from where estimate (4.1) follows with c = c4, where

c4 :=
{

2T
(
lc2 +M

)
c3 +

∥∥U0
∥∥2
}1/2

, (4.35)

and so the proof is complete. �
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If we extend, for all n � 1, the function u(n) defined on I to the interval [−T/n,0) by
setting

u(n)(t)=U0, ∀t ∈
[
− T

n
,0
)

, (4.36)

we can state the following corollary.

Corollary 4.2. For all n� 1, the functions u(n) and u(n) satisfy the estimates

∥∥u(n)(t)
∥∥� c,

∥∥u(n)(t)
∥∥� c, ∀t ∈ I , (4.37)

∥∥∥∥du
(n)

dt
(t)
∥∥∥∥
B1

2

� c, a.e. in I , (4.38)

∥∥u(n)(t)−u(n)(t)
∥∥
B1

2
� c

n
, ∀t ∈ I , (4.39)

∥∥∥∥u(n)(t)−u(n)
(
t− T

n

)∥∥∥∥
B1

2

� c

n
, ∀t ∈ I. (4.40)

Proof. Both estimates (4.37) follow immediately from (4.1) with the same constant c = c4.
On the other hand, invoking the identity

du(n)

dt
(t)= δuj , ∀t ∈ (t j−1, t j

]
, 1 � j � n, (4.41)

estimate (4.38) is seen to be an easy consequence of estimate (4.2) with c = c3. Next,
observing that we have

u(n)(t)−u(n)(t)=
⎧⎨
⎩
(
t j − t

)
δuj , ∀t ∈ (t j−1, t j

]
, 1 � j � n,

0, t = 0,

u(n)(t)−u(n)
(
t− T

n

)
=
⎧⎨
⎩
uj −uj−1, ∀t ∈ (t j−1, t j

]
, 1 � j � n,

0, t = 0,

(4.42)

we can write
∥∥u(n)(t)−u(n)(t)

∥∥
B1

2
� h max

1� j�n

∥∥δuj

∥∥
B1

2
∀t ∈ I ,

∥∥∥∥u(n)(t)−u(n)
(
t− T

n

)∥∥∥∥
B1

2

� h max
1� j�n

∥∥δuj

∥∥
B1

2
, ∀t ∈ I ,

(4.43)

hence, in view of (4.2), we get the required estimates (4.39) and (4.40) with c = c3T . �

5. Existence, uniqueness, and convergence of the method

Let us define, for all n� 1, the abstract step function f
(n)

: I ×V → L2(0,1) by

f
(n)

(t,v)= f
(
t j ,v

)
, ∀t ∈ (t j−1, t j

]
, j = 1, . . . ,n. (5.1)
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Then, the variational equations (4.4)j may be rewritten in the form

(
du(n)

dt
(t),φ

)
B1

2

+
(
u(n)(t),φ

)=
(
f

(n)
(
t,u(n)

(
t− T

n

))
,φ
)
B1

2

, (5.1)n

for all φ ∈V and t ∈ (0,T].
It is convenient to present now a basic convergence statement.

Theorem 5.1. The sequence {u(n)}n converges in the norm of the space C(I ,B1
2(0,1)) to

some function u∈ C(I ,B1
2(0,1)) and the error estimate

∥∥u(n)−u
∥∥
C(I ,B1

2 (0,1)) � c

n1/2
(5.2)

holds for all n� 1.

Proof. The idea of the proof consists in showing that {u(n)}n is a Cauchy sequence in the
Banach space C(I ,B1

2(0,1)).
Let u(n) and u(m) be the Rothe approximations corresponding to the step lengths hn =

T/n and hm = T/m, respectively, with m> n � 1. Take the difference (5.1)n–(5.1)m tested
with φ= u(n)(t)−u(m)(t)(∈V), this yields for all t ∈ (0,T] that

(
d

dt

(
u(n)(t)−u(m)(t)

)
,u(n)(t)−u(m)(t)

)
B1

2

+
(
u(n)(t)−u(m)(t),u(n)(t)−u(m)(t)

)

=
(
f

(n)
(
t,u(n)

(
t− T

n

))
− f

(m)
(
t,u(m)

(
t− T

m

))
,u(n)(t)−u(m)(t)

)
B1

2

,

(5.3)

or after some rearrangement,

1
2
d

dt

∥∥u(n)(t)−u(m)(t)
∥∥2
B1

2
+
∥∥u(n)(t)−u(m)(t)

∥∥2

= (u(n)(t)−u(m)(t),u(n)(t)−u(m)(t)−u(n)(t) +u(m)(t)
)

+
(
f

(n)
(
t,u(n)

(
t− T

n

))
− f

(m)
(
t,u(m)

(
t− T

m

))
,u(n)(t)−u(m)(t)

)
B1

2

.

(5.4)

But since we have

f
(n)
(
t,u(n)

(
t− T

n

))
= f

(
t j ,uj−1

)
:= f j , ∀t ∈ (t j−1, t j

]
, j = 1, . . . ,n, (5.5)

it follows in view of (4.22) that

∥∥∥∥ f (n)
(
t,u(n)

(
t− T

n

))∥∥∥∥
B1

2

� max
1� j�n

∥∥ f j∥∥B1
2

� l max
1� j�n

∥∥uj−1
∥∥
B1

2
+M, ∀t ∈ (0,T],

(5.6)
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hence due to (4.25),

∥∥∥∥ f (n)
(
t,u(n)

(
t− T

n

))∥∥∥∥
B1

2

� lc2 +M, ∀t ∈ (0,T]. (5.7)

Thus, estimating the identity

(
u(n)(t),φ

)=
(
f

(n)
(
t,u(n)

(
t− T

n

))
− du(n)

dt
(t),φ

)
B1

2

, ∀t ∈ (0,T], ∀φ ∈V , (5.8)

which follows from (5.1)n, we obtain owing to (4.38) that

∣∣(u(n)(t),φ
)∣∣�

[∥∥∥∥ f (n)
(
t,u(n)

(
t− T

n

))∥∥∥∥
B1

2

+
∥∥∥∥du

(n)

dt
(t)
∥∥∥∥
B1

2

]∥∥φ∥∥B1
2

� c5
∥∥φ∥∥B1

2
, ∀t ∈ (0,T],

(5.9)

with c5 := lc2 +M + c3. This, together with (4.39), allows us to majorize the first term in
the right-hand side of (5.4) as follows:

(
u(n)(t)−u(m)(t),u(n)(t)−u(m)(t)−u(n)(t) +u(m)(t)

)

� 2c5

(∥∥u(n)(t)−u(n)(t)
∥∥
B1

2
+
∥∥u(m)(t)−u(m)(t)

∥∥
B1

2

)

� c6

(
1
n

+
1
m

)
, ∀t ∈ (0,T],

(5.10)

with c6 := 2c5c3T .
On the other hand, thanks to the Cauchy inequality (2.12), we can write for every ε > 0

that

(
f

(n)
(
t,u(n)

(
t− T

n

))
− f

(m)
(
t,u(m)

(
t− T

m

))
,u(n)(t)−u(m)(t)

)
B1

2

�
∥∥∥∥ f (n)

(
t,u(n)

(
t− T

n

))
− f

(m)
(
t,u(m)

(
t− T

m

))∥∥∥∥
B1

2

∥∥u(n)(t)−u(m)(t)
∥∥
B1

2

� ε

2

∥∥∥∥ f (n)
(
t,u(n)

(
t− T

n

))
− f

(m)
(
t,u(m)

(
t− T

m

))∥∥∥∥
2

B1
2

+
1
2ε

∥∥u(n)(t)−u(m)(t)
∥∥2
B1

2
, ∀t ∈ (0,T].

(5.11)

Now, let t be arbitrary but fixed in (0,T], then there exist two integers k and i cor-
responding to the subdivision of I into n and m subintervals, respectively, such that
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t ∈ (tk−1, tk]∩ (ti−1, ti], hence from assumption (H1), it follows that

∥∥∥∥ f (n)
(
t,u(n)

(
t− T

n

))
− f

(m)
(
t,u(m)

(
t− T

m

))∥∥∥∥
2

B1
2

=
∥∥∥∥ f
(
tk,u(n)

(
t− T

n

))
− f

(
ti,u(m)

(
t− T

m

))∥∥∥∥
2

B1
2

� l2
[∣∣tk − ti

∣∣
{

1 +
∥∥∥∥u(n)

(
t− T

n

)∥∥∥∥
B1

2

+
∥∥∥∥u(m)

(
t− T

m

)∥∥∥∥
B1

2

}

+
∥∥∥∥u(n)

(
t− T

n

)
−u(m)

(
t− T

m

)∥∥∥∥
B1

2

]2

� l2
[(

hn +hm
)(

1 +
∥∥uk−1

∥∥
B1

2
+
∥∥ui−1

∥∥
B1

2

)
+
∥∥∥∥u(n)

(
t− T

n

)
−u(n)(t)

∥∥∥∥
B1

2

+
∥∥u(n)(t)−u(m)(t)

∥∥
B1

2
+
∥∥∥∥u(m)(t)−u(m)

(
t− T

m

)∥∥∥∥
B1

2

]2

,

(5.12)

consequently, with consideration to (4.25) and (4.40), we deduce that

∥∥∥∥ f (n)
(
t,u(n)

(
t− T

n

))
− f

(m)
(
t,u(m)

(
t− T

m

))∥∥∥∥
2

B1
2

� l2
[
T
(

1
n

+
1
m

)(
1 + 2c2

)
+ c3T

(
1
n

+
1
m

)
+
∥∥u(n)(t)−u(m)(t)

∥∥
B1

2

]2

= l2
[
T
(
1 + 2c2 + c3

)(1
n

+
1
m

)
+
∥∥u(n)(t)−u(m)(t)

∥∥
B1

2

]2

� l2
[
c2

7

(
1
n

+
1
m

)2

+ 2c7

(
1
n

+
1
m

)(∥∥u(n)(t)
∥∥
B1

2
+
∥∥u(m)(t)

∥∥
B1

2

)

+
∥∥u(n)(t)−u(m)(t)

∥∥2
B1

2

]

�
(
lc7
)2
(

1
n

+
1
m

)2

+ 4l2c7c2

(
1
n

+
1
m

)
+ l2

∥∥u(n)(t)−u(m)(t)
∥∥2
B1

2

(5.13)

for all t ∈ (0,T], with c7 := T(1 + 2c2 + c3). Thus, using the notations c8 := (lc7)2 and
c9 := 4l2c7c2, we write

∥∥∥∥ f (n)
(
t,u(n)

(
t− T

n

))
− f

(m)
(
t,u(m)

(
t− T

m

))∥∥∥∥
2

B1
2

� c8

(
1
n

+
1
m

)2

+ c9

(
1
n

+
1
m

)
+ l2

∥∥u(n)(t)−u(m)(t)
∥∥2
B1

2
, ∀t ∈ (0,T],

(5.14)
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hence, going back to (5.11), we have
(
f

(n)
(
t,u(n)

(
t− T

n

))
− f

(m)
(
t,u(m)

(
t− T

m

))
,u(n)(t)−u(m)(t)

)
B1

2

� ε

2
c8

(
1
n

+
1
m

)2

+
ε

2
c9

(
1
n

+
1
m

)
+
ε

2
l2
∥∥u(n)(t)−u(m)(t)

∥∥2
B1

2

+
1
2ε

∥∥u(n)(t)−u(m)(t)
∥∥2
B1

2
, ∀t ∈ (0,T].

(5.15)

Next, combining (5.4), (5.10), and (5.15), we have for all t ∈ (0,T] that

d

dt

∥∥u(n)(t)−u(m)(t)
∥∥2
B1

2
+ 2
∥∥u(n)(t)−u(m)(t)

∥∥2

� εc8

(
1
n

+
1
m

)2

+
(
εc9 + 2c6

)(1
n

+
1
m

)
+ εl2

∥∥u(n)(t)−u(m)(t)
∥∥2
B1

2

+
1
ε

∥∥u(n)(t)−u(m)(t)
∥∥2
B1

2
,

(5.16)

or

d

dt

∥∥u(n)(t)−u(m)(t)
∥∥2
B1

2
+
(
2− εl2

)∥∥u(n)(t)−u(m)(t)
∥∥2

� εc8

(
1
n

+
1
m

)2

+
(
εc9 + 2c6

)(1
n

+
1
m

)
+

1
ε

∥∥u(n)(t)−u(m)(t)
∥∥2
B1

2
.

(5.17)

Let us choose ε so that 2− εl2 = 0, that is, ε = 2/l2 and integrate the last inequality over
(0, t). Then, invoking the fact that u(n)(0)= u(m)(0)=U0, we obtain for all t ∈ I that

∥∥u(n)(t)−u(m)(t)
∥∥2
B1

2
� 2c8T

l2

(
1
n

+
1
m

)2

+ 2T
(
c9

l2
+ c6

)(
1
n

+
1
m

)

+
l2

2

∫ t

0

∥∥u(n)(τ)−u(m)(τ)
∥∥2
B1

2
dτ,

(5.18)

giving by Gronwall’s lemma

∥∥u(n)(t)−u(m)(t)
∥∥2
B1

2
�
[
c10

(
1
n

+
1
m

)2

+ c11

(
1
n

+
1
m

)]
el

2t/2 ∀t ∈ I , (5.19)

with c10 := 2c8T/l2 and c11 := 2T(c9/l2 + c6). Accordingly,

∥∥u(n)(t)−u(m)(t)
∥∥
B1

2
�
[
c10

(
1
n

+
1
m

)2

+ c11

(
1
n

+
1
m

)]1/2

el
2T/4, ∀t ∈ I , (5.20)

then, taking the supremum with respect to t in the left-hand side of this inequality, we
have

∥∥u(n)−u(m)
∥∥
C(I ,B1

2 (0,1)) �
[
c10

(
1
n

+
1
m

)2

+ c11

(
1
n

+
1
m

)]1/2

el
2T/4, (5.21)
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which implies the existence of a function u ∈ C(I ,B1
2(0,1)) such that u(n) → u in this

space. Moreover, passing to the limit m→∞ in (5.21), we obtain the error estimate (5.2)
with c = c12 :=√c10 + c11el

2T/4, which achieves the proof. �

Next, some properties of the function u from Theorem 5.1 are listed in the following
theorem.

Theorem 5.2. For the function u from Theorem 5.1, it holds that
(i) u∈ L∞(I ,V)∩C0,1(I ,B1

2(0,1));
(ii) u is strongly differentiable a.e. in I and du/dt ∈ L∞(I ,B1

2(0,1));
(iii) u(n)(t), u(n)(t)⇀ u(t) in V for all t ∈ I ;
(iv) du(n)/dt⇀ du/dt in L2(I ,B1

2(0,1)).

Proof. On the basis of estimates (4.37) and (4.38), uniform convergence statement from
Theorem 5.1 and the continuous embedding V↩B1

2(0,1), the assertions of the present
theorem are direct consequences of [3, Lemma 1.3.15]. �

Gathering all the obtained results, we are in position to state our existence theorem.

Theorem 5.3. There is a unique weak solution to the problem (1.8)–(1.11) in the sense of
Definition 2.2, namely the limit function u from Theorem 5.1.

Proof. In light of what precedes, the properties (i) and (ii) from Definition 2.2 are al-
ready fulfilled. Moreover, since u(n) → u in C(I ,B1

2(0,1)) when n→∞ and, by definition,
u(n)(0) = U0, it follows that u(0) = U0 holds in B1

2(0,1) so the initial condition (1.9) is
also fulfilled. It remains to show that u satisfies the integral equation (2.14). Integrating
(5.1)n over (0, t) ⊂ I and invoking the fact that u(n)(0) = U0, we get the approximation
scheme:

(
u(n)(t)−U0,φ

)
B1

2
+
∫ t

0

(
u(n)(τ),φ

)
dτ =

∫ t

0

(
f

(n)
(
τ,u(n)

(
τ − T

n

))
,φ
)
B1

2

dτ. (5.22)

To investigate the behavior of (5.22) as n→∞, we need some additional convergence
statements. Since u(n)(t)⇀ u(t) in V for all t ∈ I and since for all fixed φ ∈ V , the linear
functional v �→ (v,φ)B1

2
is bounded on V , we have

(
u(n)(t),φ

)
B1

2
−→ (

u(t),φ
)
B1

2
, ∀t ∈ I. (5.23)

On the other hand, in view of the assumed Lipschitz continuity of f , we have

∥∥∥∥ f (n)
(
τ,u(n)

(
τ − T

n

))
− f

(
τ,u(τ)

)∥∥∥∥
B1

2

=
∥∥∥∥ f
(
t j ,u(n)

(
τ − T

n

))
− f

(
τ,u(τ)

)∥∥∥∥
B1

2

� l

[∣∣t j − τ
∣∣(1 +

∥∥uj−1
∥∥
B1

2
+
∥∥u(τ)

∥∥
B1

2

)
+
∥∥∥∥u(n)

(
τ − T

n

)
−u(τ)

∥∥∥∥
B1

2

]
,

(5.24)
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for all τ ∈ (t j−1, t j], 1 � j � n, whence

∥∥∥∥ f (n)
(
τ,u(n)

(
τ − T

n

))
− f

(
τ,u(τ)

)∥∥∥∥
B1

2

� l

(
c13

n
+
∥∥∥∥u(n)

(
τ − T

n

)
−u(τ)

∥∥∥∥
B1

2

)
, (5.25)

for all τ ∈ (0,T], where c13 := T(1 + c2 +‖u‖C(I ,B1
2 (0,1))). But owing to the estimates (4.39),

(4.40), and (5.2), we have

∥∥∥∥u(n)
(
τ − T

n

)
−u(τ)

∥∥∥∥
B1

2

�
∥∥∥∥u(n)

(
τ − T

n

)
−u(n)(τ)

∥∥∥∥
B1

2

+
∥∥u(n)(τ)−u(n)(τ)

∥∥
B1

2
+
∥∥u(n)(τ)−u(τ)

∥∥
B1

2

� 2c3T

n
+

c12

n1/2
, ∀τ ∈ (0,T],

(5.26)

which in turn implies that

∥∥∥∥ f (n)
(
τ,u(n)

(
τ − T

n

))
− f

(
τ,u(τ)

)∥∥∥∥
B1

2

�
(
c13 + 2c3T + c12

)
l

n1/2
, ∀τ ∈ (0,T], (5.27)

therefore

f
(n)
(
τ,u(n)

(
τ − T

n

))
−−−→
n→∞ f

(
τ,u(τ)

)
in B1

2(0,1), ∀τ ∈ (0,T]. (5.28)

Now, due to (5.7) and (5.9), the functions |( f (n)
(τ,u(n)(τ −T/n)),φ)B1

2
| and |(u(n)(τ),φ)|

are uniformly bounded with respect to both τ and n, so the Lebesgue theorem of domi-
nated convergence may be applied to (5.28) as well as to the convergence statement (iii)
from Theorem 5.2 giving

∫ t

0

(
f

(n)
(
τ,u(n)

(
τ − T

n

))
,φ
)
B1

2

dτ −→
∫ t

0

(
f
(
τ,u(τ)

)
,φ
)
B1

2
dτ, ∀t ∈ I , (5.29)

∫ t

0

(
u(n)(τ),φ

)
dτ −→

∫ t

0

(
u(τ),φ

)
dτ, ∀t ∈ I , (5.30)

as n→∞. Then, passing to the limit n→∞ in (5.22), we obtain by (5.23), (5.29), and
(5.30) that

(
u(t)−U0,φ

)
B1

2
+
∫ t

0

(
u(τ),φ

)
dτ =

∫ t

0

(
f
(
τ,u(τ)

)
,φ
)
B1

2
dτ, (5.31)

for all φ ∈ V and t ∈ I . Finally, differentiating this last identity with respect to t recalling
that u : I → B1

2(0,1) is strongly differentiable for a.e. t ∈ I , we get the required relation
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(2.14) thanks to the relation

d

dt

(
u(t),φ

)
B1

2
=
(
du

dt
(t),φ

)
B1

2

, ∀t ∈ I , ∀φ∈V. (5.32)

Thus u weakly solves the problem (1.8)–(1.11).
Regarding the uniqueness, let us consider two weak solutions û and ũ of (1.8)–(1.11).

Subtracting the identity (2.14) written for ũ from the same identity written for û and
putting φ = û(t)− ũ(t) in the resulting relation, we get

(
du

dt
(t),u(t)

)
B1

2

+
∥∥u(t)

∥∥2 = ( f (t, û(t)
)− f

(
t, ũ(t)

)
,u(t)

)
B1

2
, ∀t ∈ I , (5.33)

where u := û− ũ. Then, integrating between 0 and t by taking into account that ((du/
dt)(t),u(t))B1

2
= (1/2)(d/dt)‖u(t)‖2

B1
2

and u(0)= 0, we derive

∥∥u(t)
∥∥2
B1

2
+ 2

∫ t

0

∥∥u(τ)
∥∥2
dτ = 2

∫ t

0

(
f
(
τ, û(τ)

)− f
(
τ, ũ(τ)

)
,u(τ)

)
B1

2
dτ

� 2
∫ t

0

∥∥ f (τ, û(τ)
)− f

(
τ, ũ(τ)

)∥∥
B1

2

∥∥u(τ)
∥∥
B1

2
dτ

� 2l
∫ t

0

∥∥u(τ)
∥∥2
B1

2
dτ, ∀t ∈ I ,

(5.34)

from where Gronwall’s lemma yields ‖u(t)‖2
B1

2
= 0, for all t ∈ I , which means that û =

ũ. �

To conclude, we give a result of continuous dependence of the solution upon the data.

Theorem 5.4. Let f ∗ : I × L2(0,1)→ L2(0,1) and U∗
0 : [0,1]→ R be two given functions

satisfying assumptions (H1)–(H3). If u∗ denotes the weak solution of problem (1.8)–(1.11)
corresponding to the pair ( f ∗,U∗

0 ) in lieu of ( f ,U0), then the inequality

∥∥u(t)−u∗(t)
∥∥2
B1

2
+
∫ t

0

∥∥u(τ)−u∗(τ)
∥∥2
dτ

�
∥∥U0−U∗

0

∥∥2
B1

2
+
∫ t

0

∥∥ f (τ,u(τ)
)− f ∗

(
τ,u∗(τ)

)∥∥2
B1

2
dτ

(5.35)

holds for all t ∈ I .

Proof. Subtract identities (2.14) for u and u∗, put φ = u(t)− u∗(t), and integrate the
resulting relation over (0, t). we have:

1
2

∥∥u(t)−u∗(t)
∥∥2
B1

2
− 1

2

∥∥u(0)−u∗(0)
∥∥2
B1

2
+
∫ t

0

∥∥u(t)−u∗(t)
∥∥2
dτ

=
∫ t

0

(
f
(
τ,u(τ)

)− f ∗
(
τ,u∗(τ)

)
,u(t)−u∗(t)

)
B1

2
dτ,

(5.36)
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hence

∥∥u(t)−u∗(t)
∥∥2
B1

2
+ 2

∫ t

0

∥∥u(t)−u∗(t)
∥∥2
dτ

�
∥∥U0−U∗

0

∥∥2
B1

2
+ 2

∫ t

0

∥∥ f (τ,u(τ)
)− f ∗

(
τ,u∗(τ)

)∥∥
B1

2

∥∥u(t)−u∗(t)
∥∥
B1

2
dτ.

(5.37)

The application of (2.12) to the second term in the right-hand side leads to

∥∥u(t)−u∗(t)
∥∥2
B1

2
+2
∫ t

0

∥∥u(t)−u∗(t)
∥∥2
dτ

�
∥∥U0−U∗

0

∥∥2
B1

2
+ε
∫ t

0

∥∥ f (τ,u(τ)
)− f ∗

(
τ,u∗(τ)

)∥∥2
B1

2
dτ +

1
ε

∫ t

0

∥∥u(t)−u∗(t)
∥∥2
B1

2
dτ,

(5.38)

from which inequality (5.35) follows by taking ε = 1. This achieves the proof. �
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