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We consider an (s,S) inventory system with random lead time and repeated demands
of unsatisfied demands from the orbit. Whenever the inventory level falls to the level s,
an order is placed to bring the level to S. The quantity ordered is M = S− s. Demands
to the system are served immediately if there is a positive inventory. Otherwise it will
go to a pool of unsatisfied customers called orbit. After a random amount of time, that
demand is retried for service. We assume a Markovian setup for the time between con-
secutive arrivals, replenishments, and retrials. We obtained the condition for ergodicity
of the system, steady state system size probabilities, expected length of the busy period of
the system, expected inventory level, expected number of customers waiting in the orbit,
expected waiting times, and so forth. A control problem is studied and some numerical
illusrtations are provided.

Copyright © 2006 P. V. Ushakumari. This is an open access article distributed under the
Creative Commons Attribution License, which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

1. Introduction

The (s,S) inventory system with positive lead time has been studied by several researchers.
A brief account of the work carried out in this field can be seen from [4–6, 8], and so forth.
In most of the inventory models considered so far, demanded items are directly delivered
from the stock if available. The demands occurring during the stock-out period are either
lost (lost sales) or satisfied only after the arrival of ordered items (backlogging). In the
latter case it is assumed that either all or a prefixed number of demands occurring during
the stock-out period (partial backlogging) are satisfied. See [3, 9–11] for a review.

In all these articles, the authors considered that demands to the system are either lost or
served by backlogging. However, in some applications, the demands during the stock-out
period go to an orbit of unsatisfied customers and after a random amount of time, retry
for service. We can see such situations in production inventory systems with positive lead
times. This type of retrial inventory systems has not been studied much in the literature.
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Numerical analysis of the (s,S) inventory system with repeated attempts has been studied
recently in [1]. In that work the authors proceeded with an algorithmic analysis of the
system. In the context of reliability, [7] studied a k-out-of-n system with repair and retrial
of failed units from the orbit. In the queuing situation, retrial queues have been studied
extensively in the literature. A detailed account of the work carried out in this field can be
seen in [2].

In this paper, we have considered (s,S) (s < S) inventory system in which random lead
time for quantities purchased are allowed. Whenever the inventory level falls to s, an
order is placed to bring the level to S. The quantity ordered is M = S− s. The maximum
inventory level S is assumed to be greater than 2s. There is a positive lead time for the
fulfillment of orders placed and the inventory level can be reduced to zero during this
period. Demands to the system are served immediately if there is a positive inventory.
Each demand is only for one item. If at the time of a demand the inventory level is zero
(i.e., during the dry period) that demand is not satisfied, instead it goes to an orbit of
unsatisfied customers. These unsatisfied demands will retry for service after a random
amount of time. We assume a Markovian setup here. Interdemand times are assumed
to follow an exponential distribution with rate λ(> 0). The time between consecutive
replenishments is assumed to follow exponential distribution with rate μ(> 0). Only one
order for replenishment is pending at any given time. The time between successive retrials
is also random and follows exponential distribution with rate αj(> 0) when j demands
in the orbit. The interarrival times, the inter-retrial times, and times between consecutive
replenishments are assumed to be independent of each other.

Here we attempt to get a closed form solution of the system. We obtained the sufficient
condition for ergodicity of the system. Also we obtained the steady state system size prob-
abilities, expected length of busy period of the system, expected waiting time in the orbit,
expected inventory level, expected number of waiting customers, and so forth. A control
problem is studied and optimal values of the control variates s and S are investigated.

The paper is organized as follows. Section 2 gives the model description and in Sec-
tion 3, we obtained condition for ergodicity of the system. Section 4 gives the steady state
system size probabilities, marginal distributions of the inventory level and waiting cus-
tomers, average inventory level, expected number of waiting customers in the orbit, and
so forth. Section 5 gives the busy period analysis and Section 6 discusses waiting time
distribution and the expected waiting times in the orbit. In Section 7 an optimization
problem is studied and optimum values of the control variates are obtained. Some nu-
merical illustrations are also provided in this section.

2. Model description

We assume that the interarrival times between the primary demands follow an expo-
nential disrtibutiion with rate (λ) and that between consecutive replenishments are also
exponential with rate μ. Also the time between consecutive retrials is exponential with
rate αj when j demands in the orbit. Define I(t) and N(t) as the inventory level and the
number of customers in the orbit at time t. Then the process {(I(t),N(t)), t ≥ 0} forms
a bivariate Markov process over the state space E = {0,1,2, . . . ,s,s+ 1, . . . ,S}×{0,1,2, . . .}.
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Its infinitesimal transition rates q(i, j) are given by,
(1) for s < i≤ S, j ≥ 1,

q(i, j)(n,m) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

λ if (n,m)= (i− 1, j),

jαj if (n,m)= (i− 1, j− 1),

−(λ+ jαj +μ
)

if (n,m)= (i, j),

(2.1)

(2) for 0 < i≤ s, j ≥ 1,

q(i, j)(n,m) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

λ if (n,m)= (i− 1, j),

jαj if (n,m)= (i− 1, j− 1),

μ if (n,m)= (i+M, j),

−(λ+ jαj +μ
)

if (n,m)= (i, j),

(2.2)

(3) for i= 0, j ≥ 1,

q(i, j)(n,m) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

μ if (n,m)= (M, j),

λ if (n,m)= (i, j + 1),

−(λ+μ) if (n,m)= (i, j),

(2.3)

(4) for 0 < i≤ s, j = 0,

q(i, j)(n,m) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

λ if (n,m)= (i− 1, j),

μ if (n,m)= (i+M, j),

−(λ+μ) if (n,m)= (i, j),

(2.4)

(5) for i= 0, j = 0,

q(i, j)(n,m) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

μ if (n,m)= (M, j),

λ if (n,m)= (i, j + 1),

−(λ+μ) if (n,m)= (i, j).

(2.5)
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3. Ergodicity

3.1. Sufficient condition for ergodicity. Sufficient condition for ergodicity of this sys-
tem can be determined with the help of the criteria based on mean drifts. The following
theorem [12] is most convenient.

Theorem 3.1. Let X(t) be a Markov process with discrete state space S and the rates of
transition qsp, s, p ∈ S, Σpqsp = 0. Assume that there exists

(i) a function φ(s), s∈ S, which is bounded below (called Lyapunov test function),
(ii) a positive number ε such that the variable ys = Σp �=s qsp(φ(p)−φ(s)) <∞ for all s

in S,
(iii) ys ≤−ε for all s in S except perhaps a finite number of states.

Then the process X(t) is regular and ergodic.

Thus for the model under investigation, we consider the following Lyapunov function
φ(i, j) = j − a i, where “a” is a nonnegative parameter which will be determined later.
Then the mean drift yi j is given by

yi j =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

aλ+ jαj(a− 1) if 0 < i≤ S, j ≥ 1,

λ− aμM if i= 0, j ≥ 0,

aλ if s < i≤ S, j = 0,

a(λ−Mμ) if 0 < i≤ s, j = 0.

(3.1)

Since for all i, there exists

lim
j→∞

yi j =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(a−1)∞ if 0 < i≤ S,

λ− aμM if i= 0,

a(λ−Mμ) if 0 < i≤ s.

(3.2)

The assumptions of Tweedie’s theorem hold if and only if all variables are negative.
That is, a− 1 < 0, λ− aμM < 0, and λ−Mμ < 0. These conditions represent a set of lin-
ear inequalities for the unknown parameter a. Clearly, they can be written in the form
(λ/Mμ) < a < 1. Such an a can be found if and only if the interval (λ/Mμ,1) is not empty.
That is, if and only if λ < Mμ which is the sufficient condition for ergodicity of this
model.
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4. Steady state results

4.1. Formulation. Define P(i, j, t)=P(I(t)= i, N(t)= j/(I(0)= S,N(0)= 0), (i, j)∈ E.
The forward Kolmogorov differential difference equations associated with the Markov

process are as follows:

d

dt
P(S, j, t)=−(λ+ jαj

)
P(S, j, t) +μP(s, j, t), j ≥ 1,

d

dt
P(i, j, t)=−(λ+ jαj

)
P(i, j, t) + ( j + 1)αj+1P(i+ 1, j + 1, t) + λP(i+ 1, j, t)

+μP(i−M, j, t), S− s≤ i≤ S− 1, j ≥ 1, M = S− s > s,

d

dt
P(i, j, t)=−(λ+ jαj +μ

(
1− δi

))
P(i, j, t) + ( j + 1)αj+1P(i+ 1, j + 1, t)

+ λP(i+ 1, j, t), 0 < i≤ S− s− 1, j ≥ 1,

d

dt
P(S,0, t)=−λP(S,0, t) +μP(s,0, t),

d

dt
P(i,0, t)=−λP(i,0, t) +α1P(i+ 1,1, t) + λP(i+ 1,0, t)

+μ
(
1− δi

)
P(i−M,0, t), s < i≤ S− 1,

d

dt
P(i,0, t)=−λP(i,0, t) +α1P(i+ 1,1, t) + λP(i+ 1,0, t)

+μ
(
1− δi

)
P(i−M,0, t), s < i≤ S− 1,

d

dt
P(0, j, t)=−(λ+μ)P(0, j, t) + ( j + 1)αj+1P(1, j + 1, t)

+ λ
[
P(0, j− 1, t) +P(1, j, t)

]
, j ≥ 1,

(4.1)

where

δi =
⎧
⎨

⎩

1 if s+ 1≤ i≤ S− s− 1,

0 otherwise.
(4.2)

Let the initial condition be P(S,0,0) = 1 and P(i, j,0) = 0 for all i, j not all zero. The
above equations will be solved using Laplace transforms.

4.2. Method of solution. Denote the Laplace transform of F(t) by F(z). Let P(i, j,z) =
∫
e−ztP(i, j, t)dt be the Laplace transform of P(i, j, t). From (4.1), we have

(
z+ λ+ jαj

)
P(S, j,z)= μP(i, j,z), j ≥ 1, (4.3)
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(
z+ λ+ jαj

)
P(i, j,z)= ( j + 1)αj+1P(i+ 1, j + 1,z) + λP(i+ 1, j + 1,z)

+μP(i−M, j,z), S− s≤ i≤ S− 1, j ≥ 1,
(4.4)

(
z+ λ+μ

(
1− δi

)
+ jαj

)
P(i, j,z)

= ( j + 1)αj+1P(i+ 1, j + 1,z) + λP(i+ 1, j,z), 0 < i≤ S− s− 1,
(4.5)

(λ+ z)P(S,0,z)−P(S,0,0)= μP(s,0,z), (4.6)

(λ+ z)P(i,0,z)= α1P(i+ 1,1,z) + λP(i+ 1,0,z)

+μ
(
1− δi

)
P(i−M,0,z), s < i≤ S− 1,

(4.7)

(λ+μ+ z)P(i,0,z)= α1P(i+ 1,1,z) + λP(i+ 1,0,z), 0 < i≤ s, (4.8)

(λ+μ+ z)P(0, j,z)= λ
[
P(0, j− 1,z) +P(1, j,z)

]

+ ( j + 1)αj+1P(1, j + 1,z), j ≥ 1.
(4.9)

Equation (4.3) can be used to express P(i, j,z) in terms of P(0,0,z) by solving (4.3) as a
difference equation in i and j. Set αj = α/ j. Following the standard difference equation
technique, set

P(i, j,z)= y− jP(i,0,z)= y−(i+ j)P(0,0,z), i, j ≥ 0. (4.10)

Equation (4.10) to be a solution of (4.3), we must have from (4.3),

μyM − (z+ λ+α)= 0. (4.11)

By Rouche’s theorem, (4.11) has (M− 1) roots inside and one root outside the unit circle
|y| = 1. Let the outside root be y0(z). Hence

P(i, j,z)= (y0(z)
)−(i+ j)

P(0,0,z), i≥ 0, j ≥ 0. (4.12)

From (4.8),

P(i+ 1,0,z)=
[

(z+ λ+μ)y0(z)
α+ λy0(z)

]i+1

P(0,0,z), 0≤ i≤ s. (4.13)
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From (4.7),

P(i+ 1,0,z)=
[
y0(z)(z+ λ)
α+ λy0(z)

]i[ (α+ λy0(z))(z+ λ+μ)
λ+ z

]s+1

P(0,0,z), s < i≤ S− s− 1,

P(i+ 1,0,z)= y0(z)
α+ λy0(z)

{(
z+ λ+μ)
z+ λ

)s+1

(z+ λ)
(
y0(z)(z+ λ)

)i

−μ
[
y0(z)(z+ λ+μ)
α+ λy0(z)

]i−M}

P(0,0,z), S− s≤ i≤ S− 1,

P(0, j,z)=
(
y0(z)

)− j

λ+μ+ z

(
λ
(
1 + y0(z)

)
+μ+ z

)
P(0,0,z), j ≥ 1,

P(i, j,z)=
(
y0(z)

)− j
(λ+μ+ z)

(z+ λ+μ+α)

[
λ+μ+ z

α+ λy0(z)

]i

P(0,0,z), 0 < i≤ s, j ≥ 1,

P(i, j,z)= (y0(z)
)i− j

(λ+ z)i+1−s(α+ λy0(z)
)s−i

×(λ+μ+ z)sP(0,0,z), s < i≤ S− s− 1, j ≥ 1,

P(S− s, j,z)=
{

μ

α−μ

z+ λ+μ

z+ λ+α

(
y0(z)

)− j

z+ λ+α+μ

[

1−
(
z+ λ+μ

z+ λ+α

)s]

+

(
y0(z)

)− j

z+ λ+μ

(
λ
(
1 + y0(z)

)
+μ+ z

)
}

P(0,0,z), j ≥ 1,

P(S− i, j,z)= μ

α−μ

(z+ λ+μ)2

(z+ λ+α)(z+ λ+μ+α)

(
z+ λ+μ

α+ λy0(z)

)s(
y0(z)

)− j

(
λ+α

(
y0(z)

)−1

z+ λ+α

)

×
[

1−
(
z+ λ+μ

z+ λ+α

)i+1
]

P(0,0,z), 0 < i≤ s− 1, j ≥ 1,

P(S, j,z)= μ(z+ λ)
z+ λ+α

(
y0(z)

)s− j
(λ+μ+ z)sP(0,0,z), j ≥ 1.

(4.14)

4.3. Steady state system size probabilities. The steady state distribution of the system
size can be obtained by applying the final value theorem. Let q(i, j) = limz→0 zP(i, j,z),
(i, j) ∈ E and k = limz→0 y0(z). Then k satisfies the equation μkM − (λ + α) = 0 which
gives k = ((λ+α)/μ)1/M . Then we have

q(i,0)=
[
k(λ+μ)
α+ kλ

]i

q(0,0), 0 < i≤ s+ 1,

q(i,0)=
(

kλ

α+ kλ

)i−1[

(α+ kλ)
(
λ+μ

λ

)]s

q(0,0), s+ 1 < i≤ S− s,
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q(i,0)= k

α+ kλ

{(
λ+μ

λ

)s

(kλ)i−1λ−μ
(
kλ+μ

α+ kλ

)i−1−M}

q(0,0), S− s+ 1≤ i≤ S,

q(0, j)= k− j

λ+μ

(
λ(1 + k) +μ

)
q(0,0), j ≥ 1,

q(i, j)= k− j(λ+μ)2

(λ+μ+α)(kλ+α)
q(0,0), 0 < i≤ s, j ≥ 1,

q(i, j)= ki− jλi+1−s(α+ kλ)s−i(λ+μ)q(0,0), s < i≤ S− s− 1, j ≥ 1,

q(S− s, j)=
{

μ

α−μ

λ+μ

λ+α

k− j

λ+μ+α

[

1−
(
λ+μ

λ+α

)s]

+
k− j

(
λ(1 + k) +μ

)

λ+μ

}

q(0,0), j ≥ 1,

q(S− i, j)= μ

α−μ

λ+μ

λ+α

λ+μ

λ+μ+α

(
k(λ+μ)
α+ kλ

)s

k− j
(
λ+αk−1

λ+α

)(

1−
(
λ+μ

λ+α

)i+1
)

q(0,0),

i= 1,2, . . . ,s− 1, j ≥ 1,

q(S, j)= λμ

λ+α
ks− j(λ+μ)q(0,0), j ≥ 1.

(4.15)

q(0,0) can be obtained in such a way that
∑S

i=0

∑∞
j=0 q(i, j) = 1, which gives q(0,0) as

q(0,0)= (1 +T1 +T2 +T3 +T4)−1, where

T1 = k(λ+μ)
α+ (k− 1)λ+μ

[

1−
(
λ+μ

α+ kλ

)s]

+
kλ

α

[
k(λ+μ)

]s

[

1−
(

kλ

α+ kλ

)M−s−1
]

+
k

α+ kλ

(
λ+μ

λ

)s

(kλ)M
[

1− (kλ)s

1− kλ

]

,

T2 = λ(1 + k)
(k− 1)(λ+μ)

− kμ

(α+ kλ)(α− kμ)

(

1−
(
k(λ+μ)
(α+ kλ)

)s)

+
k
(
ks− 1

)
(λ+μ)2

(k− 1)2(λ+μ+α)(α+ kλ)
+

λ2(λ+μ)
[
α+ kλ)s(k− 1)

(
α+ (k− 1)λ

] ,

T3 = μ

α−μ

λ+μ

λ+α

(
1− ((λ+μ)/(λ+α)

)s)

(k− 1)(λ+μ+α)
+

λ(1 + k) +μ

(k− 1)(λ+μ)
+

λμks(λ+μ)s

(λ+α)(k− 1)
,

T4= μ(λ+μ)2

(α−μ)(λ+α)(λ+μ+α)

[
k(λ+μ)
α+kλ

]s α+kλ
k
(
k−1)(α+λ)

[

s− (λ+μ)2

(λ+α)(α−μ)

(

1−
(

(λ+μ)
λ+α

)s+1
)]

.

(4.16)

4.4. Marginal distributions. Let Q(1)
i and Q(2)

j denote the marginal distributions of the
inventory level and number of waiting customers in the orbit, respectively.
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4.4.1. Distribution of the inventory level. We haveQ(1)
i =∑∞

j=0 q(i, j). Then from the above
set of steady state probabilities we can obtain

Q(1)
i =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[(
k(λ+μ)
α+ kλ

)i

+
(λ+μ)2

(λ+μ+α)(kλ+α)(k− 1)

]

q(0,0), 0 < i≤ s,

[

k
(
λ+μ

α+ kλ

)s+1

+
[

(α+ kλ)
(

1 +
μ

λ

)]s( kλ

α+ kλ

)i−1

+
(kλ)i

(k− 1)λs−1

(λ+μ)
(α+ kλ)i−s

+
μ(λ+μ)

(α−μ)(α+ λ)(λ+μ+α)

×
(

1−
(
λ+μ

λ+α

)s)

+
μ+ (k+ 1)λ

(λ+μ)(k− 1)

]

q(0,0), s+ 1≤ i≤ S− s,

[
kλ

α+ kλ

(
λ+μ

λ

)s

(kλ)i−1− kμ

α+ kλ

(
k(λ+μ)
α+ kλ

)i−1−M

+
μ(λ+μ)2

(k− 1)(α−μ)(λ+α)(λ+α+μ)

(
k(λ+μ)
α+ kλ

)s

×
(

kλ+α
k(λ+α)

)(

1−
(
λ+μ
λ+α

)i+1
)

+
λμ

λ+α

(
k(λ+μ)

)s

k−1

]

q(0,0), S−s+1≤ i≤S,

[

1 +
(k+ 1)λ+μ

(k− 1)(λ+μ)

]

q(0,0), i= 0.

(4.17)

4.4.2. Distribution of the waiting customers. We have Q(2)
j =∑S

i=0 q(i, j). Then

Q(2)
j =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
(k+ 1)λ+μ

λ+μ
+
k(1− ks)

1− k

(λ+μ)2

(λ+μ+α)(kλ+α)
+

λ2(λ+μ)
α+ (k− 1)λ

[

1−
(

λ

α+ kλ

)M−s−1
]

+
μ(λ+μ)

(α−μ)(λ+μ)(λ+μ+α)

(

1−
(
λ+μ

λ+α

)s)

+
(k+ 1)λ+μ

λ+μ

+
μ(λ+μ)2

(α−μ)(λ+μ+α)

(
k(λ+μ)
kλ+α

)s (kλ+α)(α−μ)
λ+α

·
[

(s− 1)(α−μ)−
(
λ+μ

λ+α

)2
(

1−
(
λ+μ

λ+α

)s−1
)]]

q(0,0), j ≥ 1,

[

1+
λ+μ

α+ (k− 1)λ+μ

(

1−
(
λ+μ

α+ kλ

)s+1
)

+
[
kλ(λ+μ)

]s
[

1+
kλ

α

][

1−
(

kλ

α+ kλ

)M−s]

+
(kλ)S−s+1

α+ kλ

(

1 +
μ

λ

)s(1− (kλ)s

1− kλ

)

− kμ

α− kμ

[

1−
(
k(λ+μ)
α+ kλ

)s
]]

q(0,0), j = 0.

(4.18)
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4.5. Expected number of customers in the orbit. Let E(O) denote the expected number
of customers in the orbit. Then E(O)=∑∞

j=1 jQ
2
j . Then we can obtain it as

E(O)= k

(k− 1)2

{
(k+ 1)λ+μ

λ+α
+

k(1− k)(λ+μ)2

(1− k)(λ+μ+α)(kλ+α)

+
λ2(λ+μ)

α+ (k− 1)λ

[

1−
(

λ

α+ kλ

)M−s−1
]

+
μ(λ+μ)

(α−μ)(λ+α)(λ+α+μ)

·
(

1−
(
λ+μ

λ+α

)s)

+
(k+ 1)λ+μ

λ+μ
+

μ

α−μ

(λ+μ)2

(λ+μ+α)
+
[

(λ+μ)k
kλ+α

]s

× (kλ+α)(α−μ)
λ+α

[

(s− 1)(α−μ)−
(
λ+μ
λ+α

)2
(

1−
(
λ+μ
λ+α

)s−1
)]}

q(0,0).

(4.19)

4.6. Expected inventory level. Let E(I) denote the expected inventory level in the steady
state. Then

E(I)=
S∑

i=1

iQ1
i =

s∑

i=1

iQ1
i +

S−s∑

i=s+1

iQ1
i +

S∑

i=S−s+1

iQ1
i . (4.20)

Then

E(I)=
{
k(λ+μ)(α+ kλ)

(α− kμ)2

(
1−Ls+1

1

)− sk(λ+μ)
(α− kμ)

Ls1 +
L1s(λ+μ)

k(k− 1)(λ+μ+α)

+
(λ+μ)(α+ kλ)s

(k− 1)λs− 1
L2

{(
α+ kλ

α

)2[
Ls2−LM2

]
+
α+ kλ

α

[
sLs2−MLM2

]
}

+
μ(M− s)

(α−μ)(λ+μ+α)
L3
(
1−L3

)
+ (M− s)

(k+ 1)λ+μ

(k− 1)(λ+μ)

+L2

(
λ+μ
λ

)s
[

(kλ)M − (kλ)s

(1−kλ)2
+
M(kλ)M−S(kλ)S

1−kλ

]

− kμ

α+kλ

[
1−Ls1
(
1−L1

)2 +
M−SLs1
1−L1

]

+
μ(λ+μ)2

(k− 1)(α−μ)(λ+α)(λ+α+μ)
Ls1

kλ+α

k(λ+α)

[

s−
[
LM+2

3 −LS+2
3

]

(1−L3)2
+
MLS3− SLS3

1−L3

]

+
sλμ

(λ+α)(k− 1)

(
k(λ+μ)

)s

}

q(0,0),

(4.21)

where

L1 = k(λ+μ)
α+ kλ

, L2 = kλ

α+ kλ
, L3 = λ+μ

λ+α
. (4.22)
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5. Busy period analysis

A busy period of the system is defined as the time at which a primary demand is coming
to the system when the inventory is full and also none in the orbit and it ends when the
inventory is full and none in the orbit. That is, the time to an (S,0) to (S,0) transition. To
compute this distribution, consider the state (S,0) as an absorbing state. From the above
set of differential difference equations (4.1), remove all the terms corresponding to (S,0)
on the RHS. Then we get

d

dt
P(S, j, t)=−(λ+ jαj

)
P(S, j, t) +μP(s, j, t), j ≥ 1,

d

dt
P(i, j, t)=−(λ+ jαj

)
P(i, j, t) + ( j + 1)αj+1P(i+ 1, j + 1, t) + λP(i+ 1, j, t)

+μP(i−M, j, t), S− s≤ i≤ S− 1, j ≥ 1, M = S− s > s,

d

dt
P(i, j, t)=−(λ+ jαj

)
P(i, j, t) + ( j + 1)αj+1P(i+ 1, j + 1, t) + λP(i+ 1, j, t),

s+ 1 < i≤ S− s− 1, j ≥ 1,

d

dt
P(i, j, t)=−(λ+ jαj +μ

)
P(i, j, t) + ( j + 1)αj+1P(i+ 1, j + 1, t) + λP(i+ 1, j, t),

0 < i≤ s, j ≥ 1,

d

dt
P(S− 1,0, t)=−λP(S− 1,0, t) +α1P(S,1, t) +μP(s− 1,0, t),

d

dt
P(S,0, t)= μP(s,0, t),

d

dt
P(i,0, t)=−λP(i,0, t) +α1P(i+ 1,1, t) + λP(i+ 1,0, t) +μP(i−M,0, t),

S− s≤ i≤ S− 2,

d

dt
P(i,0, t)=−(λ+μ(1− δi)

)
P(i,0, t) +α1P(i+ 1,1, t) + λP(i+ 1,0, t),

0≤ i≤ S− s− 1,

(5.1)

where δi = 1 or 0, according as i= s+ 1,s+ 2, . . . ,S− s− 1 or i= 0,1, . . . ,s,

d

dt
P(0, j, t)=−(λ+μ)P(0, j, t) + ( j + 1)αj+1P(1, j + 1, t)

+ λ
[
P(0, j− 1, t) +P(1, j, t)

]
, j ≥ 1.

(5.2)
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Taking Laplace transforms with respect to t and with the initial condition P(S,0,0) = 1
and P(i, j,0) = 0 for i �= S, j �= 0, and solving the equation with αj = α/ j, j ≥ 1, by the
above procedure as in Section 4.4, we get

P(i+ 1,0,z)=
[
y0(z)(z+ λ+μ)
α+ λy0(z)

]i+1

P(0,0,z), 0 < i≤ s,

P(i+ 1,0,z)=
[
y0(z)(z+ λ)
α+ λy0(z)

]i−s[ y0(z)(z+ λ+μ)
α+ λy0(z)

]s+1

P(0,0,z), s < i≤ s− s− 1,

P(i+ 1,0,z)=
[
y0(z)(z+λ)
α+λy0(z)

]i+1−s{[ y0(z)(z+λ)
α+λy0(z)

]M−s−1( y0(z)(z+λ+μ)
α+λy0(z)

)s+1

+1−
(
z+λ+μ
z+λ

)i+1−M}

P(0,0,z), S−s≤ i≤ S−2,

P(S,0,z)= μ

z
P(s,0,z),

P(0, j,z)=
(

1 +
λy0(z)
z+ λ+μ

)
(
y0(z)− j)P(0,0,z), j ≥ 1,

P(i, j,z)= (y0(z)
)i− j

(
z+ λ+μ

z+ λ+μ+α

)(
z+ λ+μ

α+ λy0(z)

)i

P(0,0,z), 0 < i≤ s, j ≥ 1,

P(i, j,z)=
(
y0(z)−( j+1)(α+ λy0(z)

)

z+ λ+α

[
y0(z)(z+ λ)
α+ λy0(z)

]i−s

·
[
y0(z)(z+ λ+μ)
α+ λy0(z)

]s

P(0,0,z), s < i≤ S− s− 1, j ≥ 1,

P(i, j,z)=
(
y0(z)−( j+1)(α+ λy0(z)

)

z+ λ+α

(
y0(z)(z+ λ)
α+ λy0(z)

)i+1−M

·
{(

y0(z)(z+ λ)
α+ λy0(z)

)M−s−1( y0(z)(z+ λ+μ)
α+ λy0(z)

)s+1

+

[

1−
(
z+ λ+μ

z+ λ

)i+1−M]

+μ
(
y0(z)

)− j
[
y0(z)(z+ λ+μ)
α+ λy0(z)

]i−M}

P(0,0,z),

S− s≤ i≤ S− 1, j ≥ 1,

P(i, j,z)= μ

z+ λ+α
P(s, j,z), j ≥ 1.

(5.3)
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P(0,0,z) can be determined by
∑∞

j=0

∑S
i=0P(i, j,z)=1/z which gives P(0,0,z)=[zH(z)]−1,

where

H(z)= h4
(
1−hs+1

2

)−h3
(
1−hs−1

1

)[
1 +hM−s−1

1 hs+1
2

]

+hs2
[
h2h3

(
1−hM−2

1

)
+h2h3h5y0(z)

(
yo(z)− 1

)−2(
1 +μz−1−hM−s−1

1

)]

+μ
(
y0(z)− 1

)−1
h7−h4

(
1−hs−1

2

(
1−h6

))
+h3h5y0(z)

(
y0(z)− 1

)−1

· (1−hs1
)(

1 +hM−s−1
1 hs+1

2

)(
1−hs2

)
h8,

h1 = y0(z)(z+ λ)
α+ λy0(z)

, h2 = y0(z)(z+ λ+μ)
α+ λy0(z)

, h3 = y0(z)(z+ λ)
α− zy0(z)

,

h4 = y0(z)(z+ λ+μ)
α− (μ+ z)y0(z)

, h5 = α+ λy0(z)
z+ λ+α

, h6 = z+ λ+μ

(y0(z)− 1)(z+ λ+μ+α)
,

h7 = z+ λ+μ

(z+ λ+α)2
, h8 = μ

(
y0(z)− 1

)−1(
α− y0(z)

)
(z+μ)−1−h4h5

(
y0(z)

)−1
.

(5.4)

5.1. Expected length of the busy period. We have

P(S,0,z)= μ

z
P(s,0,z)= μ

z
hs2P(0,0,z). (5.5)

P(S,0,z) is the cumulative distribution function of the Laplace transform of the busy
period. Define f (S,0, t)dt = P {busy period ends in (t, t + dt) leaving back the inventory
level to S and “0” demands in the orbit for the first time}.

Hence f (S,0, t) = (d/dt)P(S,0, t) is the pdf of P(S,0, t). Let f (S,0,z) be the Laplace
transform of the busy period density f (S,0, t). Then

f (S,0,z)= zP(S,0,z)= μhs2P(0,0,z). (5.6)

Then the expected amount of time, the system is continuously busy, is

E(T)=−
[
d

dz
f (S,0,z)

]

z=0
(5.7)

which gives

E(T)=−μ
{
k+ (λ+μ)(1− kλ)V

α+ kλ

(k− 1)2α(λ+α)s
λμ(λ+μ)k3

(
k(λ+μ)
α+ kλ

)s−1

−
(
k(λ+μ)
α+ kλ

)s( (k− 1)2α(λ+α)
λμ(λ+μ)k3

)2(
H0 +H′

0

)
}

,

(5.8)
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where

k = lim
z→0

y0(z), V = lim
z→0

y′0(z), H0 = lim
z→0

H(z), H′
0 = lim

z→0
H′(z), hi0 = lim

z→0
hi,

H0 = h40
(
1−hs+1

2

)
+hs+1

20 h30
(
1−hM−s−1

10

)
+hM−s−1

10 hs+1
20 h30

(
1−hs−1

10

)

+h50h
s+1
20

kλ

(k− 1)α

(
1−hM−s−1

10

)
+h50

[

hM−s−1
10 hs+1

20
λ

α(k− 1)

(
1−hs10

)
]

+h50
λ

α(k− 1)

(
1−hs10

)−h50h40
(
1−hs20

) 1
k(k− 1)

+
μ

(k− 1)(α− kμ)

(
1−hs20

)

+
μ

λ+α

λ+μ

λ+α

h20

k
,

H′
0 = h30h50V

{
k

(k− 1)2
(s+ 1)hs2

[
(α+ kλ)(λ+μ+ k)− k(λ+μ)λ

(α+ kλ)2

]

− (k2− 1
)
}

.

(5.9)

5.2. Expected number of primary demands during a lead time. Let rn,k be the proba-
bility that there are n primary and k repeated demands during a lead time. Then

rn,k =
∫∞

0
e−(λ+α+μ)x

(λx)n

n!
(αx)k

k!
μe−μxdx

=
(
n+ k

k

)(
α

α+ λ+μ

)k( λ

α+ λ+μ

)n μ

α+ λ+μ
, n,k ≥ 0.

(5.10)

Therefore, expected number of primary demands during a lead time when k demands
in the orbit

=
∞∑

n=1

nrn,k

=
(

α

α+ λ+μ

)k( μ

α+ λ+μ

) ∞∑

n=1

n

(
n+ k

k

)(
λ

α+ λ+μ

)n

.

(5.11)

5.3. Expected number of secondary demands during a lead time. Expected number of
secondary demands during a lead time when there are n primary calls

=
∞∑

k=1

krn,k

=
(

λ

λ+α+μ

)n μ

λ+α+μ

∞∑

k=1

k

(
n+ k

k

)(
α

λ+α+μ

)k

.

(5.12)

5.4. Distribution of the inventory dry period. During the lead time the inventory level
may come down to zero and again replenishment may not take place for a random
amount of time. This period is the inventory dry period. The time between the con-
secutive replenishment is distributed as exponential with parameter μ and the dry period
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is the residual of the replenishment time which is again distributed as exponential with
parameter μ.

6. Waiting time

Suppose that at time t, a customer places a primary request. Then the period until that
request starts to be served is its waiting time.

Assume that at time t = 0, there are j customers in orbit and the inventory level is
i, i = 0,1, . . . ,S, j ≥ 1. Tag one of the customers in the orbit and denote by fi j(t), the
probability that by time t this customer has not been served. That is, the residual waiting
time τi j of the tagged customer is greater than t. Then

fi j(t)= P
{
τi j ≥ t

}
, i= 0,1, . . . ,S, j ≥ 1. (6.1)

To get equations for the probabilities fi j(t), we introduce an auxiliary Markov process ξ(t)
with state space {0,1,2, . . . ,S}× {1,2, . . .}∪ {a}. The state (i, j) can be thought of as the
presence in the system of i units in the inventory and j customers in the orbit including
the tagged one. The special state a is an absorbing state and the transition into this state
means that the tagged customer is served. Thus the residual waiting time of the tagged
customer, τi j , is the time till absorption to state a. Then

fi j(t)= P
{
ξ(t) �= a/ξ(0)= (i, j)

}

= 1−P
{
ξ(t)= a/ξ(0)= (i, j)

}
.

(6.2)

The transitions among the various states of {ξ(t)} are shown in the following diagram.
From state (i, j) the process can move to any of the following states:

(i) for s < i≤ S, j ≥ 1,

(i− 1, j)

(i, j)

( j−1)αj−1

λ

(i− 1, j− 1)

(6.3)

(ii) for 0 < i≤ s, j ≥ 1,

(i− 1, j)

(i, j)

( j−1)αj−1

μ

λ

(i+M, j)

(i− 1, j− 1)

(6.4)
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(iii) for i= 0, j ≥ 1,

(0, j + 1)

(0, j)

μ

λ

(M, j)

(6.5)

Therefore from the Kolmogorov backward equation for the Markov process {ξ(t)}, we
get

d

dt
fi j(t)=−

(
λ+ jαj

)
fi j(t) + λ fi−1 j(t) + ( j− 1)αj−1(t), s < i≤ S, j ≥ 1,

d

dt
fi j(t)=−

(
λ+μ+ jαj

)
fi j(t) + λ fi−1 j(t) + ( j− 1)αj−1 fi−1 j−1(t) +μ fi+M, j(t),

0 < i≤ s, j ≥ 1,

d

dt
f0 j(t)=−

(
λ+μ+ jαj

)
f0 j(t) + λ f0 j+1(t) +μ fM, j(t), j ≥ 1.

(6.6)

To solve this system, the initial condition is

fi j(0)= 1, 0≤ i≤ S, j ≥ 1. (6.7)

Define the Laplace transform φij(z)= ∫∞0 e−zt fi j(t)dt, |z| ≤ 1. From (6.6) we have

zφi j(z)− 1=−(λ+ jαj
)
φij(z)+λφi−1 j(z)+( j−1)αj−1φi−1 j−1(z), s≤ i≤ S, j ≥ 1,

(6.8)

zφi j(z)− 1=−(λ+ jαj +μ
)
φij(z) + λφi−1 j(z) + ( j− 1)αj−1φi−1 j−1(z) +μφi+M, j(z),

0 < i≤ s, j ≥ 1,
(6.9)

zφ0 j(z)− 1=−(λ+ jαj +μ
)
φ0 j(z) + λφ0 j+1(z) +μφM, j(z), j ≥ 1. (6.10)

We will solve this system of nonhomogeneous equations as difference equation in i and
j. Set αj = α/ j and

φi−1 j(z)= y(−i)φ0 j(z)= y−(i+ j)φ01(z), (i, j)∈ E. (6.11)

Equation (6.11) to be a solution to (6.9), (6.9) should satisfy the following.
From (6.9), the homogeneous part gives [(z + λ+ μ+ α)− λy− αy2− μy−M]φ01(z) =

0, which gives

z+ λ+μ+α− λy−αy2−μy−M = 0. (6.12)



P. V. Ushakumari 17

By Rouche’s theorem (6.12) is having M + 1 roots of which M roots inside and one root
outside the unit circle |y| = 1. Consider the outside root, say y0(z). Therefore

φij(z)= (y0(z)
)−(i+ j)

φ01(z), 0 < i≤ s, j ≥ 1, (6.13)

and the solution of the particular function is 1/z. Therefore the complete solution is

φij(z)= (y0(z)
)−(i+ j)

φ01(z) +
1
z

, 0 < i≤ s, j ≥ 1. (6.14)

Using this we can recursively compute the remaining Laplace transforms. Therefore from
(6.8),

φij(z)=
(
λ+αy0(z)
z+α+α

)i−s(
y0(z)

)−(s+ j+1)
φ01(z) +

1
z

, s < i≤ S, j ≥ 1. (6.15)

From (6.9),

λφ0 j(z) +αφ0 j−1(z)

=
[

(z+ λ+μ+α)y0(z)−( j+1)−μ
(
λ+αy0(z)
z+ λ+α

)
(
y0(z)

)−(s+ j+1)
]

φ01(z)− 1, j ≥ 1.

(6.16)

From (6.10) and (6.11),

φ0 j(z)=
[(

z+ λ+μ+α

λ

)
(
y0(z)

)−( j+1)− μ

λ

(
λ+αy0(z)
z+ λ+α

)(M−s+1)(
y0(z)

)−(s+ j+1)
]

φ01(z)

− α

λ
φ0 j−1(z)− 1

λ
, j ≥ 2.

(6.17)

Iteratively,

φ0 j(z)=
[

Cj(z)−
(
α

λ

)

Cj−1(z)+
(
α

λ

)2

Cj−2(z)−···+(−1) j−1
(
α

λ

) j−1

C1(z)+(−1) j
(
α

λ

) j

C0(z)

]

×φ01(z)− 1
λ

[

1−
(
α

λ

)

+
(
α

λ

)2

−
(
α

λ

)3

+ ···+ (−1) j
(
α

λ

) j−2
]

, j ≥ 3,

φ02(z)=
[

C2(z)−
(
α

λ

)

C1(z) +
(
α

λ

)2
]

φ01(z)− 1
λ

,

(6.18)
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where

Cj(z)= z+ λ+μ+α

λ

(
y0(z)

)−( j+1)− μ

λ

(
λ+αy0(z)
z+ λ+α

)M−s+1(
y0(z)

)−(s+ j+1)
,

j ≥ 1 with C0(z)= 1.

(6.19)

φ01(z) can be obtained in such a way that
∑∞

j=1

∑S
i=0φij(z)= 1/z which gives

φ01(z)= (y0(z)
)S−1

[
1− y0(z)

]2

[

1− (y0(z)
)S+1

] . (6.20)

6.1. Conditional mean waiting times. By taking limit as z→ 0, we get the mean condi-
tional waiting times. Let mij = limz→0φij(z). Set limz→0 y0(z)= k1 and Cj0 = limz→0Cj(z).
Then from (6.12), we have

(λ+μ+α)− λk1−αk2
1 −μk−M1 = 0 (6.21)

and k1 is the root of (6.21). Then we have

mij = k
−(i+ j)
1 m01, 0 < i≤ s, j ≥ 1,

mij =
(
λ+αk1

λ+α

)i−s
k
−(s+ j+1)
1 m01, s < i≤ S, j ≥ 1,

m0 j =
j
∑

i=0

(−1)i
(
α

λ

)i

Cj−im01− 1
λ

j−1
∑

i=0

(−1)i
(
α

λ

)i

, j ≥ 2,

m01 = kS−1
1

[
1− k1

]2

1− kS+1
1

.

(6.22)

6.2. Unconditional mean waiting times. Expected waiting time of a unit in the steady
state is given by

E(W)=
S∑

i=0

∞∑

j=1

mijq(i, j)=m01q(0,1) +
∞∑

j=2

m0 jq(0, j) +
S∑

i=1

∞∑

j=1

mijq(i, j). (6.23)
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Then, let

θ1 = λ+αk1

λ+α
, θ2 = λ+μ+ kλ

λ+μ
, θ3 = λ+μ

λ+α
, θ4 = λ+αk1

λ+μ
,

θ51 = α2

λ2−α2
, θ5 = θ51

(
α

λ

)2

+
α2

λ(λ+ kα)
, θ6 = k(λ+μ)

α+ kλ
, θ7 = λ+μ

λ+μ+α
.

(6.24)

Then, we get

E(W)=
{

θ2 +
λ+μ+α

λk1
(
k2

1 − 1
) − θ5− k−s1

(
1− k1

)
μθM−s+1

1

λ+αk1

[
1

k1
(
k2

1 − 1
) +

α

λ
θ51

]

+

[
(
k2− 1

)−1
+
(
k3− 1

)−1−
(
α

k

)2 k− 1
λ(kλ−α)

]
1

m01(λ+α)

+
θ6θ7

(
1− k−s1

)

k(λ+μ+α)k1
(
1− k1

)(
kk1− 1

) +
ks+1θ1θ3λ

ks+1
1

(
kk1− 1

)

(

1− kλθ1

kλ+α

)M−s−1

+
μθ3

(
1− θs3

)

α−μ
+
k−(s+1)

1

k1− 1
θM−s1 θ2

+
μ

α−μθ3θ
s
6θ7

[(
k1θ1

)−s

k1−1
λ+α

α
(
1−k1

) · θM+1
1

(
1−θs−1

1

)− (λ+α)−(s+1)

μ−αk1
θ3θ

M+1
1

(
1−θs−1

4

)
]

+
λμ

λ+α
ksθM1

k−(s+1)
1

kk1− 1

}

m01q(0,0).

(6.25)

7. Control problem

In this section we investigate the optimal values of the control parameters “s” and “S.” For
this, we formulated a cost function which is to be minimized. The following main costs
are considered:

(i) fixed setup cost “K” per unit time;
(ii) the ordering cost “C” per unit time;

(iii) the waiting time cost ω per unit time due to waiting in the orbit.
Let T(s,S) be the total expected cost per unit time which is a function of the control

variates s and S. Then we define T(s,S) as T(s,S)= K +C (expected number of reorders
per unit time) +ω (expected waiting time in the orbit).

To obtain the optimal values of “s” and “S,” we will have to examine the convexity
properties of T(s,S). To do this, we have to obtain the expected number of reorders per
unit time. The expected number of reorders in a cycle starting from (S,0) before return-
ing to (S,0) for the first time is the same as the expected number of visits to state (s, j),
j ≥ 0, starting from (S,0) before returning to (S,0) for the first time. In each visit to (s, j),
j ≥ 0, a replenishment order will be placed and only one order is pending at any given



20 On (s,S) retrial inventory system

Table 7.1. The total expected cost per unit time for λ= 0.1, α= 0.02, μ= 0.5, s= 1, K = 100, C = 10,
ω = 5.

S 10 11 12 13 14 15

T(S,s) 100.0119 100.0117 100.0116 100.0115 100.0115 100.0116

S 16 17 18 19 20 —

T(S,s) 100.0118 100.0122 100.0128 100.0136 100.0148 —

Table 7.2. The total expected cost per unit time for λ= 0.01, α= 2.5, μ= 6, S= 40, K = 100, C = 10,
ω = 0.5.

s 2 3 4 5 6 7 8

T(S,s) 100.0071 28.0026 4.3492 88.3344 99.3664 99.9749 99.9991

s 9 10 — — — — —

T(S,s) 99.9999 100.0000 — — — — —

time. From the theory of regenerative process, the stationary probability q(i, j) can be
interpreted as the long run fraction of time the system is in state (i, j). Then the expected
number of replenishments per unit time is the expected number of visits to state (s, j),
j ≥ 0, and can be computed as

∑∞
j=0(λ + jα)q(s + 1, j). Now,

∑∞
j=0(λ + jα)q(s + 1, j) =

(ks+1(λ+ μ)/(α+ kλ))(λ/(k− 1))2(λ(k− 1) + α) + λ[k(λ+ μ)]s]q(0,0), using the station-
ary probabilities given in Section 4.3. The expected waiting time in the orbit is given in
Section 6.2. Then the total expected cost per unit time is

T(s,S)= K +C

[
ks+1(λ+μ)
α+ kλ

(
λ

k− 1

)2(
λ(k− 1) +α

)
+ λ
[
k(λ+μ)

]s

]

q(0,0) +ωE(W).

(7.1)

Theorem 7.1. The function T(s,S) given in (7.1) is convex in S for a fixed s and is convex in
s for a fixed S and hence the global minimum S∗ of S exists for fixed s and global minimum
s∗ of s exists for fixed S.

Proof. From (7.1) one can verify that the partial derivatives ∂2T(s,S)/∂S2 ≥ 0, ∂2T(s,S)/
∂s2 ≥ 0 and hence the function is convex, respectively, in S for fixed s and in s for fixed S.
Hence the global minimum S∗ of S and s∗ of s exists, respectively, for fixed values of s
and S. �

7.1. Numerical results. In this section we discuss some numerical examples that reveal
the convexity of the total expected cost function. We performed the calculations using the
MATLAB. Table 7.1 gives the total expected cost per unit time for various values of S and
fixed values of other parameters and costs. Table 7.2 gives the total expected cost per unit
time for various values of s and fixed values of other parameters and costs. From Tables
7.1 and 7.2 it can be seen that the optimal values S∗ and s∗ are 13 and 4, respectively.
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Table 7.3. Expected waiting time for a unit in the orbit when λ= 0.1, α= 0.02, μ= 0.5, s= 1.

S 10 11 12 13 14

E(W) 0.0024 0.0024 0.0023 0.0023 0.0023

S 15 16 17 18 19

E(W) 0.0024 0.0025 0.0026 0.0027 0.0030

Table 7.4. Expected waiting time for a unit in the orbit when λ= 0.01, α= 2.5, μ= 6.0, S= 40.

s 2 3 4 5 6

E(W) 0.0148 −143.9 −191.3 −23.3 −1.26

s 7 8 9 10 —

E(W) −0.0501 −0.0017 −5.5e−5 −1.3e−6 —

Table 7.5. Expected inventory level in the steady state for s= 5, S= 20, μ= 5.

λ | α 0.1 0.2 0.3 0.4

1.0 6.5e15 1.2e15 2.4e14 5.7e13

2.0 1.6e12 6.7e11 3.1e11 1.6e11

3.0 −8.2e8 −5.5e8 −4.1e8 −3.5e8

4.0 −6.0e9 −6.1e9 −6.2e9 −6.2e9

4.5 −1.7e15 −1.5e10 −1.2e10 −7.7e9

Tables 7.3, 7.4, and 7.5 give average waiting time for various values of S and s and the
average inventory level for various values of λ and α.
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