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This paper is concerned with the nonlinear Schrodinger equation with an unbounded po-
tential i, = — A o+ V(x)p — ulo|? Lo —Alpl97 g, x € RN, t > 0, where y > 0,1 >0, and
1 < p<q<1+4/N.The potential V(x) is bounded from below and satisfies V' (x) — oo as
|x| — oo. From variational calculus and a compactness lemma, the existence of standing
waves and their orbital stability are obtained.
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1. Introduction

In this paper, we consider the nonlinear Schrodinger equation with an unbounded po-
tential

igr=—-No+V(xX)p—ulolPlop—Agli g, xeRN, t>0, (1.1)

where 4 >0, 1 >0, and 1 < p < q < 1+4/N. The potential V(x) is bounded from be-
low and satisfies V(x) — oo as |x| — co. Equation (1.1) has its physical background. For
example, when V(x) = |x|?, it models the Bose-Einstein condensate with attractive inter-
particle interactions under magnetic trap [2, 7, 11, 17, 20].

When |D*V| is bounded for all |«| > 2, in terms of the smoothness of the time 0
of Schrodinger kernel for potentials of quadratic growth provided by Fujiwara [9], Oh
[13] established the local well-posedness of (1.1) in the corresponding energy space.
Since Yajima [19] showed that for superquadratic potentials, the Schrédinger kernel is
nowhere C!, we see that quadratic potentials are the highest-order potential for local
well-posedness of (1.1). Thus the result of Oh [13], the local well-posedness of nonlinear
Schrodinger equation with the potential function V(x), is indeed sharp.

We are interested in the following standing waves of (1.1):
iwt

o(t,x) = e u(x), (1.2)
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2 Orbital stability

where w € R is a parameter and u(x) is the solution of the nonlinear elliptic equation
—Au+V(x)u+wu—plul? lu—AulT'u=0. (1.3)

The interesting topics to investigate standing waves are pursued strongly by many physi-
cians and mathematicians [4, 3, 12, 14, 16].

For (1.3), Ding and Ni [8] by using “mountain pass” and comparison arguments got
the existence of positive solutions. Rabinowitz [15] and Zhang [20, 21] also studied the
existence of the solutions for (1.3) by the method of variation. Hirose and Ohta [10]
studied the uniqueness of the solution for (1.3).

In this paper, for 1 < p < g < 1+4/N, we establish the existence of the standing waves
with the ground state of (1.1) by variational calculus which originates in Berestycki [1],
Cazenave and Lions [6], Weinstein [18], and Zhang [20-23]. Furthermore, we prove the
standing waves are orbitally stable.

This paper is organized as follows. In the second section, we give some necessary pre-
liminaries which include the compactness lemma. In the third section, we prove the exis-
tence of the standing waves. And in the last section, we obtain their orbital stability.

2. Preliminaries
For (1.1), we impose the initial value as follows:

¢(x,0) = go(x), x€ RV, (2.1)
In the course of nature, we set

H:= {uEHl([RN):JV(x)Iulzdx<oc>}. (2.2)

Here and hereafter, for simplicity, we denote [zv dx by [ dx. H becomes a Hilbert space,
continuously embedded in H'(RY), when endowed with the inner product

(P v = fwvw 0¥ + (V(x) - inf V(x)) g7 dx, (2.3)

whose associated norm is denoted by || - || .

Lemma 2.1 [5, 13]. Let V(x) satisfy that inf V(x) > —oo and for each |a| = 2, |[D*V| is
bounded, 1 < p < q<1+4/N, and ¢o € H. Then there exists a unique solution ¢(t,x) of the
Cauchy problem (1.1), (2.1) in ([0, c0); H), and ¢(t, -) satisfies the following two conserva-
tion laws of the mass

M(g) = [ lpPdx = | |go| dx = M(g0) (2.4)

and energy

2 21
E(p) = j|w|2 FV)lgl? - p—flmnp+1 - lerid=El) @3)

forallt € [0,00).
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LEMMA 2.2, If V(x) = 0 as x| — oo, let 1< p< (N +2)/(N —2)when N=3and1 < p<co
when N = 1,2. Then the embedding H — LP*1(RN) is compact.

Proof. We firstly show it for p = 1.
Since H = H'(RY) continuously, it follows from the Sobolev embedding theorem that
H = LP*1(RN) continuously. Now let {u,}, C H be a sequence such that

u, — 0 weaklyin H. (2.6)
Then we have
u, — 0 weaklyin H'(RN). (2.7)

Moreover, we have M := sup,, ||u,llg < co. Let € > 0. Then there exists B > 0 such that
1/V(x) < ¢ for |x| = B. For B, from (2.7), we have

u, — 0 in L*({|x| < B}). (2.8)
It follows that there exists m > 0 such that

J lus|’dx<e forn=m. (2.9)
|x|<B

Then when n > m, we get

J|un|2dx:J |un|2dx+J |un|2dx
|x|<B |x|=B

(2.10)
§e+£J V(x)|un | dx < e +eCM?.
|x|=B
Here and hereafter C denotes various positive constant. Thus we get that
u, — 0 in L*(RN). (2.11)

It follows that the embedding H — L*(RY) is compact.
For p > 1, using the conclusion of p = 1 and the Gagliardo-Nirenberg inequality,

) 1-N(p-1)/2
laall 35 gy = CU ull s el oy 7, (2.12)

we can get the conclusion immediately. O
3. The existence of standing waves
Firstly, we define a variational problem as follows:

d,:= inf E(u) foranyp>0. (3.1)

P U H\ (0} uPdx=p} () vP

TueoREM 3.1. If1< p<q<1+4/N, then

d, = min E(u) foranyp >0. (3.2)

{ueH\{0}:] |ul2dx=p}
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Proof. Choose the minimizing sequence {u,},cn of the variational problem (3.1). There-
fore, we have

u, € H\{0}, E(u,) —d asn— oo, (3.3)

J |, |*dx = p. (3.4)

By the Gagliardo-Nirenberg inequality and (3.4), for 1 < p < g < 1+4/N, one has

31 02
J|un|p+ldst<J|Vun|2dx> , J{un|q+1dst(I|Vun|2dx) ,  (3.5)

where 0 < 0; < 0, < 1. Hence, from (3.3) and (3.5), we have

2
C [V + Vi) fa* = 2 = 2 |
p+1 q+1

> 2 [ 1V Pax-c( | Iwnlzdx)el +3 | 1Vl Pax-c( | |Vu,,\2dx>92 (3.6)

+J (V(x) —inf V(x)) | un | “dx+ Jian(x) | uy | *dx.

Let f(x) = x — Cx% and x > 0, where 6 € (0,1) and C > 0. One has
(1°) when x = 0 or x = CY1=9 f(x) = 05
(29 f'(x) =1-COx%~'and f'(CV1-9)=1-6>0;
(3% f"(x) =CO(1—0)x%2>0asx>0.
From the Taylor expansion of f(x),

@)
2

(x —xo)z, (3.7)

fx) = f(x0) + f"(x0) (x = x0) +
where £ is between xy and x, and choosing xy = CY1-9 one has
f(x)=(1-0)x—(1-0)C”1-9, (3.8)
Therefore, by (3.4), (3.6), and (3.8), it yields that {u,},en is bounded in H. Therefore,
there exists u € H such that the subsequence of {1, } ,en Which we still denote by {u,} nen
satisfies
U, — u inH. (3.9

By Lemma 2.2, one has

u, — u in L>(RYN),

3.10
u, — u in LPYY(RYN), in LITI(RY). (3.10)
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Therefore, it follows from (3.4) and (3.10) that

Jlulzdxzp, (3.11)

which implies that E(u) > d,. From (3.10) and with
Flu) = J 1Vul? + (V(x) — inf V(x)) u2dx (3.12)

being coercive and convex, one has

F(u) < liPl inf F(u,). (3.13)
From (3.3), (3.9), (3.10), (3.11), and (3.13), it follows that E(u) = d,. The proof is com-
plete. O

For any p >0, let 0, denote the set of the minimizers of the variational problem (3.2).
Then for any u € Q,, by Theorem 3.1, there must exist a Lagrange multiplier w such that

—Au+V(x)u+wu—plul? lu—AulTu=0. (3.14)

It follows that ¢(f,x) = e™'u(x) is the standing wave solution of (1.1), which also called
ground state since u is a minimizer of (3.2). Thus e™'u(x) is the orbit of u. It is obvious
that for any ¢t > 0, if u is a solution of (3.2), then e™'u is also a solution of (3.2), which
yields e™'u € Q.

4. Orbital stability of standing waves

Now in terms of Cazenave and Lion’s argument [6], we have the following orbital stability.

THEOREM 4.1. Assume that V (x) satisfies that inf V> —oco, V(x) — oo as |x| — oo and for
each |a| = 2, |D*V| is bounded. Let 1 < p < q < 1 +4/N. Then the standing waves of the
Cauchy problem (1.1), (2.1) are orbitally stable. In other words, for arbitrary € > 0, there
exists a 0 > 0 such that for any ¢y € H, if

ulg£P||¢0_u||H<0’ (4.1)
then

1€n£ llo(x,t) —u(x)||y <e Vi=0. (4.2)

Proof. Firstly, for any ¢y € H, from Lemma 2.1, the corresponding solution ¢(x,t) of the
Cauchy problem (1.1), (2.1) is global and bounded in H. Now arguing by contradic-
tion, if the conclusion of the theorem does not hold, then there exist a ¢ > 0, a sequence
{96} nen C H such that

1
o
inf =l < (43)
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and a sequence {t,},en such that

ulgg Hq)n(tn:') - u()”H = &, (4.4)

where ¢, denotes the solution of the Cauchy problem (1.1), (2.1) with the initial value
-
From (4.3) and Lemma 2.2, we have
M(g) = | 941 dx — [luldx,
E(¢y) — E(u).

(4.5)

It follows from (4.5) and the conservation laws in Lemma 2.1 that {¢,(t,-)},en is @ min-
imizing sequence for the problem (3.2). Therefore, there exists a u € €, such that

l|@n(tns-) —ully — 0 asn— oo. (4.6)
This is contradictory with (4.4). The proof is complete. O

Acknowledgment

This work is supported by National Natural Science Foundation (10271084), SZD0406,
and the Emphasis Scientific Research Foundation of Sichuan Province.

References

[1] H. Berestycki and T. Cazenave, Instabilité des états stationnaires dans les équations de Schrodinger
et de Klein-Gordon non linéaires, Comptes Rendus des Séances de I’Académie des Sciences. Série
I. Mathématique 293 (1981), no. 9, 489492 (French).
[2] C. C.Bradley, C. A. Sackett, and R. G. Hulet, Bose-Einstein condensation of Lithium: observation
of limited condensate number, Physical Review Letters 78 (1997), 985-989.
[3] R. Carles, Critical nonlinear Schridinger equations with and without harmonic potential, Mathe-
matical Models & Methods in Applied Sciences 12 (2002), no. 10, 1513-1523.
, Remarks on nonlinear Schrédinger equations with harmonic potential, Annales Henri
Poincaré. A Journal of Theoretical and Mathematical Physics 3 (2002), no. 4, 757-772.
[5] T. Cazenave, An Introduction to Nonlinear Schridinger Equations, Textos de Metodos Matemati-
cos, vol. 26, IMUFR]J, Rio de Janeiro, 1996.
[6] T. Cazenave and P.-L. Lions, Orbital stability of standing waves for some nonlinear Schrodinger
equations, Communications in Mathematical Physics 85 (1982), no. 4, 549-561.
[7] E Dalfovo, S. Giorgini, L. P. Pitaevskii, and S. Stringari, Theory of Bose-Einstein condensation in
trapped gases, Reviews of Modern Physics 71 (1999), no. 3, 463-512.
[8] W.Y.Ding and W.-M. Ni, On the existence of positive entire solutions of a semilinear elliptic equa-
tion, Archive for Rational Mechanics and Analysis 91 (1986), no. 4, 283-308.
[9] D. Fujiwara, Remarks on convergence of the Feynman path integrals, Duke Mathematical Journal
47 (1980), no. 3, 559-600.
[10] M. Hirose and M. Ohta, Structure of positive radial solutions to scalar field equations with har-
monic potential, Journal of Differential Equations 178 (2002), no. 2, 519-540.
[11] Y. Kagan, A. E. Muryshev, and G. V. Shlyapnikov, Collapse and Bose-Einstein condensation in a
trapped Bose gas with negative scattering length, Physical Review Letters 81 (1998), 933-937.




[12]

Guanggan Chenetal. 7

H. A. Levine, Instability and nonexistence of global solutions to nonlinear wave equations of the
form Puy = —Au+ & (u), Transactions of the American Mathematical Society 192 (1974), 1-
21.

Y.-G. Oh, Cauchy problem and Ehrenfest’s law of nonlinear Schrodinger equations with potentials,
Journal of Differential Equations 81 (1989), no. 2, 255-274.

L. E. Payne and D. H. Sattinger, Saddle points and instability of nonlinear hyperbolic equations,
Israel Journal of Mathematics 22 (1975), no. 3-4, 273-303.

P. H. Rabinowitz, On a class of nonlinear Schrodinger equations, Zeitschrift fir Angewandte
Mathematik und Physik. ZAMP 43 (1992), no. 2, 270-291.

W. A. Strauss, Nonlinear Wave Equations, CBMS Regional Conference Series in Mathematics,
vol. 73, American Mathematical Society, Rhode Island, 1989.

T. Tsurumi and M. Wadati, Collapses of wave functions in multidimensional nonlinear Schrodinger
equations under harmonic potential, Journal of the Physical Society of Japan 66 (1997), no. 10,
3031-3034.

M. I. Weinstein, Nonlinear Schrodinger equations and sharp interpolation estimates, Communi-
cations in Mathematical Physics 87 (1982/1983), no. 4, 567-576.

K. Yajima, On fundamental solution of time dependent Schridinger equations, Advances in Dif-
ferential Equations and Mathematical Physics (Atlanta, GA, 1997), Contemp. Math., vol. 217,
American Mathematical Society, Rhode Island, 1998, pp. 49-68.

J. Zhang, Stability of attractive Bose-Einstein condensates, Journal of Statistical Physics 101
(2000), no. 3-4, 731-746.

, Stability of standing waves for nonlinear Schrodinger equations with unbounded poten-
tials, Zeitschrift fiir Angewandte Mathematik und Physik. ZAMP 51 (2000), no. 3, 498-503.

, Cross-constrained variational problem and nonlinear Schrodinger equation, Foundations
of Computational Mathematics-Proceedings of the Smalefest (Hong Kong, 2000), World Scien-
tific Publishing, New Jersey, 2002, pp. 457—469.

, On the standing wave in coupled non-linear Klein-Gordon equations, Mathematical
Methods in the Applied Sciences 26 (2003), no. 1, 11-25.

Guanggan Chen: College of Mathematics and Software Science, Sichuan Normal University,
Chengdu 610066, China
E-mail address: chenguanggan@hotmail.com

Jian Zhang: College of Mathematics and Software Science, Sichuan Normal University,
Chengdu 610066, China
E-mail address: jianzhan@mail.sc.cninfo.net

Yunyun Wei: College of Information Management, Chengdu University of Technology,
Chengdu 610059, China
E-mail address: yanyunwei@sina.com


mailto:chenguanggan@hotmail.com
mailto:jianzhan@mail.sc.cninfo.net
mailto:yunyunwei@sina.com

	1. Introduction
	2. Preliminaries
	3. The existence of standing waves
	4. Orbital stability of standing waves
	Acknowledgment
	References

